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Abstract: The Double Permanent Magnet Vernier (DPMV) machine is well known for its high torque
density and magnet utilization ratio. This paper aims to investigate the torque generation mechanism
and its improved design in DPMV machines for hub propulsion based on the field modulation
principle. Firstly, the topology of the proposed DPMV machine is introduced, and a commercial
PM machine is used as a benchmark. Secondly, the rotor PM, stator PM, and armature magnetic
fields are derived and analyzed considering the modulation effect, respectively. Meanwhile, the
contribution of each harmonic to average torque is pointed out. It can be concluded that the 7th-,
12th-, 19th- and 24th-order flux density harmonics are the main source of average torque. Thanks to
the multi-working harmonic characteristics, the average torque of DPMV machines has significantly
increased by 31.8% compared to the counterpart commercial PM machine, while also reducing the PM
weight by 75%. Thirdly, the auxiliary barrier structure and dual three-phase winding configuration
are proposed from the perspective of optimizing the phase and amplitude of working harmonics,
respectively. The improvements in average torque are 9.9% and 5.4%, correspondingly.

Keywords: hub machine; dual permanent magnet vernier (DPMV); air-gap field modulation; torque

1. Introduction

Due to increasing concerns about energy security and environmental impact, tra-
ditional vehicles with internal combustion engines are likely to be phased out in the
future [1–3]. The electrification of transportation has become a key development trend,
and such a revolution in mobility extends to light electric vehicles such as electric scooters
and bicycles [4]. Permanent Magnet (PM) hub machines have attracted much attention
due to their advantages of high efficiency, reliability, and compact structure [5]. With
the increasing travel demand, the high torque density requirements of hub machines are
becoming more stringent [6].

Significant works on torque improvement have been presented. Among them, increas-
ing the machine size and PM usage are effective ways to improve torque. However, these
methods also lead to unacceptable increases in weight and cost [7]. In [8], the stator structure
with unequal teeth was proposed to enhance fundamental harmonic components, thereby
offering useful performance benefits in terms of a higher torque capability and reduced
torque ripple. However, this structure is only suitable for single-layer winding structures.
In addition to optimizing stator structure, Halbach [9] and hybrid rotor [10] structures
were adopted to increase torque capacity. The former structure leads to manufacturing
difficulties, while the latter structure cannot meet the high torque density requirements
in the speed range. Further, the current harmonic injection can also be used to increase
torque capability, although it causes additional losses [11]. To sum up, the above methods
all have their limitations, and the torque improvement effect is not significant. The single
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working harmonic characteristic of conventional PM machines restricts the potential for
further torque improvement.

The improved torque density of Permanent Magnet Vernier (PMV) machines has
garnered significant attention in electric wheel applications due to their multi-working
harmonic characteristics [12–14]. The PMV machines can be divided into two types de-
pending on the location of PM, namely Stator-PM (PMS) and Rotor-PM (PMR) styles [14].
Further, [15,16] proposed a novel PMV machine with double stator and double rotor, respec-
tively. These machines achieve higher energy transmission and power conversion than the
single stator or rotor counterparts. However, the mentioned PMV machine creates complex
structures and increased difficulty in processing and assembly. By comparison, the Double
Permanent Magnet Vernier (DPMV) machine was proposed and analyzed in [17], featuring
the presence of PM on both the stator and rotor. Due to the bidirectional field modulation
effect, air-gap flux density harmonics of the DPMV machines are more abundant than
conventional PM machines. The torque capability of the DPMV machine is compared to
conventional PM and PMV machines in [18,19], respectively. The results indicate that the
DPMV machine can effectively improve the torque capability without increasing machine
dimensions. The Consequent Pole (CP) rotor structure was proposed to replace conven-
tional rotor structures such as surface mounted and spoke array structures [20,21]. In this
case, the PM is magnetized in the North Pole direction, and the salient iron core serves as
the South Pole. In [22], a 12-slot/10-pole PM machine with a CP structure achieves 92%
output torque via 65% magnet usage of its counterpart with a surface-mounted structure.
This shows that the CP structure in PMV machines can greatly improve the PM utilization
rate. The purpose of this paper is to theoretically analyze the harmonic components of
DPMV machine with a CP structure, verifying its multi-working harmonic characteristics
and advantages in average torque improvement and PM usage reduction. The main novelty
of our research is that the two new designs are proposed to further improve the average
torque of the DPMV machine from different perspectives, e.g., auxiliary barrier structure
and dual three-phase winding configuration.

