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Abstract: The rising energy consumption in residential buildings within the hot summer and cold
winter (HSCW) climate zone, driven by occupants’ pursuit of improved thermal comfort, necessitates
effective energy conservation measures. This study established urban building energy models
for 32,145 residential buildings in Changsha City, China, and conducted a comprehensive retrofit
analysis of seven energy conservation measures (ECMs). Additionally, the study assessed the impact
of residents’ conscious energy-saving behaviors concerning air conditioner (AC) control. The research
commenced by creating six baseline models representative of the diverse building stock. Identifying
seven commonly used ECMs, the study examined the potential of each measure for enhancing energy
efficiency. To facilitate the analysis, a dedicated toolkit, AutoBPS-Retrofit, was developed to efficiently
modify the baseline model for each ECM. Furthermore, the investigation delved into the investment
cost of implementing the ECMs and evaluated their simple payback year (PBP) and net present
value (NPV). The results demonstrate that tailored retrofit plans are essential when addressing
envelope improvements, varying according to building types and ages. Retrofits targeting lighting
systems offer both promising energy savings and favorable economic viability, albeit subject to
residents’ preferences. Alternatively, upgrading the AC systems emerges as the most energy-efficient
approach, yet the economic assessment raises concerns. The study’s findings offer practical insights
for governments seeking to establish effective carbon reduction goals and policies. Moreover, the
research can assist energy-saving institutions, real-estate companies, and stakeholders involved in
renovation projects by offering guidance in making informed decisions to enhance energy efficiency
in city-scale residential buildings.

Keywords: residential buildings; building simulation; energy conservation measures; city-scale
modeling; retrofit analysis

1. Introduction

Energy saving in residential buildings has become highly valued by national policy-
makers worldwide, driven by both environmental concerns and the escalating demand for
domestic energy. In the European Union, the residential sector is responsible for approxi-
mately 26% of the total energy consumption [1]. According to the China building energy
consumption annual report, in 2021, the total building energy consumption amounted
to 31%, with existing residential buildings in China constituting approximately 78% of
the total buildings and contributing 17% to the country’s overall energy consumption;
however, a portion of these old residential buildings exhibits a noticeable disparity when
compared to current energy-saving standards [2]. The 14th Five Year Plan for Building
Energy Efficiency and Green Development proposes to complete the energy-saving retrofit
of existing buildings with an area of over 350 million square meters by 2025. Therefore,
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the energy-saving retrofit of existing residential buildings is an important means to reduce
building energy use and to achieve low-carbon goals [3].

Retrofitting and reconstruction stand as two alternatives for upgrading or replacing
such structures. In response to this matter, Ahady and Peng [4,5] assert that retrofitting
holds greater ecological and economic significance. Fleur et al. [6] studied the life cycle cost
of energy retrofit, as well as the cost of building demolition and construction. The results
show that building energy retrofit is a more cost-effective way. Gasper et al. [7] compared
the impact of complete demolition and rebuilding of a detached residential building in
Portugal on Life Cycle Energy. It was found that the Life Cycle Energy consumption of
retrofit was significantly lower than that of rebuilding. Although energy-saving renovation
has the advantages of reducing energy consumption and saving costs, there are also
certain risks. The implementation of residential building retrofit faces many risks, such as
homeowners and contractors [8,9], involving retrofit awareness, cooperation performance,
opportunism, professional expertise, construction management, safety management, and
maintenance, causing the slow retrofit process in the hot summer and cold winter (HSCW)
zone of China [10]. The HSCW zone covers an area of 1.8 billion km2, involving 14 provinces
and 2 municipalities [11]. Due to extreme weather conditions, great demands for cooling
in summer and heating in winter exist simultaneously, which brings a certain difficulty to
constructing energy-efficient buildings in this region [12,13]. Only 70.9 million m2 of retrofit
projects were completed in the HSCW zone during the 12th Five-Year Plan period, a much
slower rate than the northern region with 990 million m2 [10]. Therefore, it is necessary
to accelerate the implementation of residential energy retrofitting in China’s HSCW zone
while retrofitting existing buildings is an effective way. Real-estate investors are reluctant to
bear additional costs for the hidden benefits of energy saving, and residents also consider
renovation projects as an uncomfortable measure that delays their normal life. Almost
all retrofit projects are government-led, and governments have to make a severe choice
between energy-saving effects and investment costs [14]. The reasonable retrofit of existing
buildings is the key, which can not only reduce building energy consumption but also have
the advantages of low cost and high income [15].

Building energy modeling is widely used in retrofit analysis, especially for a single
residential building that has always been researching hot spots. Huang et al. [16] conducted
a passive energy-saving renovation on a high-rise residential building, reducing its cooling
energy consumption by 8.7%. The payback period for the renovation cost is 18.4 years, and
residents can profit from the remaining lifespan of the building. Short et al. [17] used the
existing 23-story high-rise apartments in Hangzhou as an example to verify the feasibility of
a low-carbon adaptation strategy of external shading and natural ventilation. Yao et al. [18]
used a typical apartment in Chongqing, Changsha, and Shanghai as an example to conduct
extensive parameter analysis on passive strategies such as building orientation, insulation,
glass area, shading devices, air tightness, and natural ventilation. Qu et al. [19] carried out
passive renovation of Victorian buildings in the late 19th century. The renovation methods
included interior wall insulation, glass upgrading, and air tightness improvement. The
best combination of these three retrofit measures can reduce primary energy consumption
by 51.8%. Energy-saving retrofit can also use the global sensitivity analysis method, which
selects the best retrofit scheme considering the change of parameters such as human
behavior. Building energy consumption and carbon emissions are reduced by 26.4% after
using this method [20]. Li et al. [21] proposed an energy comfort optimization model
based on simulation and, combined with the response surface method, formed an excellent
building renovation scheme. Through example verification, the scheme can save 4% of
energy and improve the thermal comfort of the built environment. Lupíšek A et al. [22]
applied an industrial building system with prefabricated modular elements to calculate the
energy-saving potential of a representative Czech residential building. They found that the
total energy consumption of Czech residential buildings could be reduced by 2.9%.