This paper deals with the torque generation mechanism and its improvement design
in the DPMV machine for hub propulsion. This paper is structured as follows. In Section 2,
the topology and air-gap field modulation principle of the DPMV machine is presented.
The conventional PM machine is used as a benchmark. In Section 3, the PMR, PMS, and
armature magnetic fields are investigated in detail, and the emerging harmonics caused by
modulation effect are recognized. Then, the torque generation of the DPMV machine is
investigated, and the contribution of each harmonic to average torque is pointed out. Based
on the above analyses, two new designs to improve the average torque of DPMV machines
are proposed in Section 4. The improvement principle was elaborated from the perspective
of optimizing the phase and amplitude of working harmonics. Finally, conclusions are
presented in Section 5.

2. Topology and Modulation Principle Analysis

It is well known that the PMV machine is operated on the basis of the air-gap field
modulation principle. The armature magnetic field with small pole pairs PAR is modulated
by the stator modulation poles PS that correspond to the stator teeth, obtaining the harmonic
components that can interact with the PMR field with high pole pairs PPMR. The relationship
between PMR pole pairs, stator modulation poles PS, and armature winding pole-pairs
should be satisfied as follows [14]:

PPMR = PS ± PAR (1)

To further improve torque by taking advantage of the field modulation effect, the PM
is also placed on the stator modulation pole. Similarly, the armature magnetic field with
small pole pairs is modulated by the rotor modulation poles PPMR to obtain the harmonic
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components that can interact with the PMS magnetic field with high pole pairs PPMR.
Namely, it can be written as

yPPMS = PPMR ± PAR (2)

where y is positive integer.
A commercial PM hub machine in [4] for e-bike is selected as the benchmark and

shown in Figure 1a, in which the 12-slot/10-pole combination and interior PM (IPM) type
are adopted. In this section, the red, green, and blue windings always correspond to phase
A, phase B, and phase C, respectively. The arrows in PM always represent the direction of
magnetization. For comparison, the stator slot Q of the DPMV machine is 12 as well and
adopts a split tooth structure, as shown in Figure 1b. The number of stator modulation
poles PS is 24. Then, the pole pair of armature winding remains consistent with that of
the commercial hub machine, e.g., PAR = 5. Based on (1), the number of PMR pole pairs
PPMR should be 19. It is worth noting that both the PMR and PMS of the proposed DPMV
machine adopt the CP structure. The salient rotor teeth can also serve as modulation poles,
which will be elaborated in the following section. Table 1 lists the main specifications of the
two machines. They have identical volume, slot filling factor, and material. The PM weight
and electromagnetic load of the proposed DPMV machine are only 75% and 87% of that of
the IPM machine, respectively.
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Figure 1. Cross-section of the PM machine: (a) commercial IPM machine; (b) DPMV machine.

Table 1. Main parameters of the IPM and DPMV machines.

Items Symbol IPM DPMV

Pole number of PMR PPMR 10 19
Pole number of PMS PPMS / 12
Number of stator slot Q 12 12

Stator outer diameter (mm) Do 90 90
Stator inner diameter (mm) Ds 52 52

Axial length (mm) Lsk 30 30
Air-gap length (mm) g 0.5 0.5

Stator slot area (mm2) Sslot 154 137
Turn number per coil Nc 23 20

Thickness of PMR (mm) hr 3 2.2
Thickness of PMS (mm) hs / 2

Pole-arc ratio of PMR kr 0.81 0.54
Pole-arc ratio of PMS ks / 0.27
Total PM weight (g) / 81 61

PM material / N40UH N40UH
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3. Torque Analyses with Multi-Working Harmonics

In this section, the PMR, PMS, and armature air-gap magnetic fields of the proposed
DPMV machine are investigated independently. Their interaction and torque generation
principle will be presented. Additionally, to obtain the analytical model of air-gap flux
density, the derivation in this section is based on the following assumptions [17]:

(1) The tangential components of the air-gap magnetic field are neglected for simplicity;
(2) The leakage flux is ignored; therefore, the waveform of air-gap primitive MMF is

considered as square waves. In addition, the end effect is also neglected, so the air-gap
MMF is regarded as the same in the axial direction;

(3) The permeability of stator and rotor iron is infinite, so the iron reluctance is neglected.

The general methodology of this section is as follows: Firstly, both PMR and PMS
are magnetized in the North Pole direction, and the salient iron core serves as the South
Pole. Therefore, the primitive air-gap PM flux density waveform within the PM range is
a positive square wave, while it is a negative square wave within the core range. Similarly,
the primitive armature winding flux density is the superposition of a series of square waves
considering the coil polarity. Secondly, the permeance functions accounting for winding,
PMS, and PMR slotting effect can be obtained by using the path of the flux lines in the
corresponding opening region. The flux line always flow through a smaller reluctance
path. Thirdly, the harmonic characteristics of each magnetic field are acquired by using FFT,
including the spatial order, amplitude, mechanical speed, and rotation direction. Finally,
the frozen permeability method is adapted to separate the torque generated due to the
interaction of different magnetic fields, recognizing the contribution of each harmonics to
average torque. Moreover, the torque waveforms of DPMV and counterpart IPM machines
are compared using the software Ansys Electronics Desktop.

3.1. PMR Flux Density

The primitive air-gap PMR flux density without modulation by the stator is shown
in Figure 2. B1 and B′1 are defined as the magnitudes of PMR and iron poles, respectively,
which can be written as follows: B1 = Br

1+ gµr
hr(1−kr)

B′1 = kr
1−kr

B1
(3)

where Br is the remanence flux density of PM, and µr is the PM relative differential perme-
ability. Further, the Fourier series expansion of the primitive PMR flux density B1 can be
deduced as follows:

B1(θm, t) =
∞
∑

j=1,2,3...
Bj cos{ jPPMR(θm −Ωmt− θ0)}

Bj =
2Brhr sin(jπkr)

jπ{ (1−kr)hr+gµr}

(4)

where Ωm is the mechanical angular speed, t is time, θm is the angular position in stator
reference, and θ0 is the initial phase (θ0 = 0 in this section).

The influence of winding and PMS slots on the PMR magnetic field can be accounted
by introducing a stator permeance function, as shown in Figure 3. Here, the brownish
red line represents the permeance curve caused by PMS slot, and blue line represents the
permeance curve caused by winding slot. The permeance function produced by winding
slot ΛSlot and PMR slot ΛPMS can be expressed as follows:

ΛSlot(θm) = A0 + ∑
n=1,2,3

An cos(nQθm)

ΛPMS(θm) = C0 + ∑
n=1,2,3

Cn cos
{

nPPMS
(
θm − π

12
)} (5)
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where A0 and An are Fourier coefficients of the winding slot permeance function, and C0
and Cn are Fourier factors of the PMS slot permeance function. The focus of this section
is to highlight the modulation effects of topology structure on magnetic fields. Thus, the
detailed expression of the above Fourier coefficients will not be discussed. Based on (5), the
total stator permeance function is

Λs(θm) = ΛSlot(θm) ·ΛPMS(θm) ≈ Λs0 +
∞

∑
n=1,2...

Λsn cos(nPSθm) (6)

where PS = Q + PPMS, and the Λs0 and Λsn are the Fourier coefficients of the total stator
permeance function. Thus, the modulated PMR air-gap flux density BPMR can be expressed
as follows:

BPMR(θm, t) =
∞
∑

j=1,2,3...
BjΛs0 cos[jPPMR(θm −Ωmt)]+

1
2

{
∞
∑

j=1,2...

∞
∑

n=1,2...
BjΛsn cos[(jPPMR + nPS)θm − jPPMRΩmt] +

∞
∑

j=1,2...

∞
∑

n=1,2...
BjΛsn cos[(jPPMR − nPS)θm − jPPMRΩmt]

} (7)
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Figure 2. Air-gap PMR flux density without stator modulation. (a) Model. (b) Waveform (θ0 = 0, t = 0).
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Figure 3. Air-gap permeance function accounting for winding and PMS slotting effect.