While the majority of research concerning building energy-saving retrofits is centered
on individual buildings, a subset of scholars is inclined toward investigating building
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retrofits at an urban scale [23]. Wang et al. [14] established a set of procedures for devel-
oping an optimal energy-saving retrofit scheme in old residential buildings in Nanjing
City. The optimal scheme can reduce 18.52% of residential building energy consumption in
five central districts. Teso et al. [24] used the CityBES model to carry out energy-saving
renovation of an urban area in Venice, respectively, taking four kinds of renovation mea-
sures for building envelope structures and heating boilers. The results show that the
energy consumption and cost of urban buildings are reduced by 67% after the renovation.
Deng et al. [25] proposed a new Automated Building Performance Simulation tool, com-
bined with Geographic Information System data to calculate building energy use and then
to upgrade the building’s air conditioning system, photovoltaic power generation system,
envelope structure, etc. The results show that energy use intensity can be reduced by 30.7%
and that energy demand can be reduced by 18.5%. Adilkhanova et al. [26] considered
combining the urban climate model, urban building energy consumption model, and actual
data and applied a high albedo material to transform the building. The simulation results
show that the urban temperature is reduced by 2.08 ◦C, and the building energy use is
reduced by 7.7 kWh/m2. Afshari [27] uses reanalysis data from the European Centre for
Medium-Range Weather Forecasts, combined with the Standalone Urban Energy/Climate
Model, to transform the city. This method reduces the cooling electricity demand by more
than 40% and the heat island intensity by more than 25%. Mousavi et al. [28] proposed an
intelligent energy comfort system for roof renovation of residential quarters by combining
integrated machine learning and Taguchi design methods. The system can increase thermal
comfort time by 12.8% and reduce energy consumption by 14%. Tsang et al. [29] predicted
the energy consumption for space heating and cooling and the thermal comfort of individ-
ual flats, single buildings, and a city in Chongqing. They examined the energy consumption
of seven energy-saving measures and three air conditioning operation modes. Studying
the energy-saving potential of residential buildings on a city scale is of great ignificance.

Prior research has furnished valuable insights into assessing the energy-saving po-
tential of urban residential buildings. However, the abundance of ECMs for residential
settings remains less comprehensive, and the degree of automation of model establish-
ment and retrofit is insufficient. Furthermore, there exists a notable dearth in the practice
of conducting pre-renovation and post-renovation economic analyses concerning urban
residential buildings. Moreover, city-scale building energy simulation reveals a duo of
challenges: Firstly, the endeavor necessitates substantial computational resources and
computing time [30]. Secondly, the execution of urban energy simulations frequently en-
tails juggling multiple software packages and necessitates cross-platform operations [31].
References [30,31] Aiming to obtain effective city-level carbon reduction goals and policies,
this specific case study of Changsha City needs to overcome the difficulties of collecting and
processing city-scale data, which is the most fundamental difference from the simulation of
individual buildings.

To bridge these gaps evident in prior investigations, we have formulated a framework
for executing retrofit analysis of city-scale residential buildings. Firstly, seven distinct ECMs
have been proposed by accounting for three fundamental facets of residential buildings,
including envelope structures, lighting systems, and AC systems. Secondly, building upon
the foundation of our prior research on AutoBPS as a solution for rapid simulation and cross-
platform operations involving massive data [25], our present study undertakes an extensive
enhancement of the retrofit functionality, specifically through the development of AutoBPS-
Retrofit. This dedicated tool enables the seamless implementation of ECMs with a high
degree of automation and high speed of calculation. Subsequently, an economic analysis
of the retrofitting of city-scale residential buildings is carried out, facilitated by AutoBPS-
retrofit. In intricate detail, against the backdrop of policy support and the demonstrated
advantages of retrofitting over reconstruction, this paper directs its focus toward the
analysis of energy consumption within a pool of 32,145 mid-rise and high-rise apartments
situated in Changsha. This study encompasses the examination of energy consumption
under seven distinct ECMs, diverse AC operation strategies, and comprehensive economic
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analysis. The primary objective of this paper is to offer valuable references for governments
in formulating effective carbon reduction goals and policies. Furthermore, the research aims
to offer pivotal insights and guidance to energy-saving institutions, real-estate enterprises,
and other pertinent stakeholders involved in renovation endeavors.