The last two items of (7) represent the modulation effect of stator structure on the PMR
magnetic field. The harmonic components with jPPMR ± nPS are generated, and the related
rotation speed is jPPMRΩm/(jPPMR ± nPS), as shown in Figure 4.
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3.2. PMS Flux Density

The primitive air-gap PMS flux density B2 without PMR and winding slots modulation
is shown in Figure 5. The Fourier series expansion of the primitive PMS flux density can be
deduced as follows: 

B2(θm) =
∞
∑

v=1,2,3...
Bv cos(vPPMSθm)

Bv = 2Brhs sin(vπks)
vπ[(1−ks)hs+gµr ]

(8)
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Then, the permeance function accounting for PMR slotting effect can be written
as follows:

ΛPMR(θm, t) = Λr0 + ∑
n=1,2,3

Λrn cos[nPPMR(θm −Ωmt)] (9)

The modulated PMS air-gap flux density BPMS can be expressed as follows:

BPMS(θm, t) = [B2(θm) ·ΛSlot(θm)] ·ΛPMR(θm, t)

=

[
∞
∑

v=1,2,3...
B′v cos(vPPMSθm)

]
·
[

Λr0 + ∑
n=1,2,3

Λrn cos[nPPMR(θm −Ωmt)]

]
=

∞
∑

j=1,2,3...
B′vΛr0 cos(vPPMSθm)+

1
2

{
∞
∑

v=1,2...

∞
∑

n=1,2...
B′vΛrn cos[(vPPMS + nPPMR)θm − nPPMRΩmt] +

∞
∑

j=1,2...

∞
∑

n=1,2...
B′vΛrn cos[(vPPMS − nPPMR)θm + nPPMRΩmt]

} (10)

It can be seen that the winding slot has no influence on the harmonic order of the
PMS magnetic field, but only changes the harmonic amplitude. Therefore, the B′v is used to
denote the amplitude of vth-order harmonics after winding slot modulation. Finally, the
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new harmonic components with vPPMS ± nPPMR are produced by the PMR slot modulation.
Correspondingly, the related rotation speed is ±nPPMRΩm/(vPPMS ± nPPMR), as shown in
Figure 6.
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where h is the spatial harmonic order, and γh is the initial angle. Based on the winding 
distribution shown in Figure 7, γh = −180° (h = 1, 5, 9, 13, etc.), γh = 0° (h = 3, 7, 11, 15, 
etc.), Nh is the Fourier expansion factor, and Nh = 2Nckwh/πh, and kwh is the winding 
factor of hth-order harmonics. Then, the MMF expression is obtained by multiplying the 
winding function by the current, yielding the following: 
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Figure 6. Spectrum comparison of PMS flux density before and after rotor modulation via FEM.

3.3. Armature Flux Density

Figure 7 shows the primitive air-gap armature MMF model and waveform, in which
the initial MMF of each single phase is equivalent to an ideal square wave. Firstly, the
winding function N(θm) of each phase can be expressed as follows [23]:

NA(θm) = ∑
h=1,3,5...

Nh · cos(hθm + γh)

NB(θm) = ∑
h=1,3,5...

Nh · cos
{

h(θm + 2π
3 ) + γh

}
NC(θm) = ∑

h=1,3,5...
Nh · cos

{
h(θm − 2π

3 ) + γh
} (11)

where h is the spatial harmonic order, and γh is the initial angle. Based on the winding
distribution shown in Figure 7, γh = −180◦ (h = 1, 5, 9, 13, etc.), γh = 0◦ (h = 3, 7, 11, 15, etc.),
Nh is the Fourier expansion factor, and Nh = 2Nckwh/πh, and kwh is the winding factor of
hth-order harmonics. Then, the MMF expression is obtained by multiplying the winding
function by the current, yielding the following:

F(θm, t) = NA(θm)iA(t) + NB(θm)iB(t) + NC(θm)iC(t)

= 3Nh Imax
2

{
∑

h=6l−1
sin(hθm + PPMRΩmt + γh)− ∑

h=6l+1
sin(hθm − PPMRΩmt + γh)

}
(12)
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The modulation effect of winding and PMS slot on the armature magnetic field only 
changes the amplitude and phase, and does not result in new harmonic orders genera-
tion. The Bh and γh