2. Methods

In order to formulate expansive building energy-saving retrofit strategies that en-
compass both energy-saving efficacy and economic advantages, the research workflow is
visually depicted in Figure 1. Initially, baseline models are called from AutoBPS based on
input data, including building type, vintage, and climate zone entered by the user. Subse-
quently, the retrofit project is formulated to meet specific requirements, with seven ECMs
available, covering exterior walls, roofs, windows, external shadings, air sealing, lighting
systems, and AC systems. The baseline models can be obtained if the users do not choose
any ECM. Following the development of both the baseline models and retrofit models,
EnergyPlus is employed as the simulation engine to calculate the energy use intensity (EUI),
forming the basis for evaluating energy-saving effects. Lastly, the payback period (PBP)
and net present value (NPV) serve as indicators to assess the economic feasibility of the
selected ECMs.
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2.1. Data Collection and Building Classification

Changsha, located in the central part of China, is the capital of Hunan Province. The
climatic condition of Changsha is typical of hot summer and cold winter. The climate
zone of it is categorized as GBCZ-3B, referring to the Uniform Standard for Design of
Civil Buildings (GB50352-2019) [32]. According to a previous study, Deng and Chen [33]
collected building information on existing residential buildings in Changsha, including
10,377 high-rise apartments and 21,768 mid-rise apartments in Yuelu District, Kaifu District,
Furong District, Tianxin District, and Yuhua District. These residential buildings in five
districts of Changsha as the main urban area were selected as the case study area.

According to the type of building and the year built, the target buildings can be
divided into 18 categories. The type of building can be divided into high-rise apartments,
mid-rise apartments, and low-rise apartments. According to the year built, it can be divided
into before 2001, from 2001 to 2010, and after 2010. According to the function, the building
can be divided into residential buildings and commercial buildings. According to the
above classification criteria, the information and classification of 53,591 existing residential
buildings are summarized, as shown in Table 1.
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Table 1. Classification of 18 types of buildings.

Case Building Type Year Built Footprint
(Million m2)

Number of
Buildings

1 High-rise residential Pre-2001 1.6 2626
2 High-rise residential 2002–2009 2.1 2991
3 High-rise residential 2010 and After 2.7 3533

4 High-rise residential–shops Pre-2001 0.2 297
5 High-rise residential–shops 2002–2009 0.5 483
6 High-rise residential–shops 2010 and After 0.4 447

7 Mid-rise residential Pre-2001 4.7 8441
8 Mid-rise residential 2002–2009 3.5 6631
9 Mid-rise residential 2010 and After 2.4 4306

10 Mid-rise residential–shops Pre-2001 0.8 1147
11 Mid-rise residential–shops 2002–2009 0.7 880
12 Mid-rise residential–shops 2010 and After 0.3 363

13 Low-rise residential Pre-2001 2.2 5735
14 Low-rise residential 2002–2009 2.2 6530
15 Low-rise residential 2010 and After 2.8 7586

16 Low-rise residential–shops Pre-2001 0.5 620
17 Low-rise residential–shops 2002–2009 0.4 484
18 Low-rise residential–shops 2010 and After 0.5 491

This study focuses on the retrofit effect of buildings with different vintages and build-
ing types under different ECMs. Given the limited availability of energy-saving renovation
scenarios for low-rise apartments, this study exclusively focuses on analyzing high-rise
and mid-rise apartments spanning varying construction periods, and apartments with or
without shops are merged according to the number of building floors. The information on
the selected six buildings is summarized in Table 2.

Table 2. Classification of 18 types of buildings.

Case Building Type Year Built Number of Buildings Footprint
(Million m2)

Floor Area
(Million m2)

1 High-rise
apartment

Pre-2001 2923 1.88 17.4
2 2001–2010 3474 2.59 34.9
3 2010 and After 3980 3.09 56.0

4 Mid-rise
apartment

Pre-2001 9588 5.47 28.8
5 2001–2010 7511 4.15 22.6
6 2010 and After 4669 2.73 15.2

2.2. Baseline Model Establishment

The establishment of baseline models involves the generation of both geometric
and energy models. The geometric models’ spatial layout draws reference from DOE
prototype models. OpenStudio-Standards is employed to incorporate properties such
as building envelopes and schedules, aligning them with Chinese standards. Geometry
models are structured in the OpenStudio model format using the SketchUp Plug-in, while
the energy models are assembled through OpenStudio and EnergyPlus. After clarifying
the above mechanism, the establishment of the baseline models also relies on the user
input information, including building type, climate zone, and vintage. In this study,
32,145 residential buildings in Changsha were regarded as target buildings. They were
divided into two building types, those above three floors but below seven floors are
called mid-rise apartments, and those above or equal to seven floors are called high-rise
apartments. According to the building type inputted, AutoBPS will generate the geometric
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models referring to DOE prototype models. The climate zone is 3B, and the standard
adopted in this area is ‘Design standard for energy efficiency of residential buildings in hot
summer and cold winter area’ (JGJ134). According to the time nodes of JGJ134-2001 [34]
implemented in 2001 and JGJ134-2010 [35] implemented in 2010, it is divided into three
vintages: built before 2001, built between 2001 and 2010, and built after 2010. The standard
library is also filled by referring to the limit values in JGJ134, and OpenStudio will endow
the energy model with settings that comply with local standards. Therefore, six kinds of
baseline models are generated. The operating settings of AC are as follows: The indoor
temperature is set at 26 ◦C in summer and 18 ◦C in winter. On the schedule of work and
rest, the turning on or off of lights and air conditioning depends on the worker’s home
time [36]. It is set to off at 18:00–8:00 and on the rest of the time.