′  represent the amplitude and phase of hth-order harmonics after 
winding and PMS slots modulation, respectively. The new harmonic orders with h ± 
nPPMR emerged after rotor modulation, as shown in Figure 8. 
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Figure 7. Air-gap armature MMF without winding, PMS, and PMR slots modulation. (a) Model.
(b) Waveform (t = 0).

l is either 0 or a positive integer. Imax is the amplitude of phase current. The armature air-gap
flux density BAR considering rotor and stator modulation can be expressed as follows:
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BAR(θm, t) = µ0
g · F(θm, t) ·Λs(θm) ·ΛPMR(θm, t)

=

[
∑

h=6l−1
Bh sin(hθm + PPMRΩmt + γ′h)− ∑

h=6l+1
Bh sin(hθm − PPMRΩmt + γ′h)

]
·
{

Λr0 + ∑
n=1,2,3

Λrn cos[nPPMR(θm −Ωmt)]

}
= ∑

h=6l−1
Λr0Bh sin(hθm + PPMRΩmt + γ′h) + ∑

h=6l−1
∑

n=1,2,3

BhΛrn
2

{
sin[(h + nPPMR)θm + (1− n)PPMRΩmt + γ′h]
+ sin[(h− nPPMR)θm + (1 + n)PPMRΩmt + γ′h]

}
− ∑

h=6l+1
Λr0Bh sin(hθm − PPMRΩmt + γ′h)− ∑

h=6l+1
∑

n=1,2,3

BhΛrn
2

{
sin[(h + nPPMR)θm − (1 + n)PPMRΩmt + γ′h]
+ sin[(h− nPPMR)θm − (1− n)PPMRΩmt + γ′h]

}
(13)

The modulation effect of winding and PMS slot on the armature magnetic field only changes
the amplitude and phase, and does not result in new harmonic orders generation. The Bh and γ′h
represent the amplitude and phase of hth-order harmonics after winding and PMS slots modulation,
respectively. The new harmonic orders with h ± nPPMR emerged after rotor modulation, as shown in
Figure 8.
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tion. The Bh and γh
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winding and PMS slots modulation, respectively. The new harmonic orders with h ± 
nPPMR emerged after rotor modulation, as shown in Figure 8. 
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Figure 8. Spectrum comparison of PMS flux density before and after rotor modulation via FEM.

3.4. Torque Generation Principle
Based on the above analyses, the air-gap flux density harmonic order and corresponding

mechanical speed of three magnetic fields considering bilateral modulation can be obtained, and they
are presented in Table 2. The P, N, and S represent positive, negative, and stationary rotation directions,
respectively. Conventionally, the average torque is produced when the harmonic components of
different magnetic fields have the same order and speed [24]. As for the DPMV machine, there are
two possible cases:

(1) The two magnetic fields have the same order and mechanical speed, and they can interact with
each other directly and produce average torque;

(2) The two magnetic fields have different orders and mechanical speeds. However, there are flux
modulation poles between them. The average torque can still be generated if two magnetic
fields meet the following relationship:{

|jPPMR ± n1PS| = |h± n2PPMR|
jPPMRΩm

jPPMR±n1PS
=

(1±n)jPPMRΩm
h±n2PPMR

or −(1∓n)jPPMRΩm
h±n2PPMR

(14)

{
|vPPMS ± n3PPMR| = |h± n2PPMR|
±n3PPMRΩm

vPPMS±n3PPMR
=

(1±n)jPPMRΩm
h±n2PPMR

or −(1∓n)jPPMRΩm
h±n2PPMR

(15)

For clarity, Figure 9 is used to describe different working points. Here, point a implies that the
DPMV machine is jointly excited by three magnetic fields. Points b, c, and d indicate that the DPMV
machine is only excited by PMR, PMS, and armature magnetic fields alone, respectively. There is
almost no harmonic component between the PMR and PMS magnetic fields that satisfies (14) or (15),
so the average torque at operating point e is approximately 0. The total average torque Ta of the
DPMV machine is the superposition of the interaction between the PMR and armature magnetic
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fields, as well as the interaction between the PMS and armature magnetic fields. The contribution of
each harmonic to torque can be expressed as follows:

Ta(t) = Tf (t) + Tg(t)

= πr2 Lsk
µ0


∫ 2π

0 B f _ra(θm, t)B f _ta(θm, t)dθm
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∫ 2π

0 Bg_ra(θm, t)Bg_ta(θm, t)dθm
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= ∑

k

πr2 Lsk
µ0

Bra_kBta_k cos[θra_k − θta_k]

(16)

where r is the air-gap radius, Bra and Bta represent the air-gap radial and tangential flux densities
at corresponding working points, respectively, and k represents the harmonic order that satisfies
(14) or (15).