2.3. ECM Identification

This section covers some literature reviews of commonly used ECMs, as shown in
Table 3. It can be seen that all of them involve the retrofit of envelopes because building
envelopes play a significant role in achieving energy-efficient buildings [37]. For exte-
rior walls and roofs, the method of adding insulation layers is adopted for retrofitting.
Commonly used materials include expanded polystyrene (EPS) and extruded polystyrene
(XPS), but EPS is more popular because it offers similar thermal performance at a low price.
Shading systems could help reduce the cooling load by cutting down solar heat gain, which
means that adding shading systems is an effective retrofit measure. Compared with internal
devices, external shading is regarded as a priority option. The most common external
shading devices are overhangs, requiring relatively little and inexpensive maintenance. In
hot summer and cold winter zones, employing low emissivity (low-e) glazing is preferable
to meet the energy efficiency requirements [38]. For most residential buildings, the HVAC
systems and lighting systems consume high amounts of energy. Considering the low
efficiency of existing HVAC systems, replacing more efficient equipment is a priority ECM.
Lowing the lighting power density (LPD) from artificial lights also considerably reduces
energy consumption.

Table 3. Literature review of ECMs.

ECMs
Study

[29] [37] [38] [39] [40] [41] [42] [43]

Insulating roof or wall
√ √ √ √ √ √ √ √

Replacing window
√ √ √ √ √ √ √ √

Replacing door × × × ×
√

×
√

×
Using high-efficiency HVAC systems

√ √ √ √ √
×

√ √

Changing lighting system ×
√ √ √ √

×
√

×
Reducing air leakage × × ×

√ √
× × ×

Using renewable energy × ×
√

×
√

×
√ √

Utilizing energy-saving device ×
√ √

×
√ √ √

×
Lowering the heating set point temperature × × ×

√
× ×

√
×

Increasing the cooling set point temperature × × ×
√

× × × ×
Adding window shading

√
×

√ √
× × × ×

Therefore, seven kinds of ECMs are selected and their indicators are defined, referring
to the Technical Standard for Nearly Zero Energy Buildings [44]; Graduations and Test
Methods of Air Permeability, Water-tightness, Wind Load Resistance Performance for
Building External Windows and Doors (GB/T 7106-2008) [45]; and the Standard for Lighting
Design of Buildings (GB 50034-2013) [46], as summarized in Table 4.



Energies 2023, 16, 6152 7 of 19

Table 4. Commonly used retrofit indicators.

Scenario Construction Indicator Limit Values in Standards

1 Exterior wall U-value (W/(m2·K)) ≤0.6
2 Roof U-value (W/(m2·K)) ≤0.4

3 window
U-value (W/(m2·K)) ≤2.0

SHGC ≤0.3
4 Shading Overhang depth (m) -
5 Air sealing Flow per exterior surface area (m3/(m2·s)) ≤4.2 × 10−4

6 Light LPD (W/m2)) ≤5.0

7 Air condition
Cooling COP 3.20
Heating COP 2.40

Table 4 lists the seven ECMs selected in this paper and their limited values, namely,
adding EPS material layer on the outer wall and roof, replacing the original ordinary
window with a low-e window, adding window shading facilities, adding PVC sealing strip
to improve the air tightness of the building, and replacing the original air conditioning
with a more efficient air conditioning system.

2.4. Retrofit Model Establishment

In this study, we have deepened the retrofit function of AutoBPS. When completing the
establishment of the baseline models and the determination of ECMs, the retrofit models
were generated by applying different ECMs to the baseline models. After selecting the
retrofit structure, AutoBPS-Retrofit can automatically and rapidly model and generate
corresponding energy consumption reports by simply inputting relevant parameters. The
ways to achieve energy-saving retrofit using AutoBPS-Retrofit can be summarized as
adding and modifying. The renovation of exterior walls and roofs requires adding EPS
material to the EnergyPlus model and adding it to the outermost layer of the original walls
or roofs. To achieve this step, the only parameter that users need to input is the thickness
of EPS. For windows, new window structures need to be added and then applied to the
exterior surface of the building. To achieve this step, the parameter that users need to
input is the U value and SHGC of the new window system. For external shading, vertical
overhangs will be added above the windows facing south by inputting the overhang
depth. As for air sealing, lighting, and AC, the retrofit just needs to modify the original
setting parameters in the EnergyPlus model. The parameters that need to be input for
different ECMs are shown in Table 5. Upon user selection of an ECM and the input of
the corresponding data, AutoBPS-Retrofit seamlessly processes this information to trigger
automated modifications to the baseline models. This adjustment is achieved through code
implementation, which effectively alters the underlying EnergyPlus model. For instance,
considering the retrofit of exterior walls, AutoBPS-Retrofit generates a novel EPS board in
the “Material” of EnergyPlus, mirroring the user-specified thickness. Subsequently, this
newly created EPS board is integrated into the outermost layer of the original exterior wall
in EnergyPlus’ “Construction” segment. As a result of these operations, retrofit models for
exterior walls, distinct from the baseline models, are systematically generated.

Table 5. Input parameters for different ECMs.

Construction Input Parameters

Exterior wall EPS thickness
Roof EPS thickness

Window U value, SHGC
Shading Overhang depth

Air sealing Flow per exterior surface area
Light LPD

Air condition Cooling COP, heating COP
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When carrying out retrofit, the limited range in standards and the materials available
in reality should be considered simultaneously. The limited range has been given in Table 4.
The material information, such as the actual market value of price and specification, can
be acquired from www.gldjc.com. The attribute that the materials must have is calculated
based on the minimum limit value, and then, the materials that meet the requirements can
be found on the website. For the specifications, technical parameters, and unit prices of the
materials used in these seven ECMs, see Table 6.

Table 6. Settings of models and material information.

Construction Material Information

Exterior wall

Year built Indicator
Settings

Measure Specification Material price
Baseline Retrofit

Pre-2001
W/(m2·K)

1.96 0.36 Adding EPS
layers

80 mm 42.07 CNY/m2

2001–2010 1 0.39 60 mm 34.15 CNY/m2

2010 and After 0.8 0.39 50 mm 30.19 CNY/m2

Roof
Pre-2001

W/(m2·K)
1.66 0.29 Adding EPS

layers

90 mm 46.03 CNY/m2

2001–2010 0.8 0.34 65 mm 36.13 CNY/m2

2010 and After 0.5 0.34 35 mm 24.25 CNY/m2

Window

Pre-2001
W/(m2·K)

6.6
1.60 Replacing

existing
windows with
low-e glazing

5+12Ar+
5Low-e+

12Ar+5low-e
139 CNY/m2

2001–2010 3.2
2010 and After 2.8

Pre-2001
SHGC

0.85
0.2872001–2010 0.48

2010 and After 0.34

External
shading

Pre-2001
m 0 0.75

Adding 90◦ overhang to windows
facing south 504 CNY/m2001–2010

2010 and After

Air sealing
Pre-2001

m3/(m2·s) 0.001 0.004 Adding PVC sealing strip 60 CNY/m2001–2010
2010 and After

Light
Pre-2001

W/(m2)
7

5 Replacing existing lights with LED 7.5 CNY/m22001–2010 7
2010 and After 6

Air condition
Pre-2001 Cooling/

Heating COP

2.2/1
3.2/2.4

Replacing existing air condition with
high-efficiency air condition 9000 CNY/h2001–2010 2.3/1.9

2010 and After 2.9/2.2

Combined with the relative standards and [47,48] the settings of the baseline models,
the determined values of every target construction after retrofit and the information on the
materials used in this study are shown in Table 6.

2.5. Economic Analysis

Despite a higher environmental awareness in our society, costs are often the key
factor for decision-making. In some places, retrofit cost-effectiveness has been called into
question [49]. This increases the necessity for assessing the economic cases of retrofit
projects. This study uses PBP and NPV to estimate the cost-effectiveness of all these ECMs.
PBP calculates how many years the investment can be returned and compares the PBP with
the remaining lifespan of target buildings to assess whether the ECM has a profitable effect.
The equation is shown as follows:

PBP =
C
A

, (1)

where C is the total cost of an ECM (CNY);
A is annual net saving (CNY).
The total cost, including the material, labor, and other expenses, can be calculated

using Equation (2):
C = Cm + CL + CO, (2)

www.gldjc.com
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where Cm is the cost of materials (CNY);
CL is the labor cost (CNY);
CO represents the other costs (CNY).
The cost information and calculation of total construction cost are seldom published,

but the proportion of labor cost and material cost in the overall construction cost is quite
consistent. Therefore, a method based on the consistent proportion is proposed. The
ratio between the labor cost and material cost in mainland Chinese cities is 20% and 60%,
respectively [38]. The relationship between labor and material cost and the overall cost is
shown in Equations (3) and (4):

CL
C

= PL, (3)

(PL is basically a constant, and it is assumed as 20% in the mainland.)

CMx

ij

COx

ij
= PM, (4)

(PM is basically a constant, and it is assumed as 60% in this study.)
The annual net saving has a close relationship with local electricity prices. Changsha

implements a tiered electricity pricing policy, but the equivalent electricity price Pe is
calculated at 0.633 CNY/kWh for convenience. The annual net saving (A) can be calculated
as Equation (5):

A = ∆E× SF × Pe, (5)

∆E = Eb − Er, (6)

where Eb and Er are EUI of baseline models and retrofit models, and SF means the floor
area of each type of residential building, as shown in Table 1.

Only knowingthe PBP of the investment of ECMs is not sufficient enough. To make
the economic analysis more convincing, NPV should also be calculated as an indicator.
NPV is a good indicator for judging whether the ECM is profitable. NPV can be calculated
as Equation (7):

NPV = ∑N
t=1

A
(1 + i)t − C, (7)

where i is the discount rate (i = 3%) [41,50,51], t denotes the analysis period in years, and
N represents the remaining lifespan of target buildings.

If NPV is greater than 0, it can be considered that the investment has exceeded the
expected level. An NPV less than 0 indicates that the expected return level has yet to
be achieved, and it cannot be determined that the project has incurred losses. NPV is
equal to 0, indicating that the investment return rate after project implementation is exactly
as expected.

3. Results

In this section, we assess the impact of the seven ECMs from two perspectives: energy-
saving effectiveness and cost-effectiveness. The energy-saving analysis involves a com-
parison of the energy consumption reports generated using AutoBPS-Retrofit before and
after the retrofit. For the economic analysis, we evaluate the total cost of implementing the
ECMs and the energy costs saved over the remaining lifespan of the retrofitted buildings.