Table 2. Air-gap flux density harmonics of different magnetic fields.

Harmonic Order Mechanical Speed Rotate Direction

PMR magnetic field

jPPMR Ωm P
jPPMR + nPS jPPMRΩm/(jPPMR + nPS) P

jPPMR − nPS jPPMRΩm/(jPPMR − nPS) (jPPMR − nPS > 0) P
(jPPMR − nPS < 0) N

PMS magnetic field

vPPMS 0 S
vPPMS + nPPMR nPPMRΩm/(vPPMS + nPPMR) P

vPPMS − nPPMR −nPPMRΩm/(vPPMs − nPPMR) (vPPMS − nPPMR > 0) N
(vPPMS − nPPMR < 0) P

Armature
magnetic field

(h = 6l − 1)

h −PPMRΩm/h N

h + nPPMR −(1 − n)PPMRΩm/(h + nPPMR) n 6= 1 P
n = 1 S

h − nPPMR −(1 + n)PPMRΩm/(h − nPPMR) (h − nPPMR > 0) N
(h − nPPMR < 0) P

Armature
magnetic field

(h = 6l + 1)

h −PPMRΩm/h P
h + nPPMR (1 + n)PPMRΩm/(h + nPPMR) P

h − nPPMR (1 − n)PPMRΩm/(h − nPPMR)
(h − nPPMR > 0|n 6= 1) N

n = 1 S
(h − nPPMR < 0|n 6= 1) P
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Further, the contribution of each flux density harmonics to average torque is shown in Figure 10.
It can be seen that the 19th-order harmonics of PMR and armature magnetic fields are the main
source of average torque Tf . Similarly, the 7th-, 12th-, and 24th-order harmonics of PMS and armature
magnetic fields are the main source of average torque Tg. By comparison, the working harmonic of
commercial IPM machine is only 5th-order. This demonstrates the characteristics of multi-working
harmonics in DPMV machine. Subsequently, the two torque components Tf and Tg are calculated
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with FEM considering frozen permeability, as shown in Figure 11a. Then, the torque waveforms of
the proposed DPMV and commercial IPM machines are compared in Figure 11b. The average torque
values of DPMV and IPM machines are 2.2 Nm and 2.9 Nm, respectively. The average torque of the
DPMV machine is improved by 31.8% compared to the IPM machine. Moreover, the DPMV machine
also has a torque ripple comparable to the IPM counterpart. Additionally, the variations in average
torque with current amplitude is compared in Figure 12. Although the increment percent decreases
as the current amplitude increases, the increment percent is always greater than 20% throughout the
current range (0–30) A. This is mainly due to the higher harmonic components of the DPMV machine
than the IPM machine. The above comparison results indicate that adopting the DPMV machine
instead of the original IPM machine based on air-gap magnetic field modulation can effectively
improve torque performance.
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Figure 10. The contribution of each flux density harmonic to average torque.
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Figure 11. Torque waveforms. (a) Torque separation of DPMV machine. (b) Torque comparison
between IPM and DPMV machines.
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4. New Design to Improve Torque
The working harmonics of the proposed DPMV machine are identified based on the magnetic

field modulation, and the 19th-order harmonic is the largest contributor. In order to further improve
the average torque of the DPMV machine, two main aspects can be taken from (16). On one hand,
phase angle reconfiguration makes the phase difference between the radial and tangential of the 19th-
order harmonics smaller. On the other hand, the 19th-harmonic amplitude increases. Correspondingly,
the Auxiliary Barrier (AB) structure and Dual Three-Phase 30◦ (DTP-30◦) winding are adopted in this
section.