With the improvement in environmental protection awareness, the Chinese govern-
ment implements the control of energy use intensity (EUI) to prevent the excessive growth
of energy usage [52]. EUI is an indicator of the energy efficiency of a building’s design or op-
erations and expresses as energy per square meter or foot per year. Using AutoBPS-Retrofit
to simulate the baseline and retrofit models will automatically produce the energy consump-
tion reports, including the information on EUI. After applying different ECMs, the EUI and
energy-saving potential (ESP) of retrofit models are shown in Table 6. ESP can be calculated
by comparing the EUI of baseline models and retrofit models, as Equation (8) shows:
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ESP =
∆E
Eb
× 100% (8)

Evaluating the economy of an ECM using PBP and NPV as an indicator depends on
the total investment, total energy reduction in a life cycle, and the cost of energy. In China,
the life span of residential buildings is usually 50 years. In this study, applying ECMs to
buildings will not extend their life span. The remaining life span of residential buildings
built before 2001, 2001–2010, and built after 2010 is assumed to be 20 years, 30 years, and
40 years.

3.1. Baseline Models of Residential Buildings in Changsha

The prototype models used in this study are from the United States Department of
Energy. The baseline models are generated by modifying the prototype models based
on the actual differences between the local area and the United States. Compared with
the DOE prototype models, the EUI of baseline models is at a lower lever, which is more
suitable for domestic situations, as shown in Figure 2.
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However, the EUI of the baseline model is still higher than the values from other
studies. In hot summer and cold winter areas, the annual EUI in large-scale residential
buildings ranges from 49 to 60 kWh/m2. A significant mismatch between predicted
energy performance and actual energy consumption of a building is frequently revealed.
This is often referred to as the ‘performance gap’ [53,54]. These gaps are related not
only to modeling errors but also to the behavior of residents, differences in real and
simulated weather data, and equipment control strategies. Figure 3 shows the EUI of the
baseline models.
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It is clear that the residential buildings built earlier have higher EUI because of their
bad thermal performance and aging equipment. The EUI range of high-rise apartments is
between 46 and 63 kWh/m2, while the mid-rise apartment is between 57 and 86 kWh/m2.

3.2. Building Envelope Retrofitting

The building envelope, which has the highest impact on heating and cooling loads, is
one of the main targets in retrofit projects [55]. Still, it is controversial due to the difficulty
of implementation and economic benefits. Table 7 presents the outcomes derived from
the AutoBPS-Retrofit simulations for envelope retrofitting. Notably, certain instances
reveal a peculiar pattern, where the payback period (PBP) is shorter than the remaining
lifespan, while the net present value (NPV) registers as less than zero. This phenomenon
finds its explication in the distinction between PBP and NPV, which arises from divergent
evaluative perspectives. PBP signifies the temporal span necessary for recovering the initial
investment via net income garnered from the project. Conversely, NPV encapsulates the
net cash flow post-project implementation. A higher NPV signifies superior economic
benefits. Moreover, instances have arisen wherein distinct economic benefits transpire
among residential structures of identical vintage, subject to identical energy conservation
measures (ECMs). This peculiarity is discernible due to the varied geometric configurations
among buildings of the same vintage. Despite uniform envelope structures and indoor
equipment, the distinct ratios of walls to floors, walls to roofs, and other geometric attributes
wield an influence over energy intensity. This intricate interplay means that even uniform
ECM adoption may yield dissimilar energy-saving outcomes and economic benefits.

Table 7. The simulation result of retrofitting envelopes.

Building Type Year Built Construction

Energy-Saving Analysis Economic Analysis

EUI (kWh/m2) Energy-Savings
(kWh/m2) ESP (%) PBP

(Year)
NPV

(Billion CNY)