The detailed results of this section are all based on the commercial finite element software Ansys
Electronics Desktop, in which the 2D simulated models with different structures are established. The
air-gap flux density waveform represents its radial distribution at the air-gap centerline. Then, the
amplitude and phase characteristics of spatial harmonics throughout the time region can be obtained
using FFT. Finally, the torque waveform and its average value of different structures are compared.

4.1. Auxiliary Barrier Structure
Figure 13 shows the 1/3 model of the new stator structure with ABr, and other dimensions

consistent with the original structure. The epoxy material is used at the AB to fix the PMS. The β1
and β2 is the angle of left and right ABs, respectively. The influence of AB on the air-gap flux density
at the initial rotor position is shown in Figure 14. It can be seen that the waveform is shifted with
the position of the AB. Then, Figure 15 shows the phase difference between the radial and tangential
of the 19th-order harmonic throughout the position range. The cosine value of the phase difference
between the radial and tangential components of the 19th-order harmonic increases from 0.23 to 0.25,
and the amplitude of 19th-order harmonic remains unchanged basically. Undoubtedly, the average
torque of the DPMV machine further increases with the cosine value [13].
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Figure 15. The cosine value of phase difference between radial and tangential components.

In addition, the effect of AB on average torque is also related to its dimensions. Figure 16
describes the variation in the total torque of the DPMV machine with angles β1 and β2. Consequently,
the angles β1 and β2 both are determined to be 2◦; in this case, the stator is still symmetrical. Finally,
the total torque waveforms of original and new DPMV machines are compared in Figure 17. The
total torque is increased from 2.9 Nm to 3.2 Nm without deteriorating torque ripple. This indicates
that the proposed new structure with AB is feasible for improving torque density.
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Figure 16. Total torque variation in the DPMV machine with angles β1 and β2.
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4.2. Dual Three-Phase Winding
The DTP-30◦ winding configuration is conducive to increasing the winding factor and thus

improving the average torque [25]. The winding factors of 5th-, 7th-, and 19th-order winding function
harmonics are all 0.933 when the DPMV machine employs the original three-phase winding. By
comparison, the winding factors of the above harmonics are all 0.966 when the DTP-30◦ winding
configuration is employed. Figure 18 shows the DPMV machine with DTP-30◦ winding configuration,
in which the ownership of winding corresponds to the color of the vector diagram. The winding
configuration has no effect on the PM magnetic fields, and this section compares armature flux
density with different winding configurations, as shown in Figure 19. Based on Figure 10, due to the
increase in armature flux density of the 12th-, 19th- and 24th-order harmonics, the average torque is
improved with employing DTP-30◦ winding. Figure 20 shows the total torque waveforms of DPMV
with different winding configurations. The total torque is increased from 2.9 Nm to 3.0 Nm, and the
torque ripple is superior as well. It should be pointed out that adopting the DTP-30◦ configuration
results in complex control topology and increased control difficulty.
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Figure 19. Spectrum comparison of armature flux density of the DPMV with different winding
configurations at point d.
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5. Conclusions
This paper focuses on the torque analysis and improved design of the DPMV machine with

the air-gap field modulation principle. The MMF permeance models of PMR, PMS, and armature
magnetic fields have been established, and the modulation effect of topology structure has been
analyzed in detail. Afterward, the torque generation mechanism of the DPMV machine has been
investigated and the contribution of effective working harmonics to average torque has been identified
with the frozen permeability method. The results show that the 7th-, 12th-, 19th- and 24th-order
flux density harmonics are the main source of average torque, and especially the contribution of
19th-order harmonic exceeds 65%. Thanks to the multi-working harmonic characteristic, the proposed
DPMV machine improves average torque by 31.8% with 75% PM weight of the IPM counterpart. The
main contribution of this paper lies in proposing the auxiliary barrier structure and dual three-phase
winding to improve the contribution of 19th-order harmonic to the average torque, respectively.
While the auxiliary barrier structure is beneficial for increasing the angle difference between the radial
and tangential components of the 19th-order harmonic, the dual three-phase winding can improve
the amplitude of the 19th-order harmonic.

This paper solely focuses on the qualitative analyses of the torque generation mechanism of the
DPMV machine. Therefore, the leakage flux, end effect, and iron reluctance are neglected. Future
work will focus on the quantitative calculation of steady torque and torque ripple considering the
nonlinear characteristics, and manufacturing a prototype for validation.
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