High-rise
apartments

Pre–2001

Exterior wall 61.19 1.51 2.41 25 −0.17
Roof 61.85 0.85 1.36 15 −0.005

Window 53.53 9.17 14.63 7 0.83
Shading 59.43 3.27 5.21 23 −0.29

Air sealing 61.50 1.19 1.91 45 −0.39

2001–2010

Exterior wall 51.51 0.26 0.51 145 −0.73
Roof 51.44 0.34 0.65 21 −0.001

Window 50.44 1.33 2.58 32 −0.36
Shading 48.45 3.33 6.43 19 0.003

Air sealing 51.09 0.69 1.33 66 −0.70

2010
and

After

Exterior wall 42.41 4.16 8.94 9 2.06
Roof 42.45 4.12 8.84 1 3.25

Window 42.73 0.13 8.26 242 −1.01
Shading 39.93 6.64 14.27 9 3.20

Air sealing 42.40 4.17 8.96 11 1.83

Mid-rise
apartments

Pre–2001

Exterior wall 77.99 7.29 8.54 5 1.28
Roof 82.52 2.76 3.24 8 3.30

Window 73.81 11.47 13.45 3 2.59
Shading 78.09 7.19 8.43 12 0.39

Air sealing 84.79 0.49 0.57 125 −0.99

2001–2010

Exterior wall 60.23 10.98 15.42 4 2.53
Roof 68.81 2.41 3.38 7 0.43

Window 68.78 2.43 3.41 11 0.28
Shading 66.49 4.73 6.64 19 0.007

Air sealing 70.59 0.62 0.87 100 −0.72

2010
and

After

Exterior wall 54.23 3.10 5.41 12 0.32
Roof 56.70 0.63 1.11 18 0.003

Window 57.31 0.02 0.04 1364 −0.26
Shading 54.26 3.07 5.36 27 −0.12

Air sealing 57.31 0.02 0.04 2632 −0.57
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And, the ESP and NPV of five kinds of envelopes for six kinds of residential buildings
are displayed in Figure 4. The horizontal boundary represents NPV = 0, green areas
represent NPV > 0, and pink areas represent NPV < 0.
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The envelope structures of three types of high-rise apartments have different charac-
teristics before and after renovation, as seen in Figure 4. Firstly, for high-rise apartments
built before 2001, replacing existing windows with low-e glass not only saves 15% of energy
consumption but also has positive economic benefits, with a payback period of 7 years.
Adding insulation panels to walls and roofs can save 2.4% and 1.4%, respectively, in energy
consumption, adding external shading equipment can save 5.2%, and adding sealing strips
can save 2.0%, but their NPV is all negative. Then, for high-rise apartments built between
2001 and 2010, adding external shading equipment is economically feasible while saving
6% of energy consumption, with a payback period of 19 years. The energy-saving effect of
insulating exterior walls and roofs is insignificant, with ESPs of 0.5% and 0.7%, respectively.
Improving the thermal performance of windows can save 2.6% of energy consumption, and
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installing sealing strips can save 1.3% of energy consumption, but they are not economical.
Thirdly, for high-rise apartments built after 2010, adding insulation panels to the exterior
walls and roofs, adding external shading equipment, and installing sealing strips are all
economical ECMs. Their ESPs are 8.9%, 8.8%, 14.3%, and 9.0%, respectively, with a mini-
mum payback period of 1 year and a maximum of 11 years. At the same time, although
replacing windows can save 8.3% of energy consumption, its negative NPV indicates that
it is not a priority.

The envelope structures of three types of mid-rise apartments also have different char-
acteristics before and after renovation, as seen in Figure 4. Firstly, for mid-rise apartments
built before 2001, insulating the exterior walls and roofs, replacing windows with better
thermal performance, and installing external shading equipment are all economical ECMs,
which can save energy by 8.5%, 3.2%, 13.5%, and 8.4%, respectively, with a payback period
of 3–12 years. Installing the sealing strip can only save 0.6% of energy consumption, and
its NPV is less than 0. Residential buildings constructed earlier in the hot summer and
cold winter (HSCW) climate zone often overlooked energy-saving considerations, leading
to subpar thermal performance. Consequently, enhancing the building envelopes yields
notably positive outcomes. However, the scope for replacing sealing strips is limited in size,
resulting in energy-saving effects that, while present, may not be as pronounced as other
ECMs. Then, for mid-rise apartments built between 2001 and 2010, insulating exterior walls
and roofs, replacing windows, and installing external shading equipment is cost-effective
while providing significant energy savings. Their ESP is 15.4%, 3.4%, 3.4%, and 6.6%,
respectively, with a payback period of 4–19 years. Installing sealing strips saves only 0.6%
of energy consumption and is considered uneconomical. Thirdly, for mid-rise apartments
built after 2010, insulating exterior walls and roofs are economic ECMs with ESP of 5.4%
and 1.1%, respectively, and their payback periods are 12 and 18 years. Replacing windows
and installing sealing strips have almost no energy-saving effects. Adding external shading
equipment can save 5.4% of energy consumption, but their NPVs are all less than 0.

3.3. Lighting System Retrofitting

Substituting the lighting system with energy-efficient LEDs featuring a reduced LPD
proves advantageous in terms of energy savings and economic gains across various residen-
tial building types examined in this study. This approach offers favorable outcomes due
to its combination of minimal initial investment and substantial energy-saving potential.
The results simulated using AutoBPS-Retrofit of retrofitting lighting systems are shown in
Table 8. For high-rise apartments built before 2001, between 2001 and 2010, and after 2010,
the ESPs are 6.0%, 7.7%, and 11.8%, respectively, with payback periods of 5 years, 5 years,
and 4 years. For mid-rise apartments built before 2001, between 2001 and 2010, and after
2010, the ESPs are 5.4%, 13.6%, and 3.0%, respectively, with payback periods of 4 years,
2 years, and 12 years.

Table 8. The simulation result of retrofitting lighting systems.

Case Construction

Energy-Saving Analysis Economic Analysis

EUI (kWh/m2)
Energy-Savings

(kWh/m2) ESP (%) PBP
(Year)

NPV
(Billion CNY)

1

Light

58.97 3.73 5.95 5 0.40
2 47.79 3.98 7.69 5 1.28
3 41.06 5.51 11.84 4 3.83
4 80.65 4.63 5.43 4 0.90
5 61.55 9.66 13.57 2 2.42
6 55.64 1.69 2.95 12 0.18
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3.4. AC System Retrofitting

Generally, energy consumption by AC systems (heating and cooling) takes a dominant
position in total building energy consumption. Therefore, we particularly emphasize the
simulation of AC retrofitting. The energy consumption of AC was 50–70% for residential
buildings [55]. The result simulated using AutoBPS-Retrofit shows that the HVAC system
consumes 44% to 69% of the total energy consumption in residential buildings, while
the lighting system consumes 16% to 26%. The results simulated using AutoBPS-Retrofit
of retrofitting AC systems are shown in Table 9. In the context of residential buildings,
enhancing the existing air conditioning system, while capable of substantially curtailing
overall energy consumption, remains economically inadvisable. The substantial investment
required for such an upgrade, attributed to elevated material and labor costs, renders it
less favorable. Despite an impressive energy-savings potential, as indicated by an ESP of
up to 18% for AC replacement, both the PBP and NPV metrics are persistently negative,
underscoring the economic limitations of this approach.

Table 9. The simulation result of retrofitting AC.

Case Construction

Energy-Saving Analysis Economic Analysis

EUI (kWh/m2)
Energy-Savings

(kWh/m2) ESP (%) PBP
(Year)

NPV
(Billion CNY)

1

AC

51.41 11.29 18.00 26 −1.33
2 45.42 6.35 12.27 39 −2.67
3 40.99 5.58 11.97 43 −3.97
4 76.10 9.18 10.76 36 −3.53
5 64.89 6.32 8.87 53 −3.00
6 55.83 1.50 2.61 215 −2.70

In addition, we also simulated the impact of two ways of changing human behavior
on energy consumption. The first is to slightly change the AC setting temperature, and the
second is for residents to consciously reduce the AC usage time. The simulation results
show that artificially reducing the set temperature of the air conditioner by 1 degree can save
1% to 8% of energy consumption, and using natural ventilation without air conditioning at
night can save up to 20% of energy consumption.

4. Discussion

Geared towards expediting retrofit analysis for city-scale buildings, this paper extends
the development of energy-saving retrofit functions based on the prior study. Focusing
on the existing mid-rise and high-rise apartments in Changsha, we propose seven distinct
ECMs, seamlessly integrating them into baseline models derived from the modification of
DOE prototype models to align with local standards.

By comparing baseline and retrofit models, ESP serves as an indicator to evaluate
energy-saving effects, while PBP and NPV gauge economic benefits. The results underscore
the necessity of tailoring retrofit strategies, a critical consideration when addressing enve-
lope enhancements, as these strategies need to be finely tuned according to building types
and built vintage. Notably, retrofits targeting lighting systems demonstrate both promising
energy savings and favorable economic viability, albeit subject to residents’ preferences.
Alternatively, upgrading the AC systems emerges as the most energy-efficient approach,
though the economic assessment raises concerns.

In the economic analysis of building energy efficiency renovations, consistent with
the studies of Gonzalez-Caceres [56], Dodoo [57], Husiev [58], and Fleur [59], local fixed
electricity prices were adopted. However, considering future electricity price prediction
methods such as the GARCH model [60], transfer learning [61], and long short-term
memory network [62] could yield dynamic electricity prices over time, enhancing the
precision of PBP and NPV calculations [63], a direction we aim to explore.
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Echoing previous research [64], this study reveals that the efficacy of specific ECMs
and their economic impact depend on the building type and built vintage, sometimes
yielding less effective outcomes and negative economic returns, as shown in Figure 5.
Distinguishing this study is its emphasis on the economic analysis of energy-saving retrofits.
For large-scale buildings, AutoBPS-Retrofit boasts swift computation and cross-platform
simulation advantages.
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Nevertheless, the simulated EUI of baseline models is still higher than the actual
EUI obtained through literature research. To enhance the practicality of baseline models,
forthcoming steps involve an on-site investigation. Employing questionnaire surveys
and empirical measurements, we aim to glean deeper insights into building characteris-
tics, including window-wall ratio, room types, and air conditioning schedules, to refine
baseline models with more granular parameters and classifications, thereby minimizing
performance disparities.

Furthermore, this study solely examines scenarios where a single ECM is applied to a
building. Subsequent phases will explore the combination of multiple ECMs to ascertain the
most efficient and economical synergy, accounting for their potential interactions. Different
building functions warrant diverse energy-saving criteria, necessitating the expansion of
ECM types, such as optimizing automatic control systems for commercial buildings.

The ongoing pursuit entails automating energy-saving and economic analysis. This
step necessitates a material database to empower users with options, collecting and or-
ganizing data on thermal performance, energy efficiency ratios, prices, and other factors
associated with materials and equipment used in each structure. Expanding this approach
to various climate zone is also a crucial consideration.



Energies 2023, 16, 6152 16 of 19

5. Conclusions

This paper presents an applicable framework for retrofit analysis utilizing the in-
novative AutoBPS-Retrofit toolkit, comprising six major steps: data collection, building
classification, baseline model establishment, ECMs identification, retrofit model estab-
lishment, and retrofit analysis. The simulation process explores seven kinds of ECMs
encompassing envelope optimization, lighting system upgrades, and AC system control.

The findings of this study highlight the importance of tailored retrofit strategies for
buildings of different types and ages when addressing envelope improvements. Addi-
tionally, retrofitting lighting systems showcases promising energy-saving potential with
favorable economic viability. However, successfully implementing lighting retrofits hinges
on residents’ preferences and engagement. Conversely, upgrading the AC systems emerges
as the most energy-efficient measure. Yet, it is imperative to acknowledge that the eco-
nomic analysis raises concerns, revealing that the investment required for such upgrades
considerably surpasses the expected returns based on both the payback period (PBP) and
net present value (NPV) indicators.

The findings can offer valuable insights for policymakers in establishing effective
carbon reduction goals and strategies. Additionally, various energy-saving institutions and
real-estate companies can leverage this research as a valuable reference when undertaking
renovation projects aimed at enhancing energy efficiency in residential buildings.
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