
Citation: Białoń, T.; Niestrój, R.;

Skarka, W.; Korski, W. HPPC Test

Methodology Using LFP Battery Cell

Identification Tests as an Example.

Energies 2023, 16, 6239. https://

doi.org/10.3390/en16176239

Academic Editor: Simone Barcellona

Received: 30 June 2023

Revised: 20 August 2023

Accepted: 24 August 2023

Published: 28 August 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

energies

Article

HPPC Test Methodology Using LFP Battery Cell Identification
Tests as an Example
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Abstract: The aim of this research was to create an accurate simulation model of a lithium-ion battery
cell, which will be used in the design process of the traction battery of a fully electric load-hull-dump
vehicle. Discharge characteristics tests were used to estimate the actual cell capacity, and hybrid pulse
power characterization (HPPC) tests were used to identify the Thevenin equivalent circuit parameters.
A detailed description is provided of the methods used to develop the HPPC test results. Particular
emphasis was placed on the applied filtration and optimization techniques as well as the assessment
of the quality and the applicability of the acquired measurement data. As a result, a simulation model
of the battery cell was created. The article gives the full set of parameter values needed to build a
fully functional simulation model. Finally, a charge-depleting cycle test was performed to verify the
created simulation model.

Keywords: lithium-ion iron phosphate (LFP) battery; hybrid pulse power characterization (HPPC);
Thevenin equivalent circuit

1. Introduction

The research described here aims to create an accurate simulation model of a battery
cell, which will be used in the design process of the traction battery of a fully electric
load-hull-dump (LHD) vehicle. The model-based design (MBD) method [1,2] was used
to create numerical models of vehicle subassemblies in order to test them by means of
simulation. The MBD method is frequently used to design vehicles and mobile robots [3], as
well as to design manned and unmanned aerial vehicles [4,5]. The practical importance of
model-based techniques in energy storage analysis and design is also underlined in [6–10].

The most basic element of a traction battery is a single cell. Its equivalent circuit,
describing the static and dynamic properties, is the starting point for creating a simulation
model. In practice, many different forms of battery cell equivalent circuits are used [11–21],
taking into account various physical and chemical phenomena. The appropriate choice
of model depends on its intended use and the method by which its parameters will
be identified.

Battery cell models are often used in the form of an equivalent circuit [11–13,16,22–25],
and many authors emphasize the advantages of this method. The first advantage is the
simplicity of the model, most often composed of resistors and capacitors, and a voltage
source to represent the battery’s OCV [15–17,26]. The battery’s electrical properties are
described by their characteristics dependent on the state of charge (SOC) of the cell. Another
advantage is the flexibility. The complexity of the equivalent circuit (i.e., number of RC
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pairs in the Thevenin model) can be adjusted according to the desired model accuracy and
applied parameter identification method. To represent battery cell properties over a wide
frequency range, an additional inductance may be introduced [27,28]. In this work it is
omitted, because the inductance value cannot be identified with the HPPC tests. The third
important advantage is the composability. Introducing additional elements to the model,
phenomena such as self-discharge can be taken into consideration [18]. The equivalent
circuit element characteristics can also be extended with the thermal and aging model,
creating a multi-physical model [29].

The equivalent circuit model approach also shows high fidelity in simulating battery
performance characteristics [30–33]. Model fidelity, which measures how closely a model
or simulation mimics the state and behavior of a real-world item, is crucial in MBD.

For the purposes of battery design using the MBD method, models describing the
dependence of the open-circuit voltage (OCV) characteristics on SOC [11,18,34,35] and the
dynamic properties of the cell with one or two time constants are most often used. The
Thevenin circuit [17,20,25,36–38] is such model and was used in the research described here.

In general, it is difficult to estimate battery parameters quickly and accurately from
input–output cycling data [23,24,39]; therefore, special identification tests must be used.
The pulse charge or discharge test [14,40–42] or hybrid pulse power characterization (HPPC)
tests [43–47], combined with charge and discharge characteristics [44,48,49], are the most
commonly used. These tests (performed once) can reflect the properties of the cell for the
current state of health (SOH), so they cannot identify the effects of cell aging [21] or changes
in its parameters during long-term operation. They are also unable to identify self-discharge
effects [50]. These effects, however, have little impact on the basic operational properties of
the battery and are usually neglected in the design process with the MBD method.

Identification of resistor–capacitor (RC) parameters of the Thevenin equivalent cir-
cuit depends on the HPPC impulse voltage approximation quality with an exponential
function [40,48,49,51] or multi-exponential function [35,47,48]. However, usually two expo-
nential terms are used. Approximation may be performed by optimization. Deterministic
optimization methods may be used [21,44,52]. However, in this case, the optimization result
depends on the starting point of the algorithm, which is not always easy to choose. How-
ever, this problem does not occur in population-based metaheuristic algorithms [53]. Such
algorithms, i.e., genetic algorithms [17,54,55], particle swarm optimization (PSO) [21,52,56],
and others [57], are also used for HPPC results processing. PSO was also applied in the
research described here.

This article details the step-by-step process of preparing HPPC tests and processing
their results. Typical technical problems, including those resulting from the physical
properties of lithium-ion iron phosphate (LFP) cells, are discussed and methods of solving
them are proposed. LFP battery cells have a lower energy density than the most popular
electromobility applications of nickel manganese cobalt (NMC) cells [58,59], but they ensure
greater safety of use due to much lower susceptibility to thermal runaway [59,60]. LFP
battery cells also perform more favorably in terms of product sustainability [61,62].

The article describes the issues that are a continuation of the research described in the
article [63].

The novelties are as follows:

• An optimization-based battery cell time constant identification algorithm is imple-
mented in software written by the authors.

• An HPPC-based method for OCV vs. SOC characteristic determination is established.
• Other contributions of the article are as follows:
• This paper gives the values of all parameters necessary to build a fully parameterized

mathematical model of the cell.
• The paper explains the HPPC test development methodology step by step. In the

literature, usually only the results of HPPC are given, but the process of obtaining
them is not described. This paper fills that gap.
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• The paper discusses potential flaws in the HPPC test results. Not every HPPC pulse
recorded during measurements is suitable for further analysis and must be omitted.
In the literature, this problem is hardly commented on. This paper fills that gap.

• The paper applies edge detection techniques in the analysis of the HPPC test results.
• The paper remarks on battery cell true capacity experimental estimation.

2. Materials and Methods

The general research methodology is schematically presented in Figure 1.
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Figure 1. Research methodology overview.

The research was divided into three main stages: laboratory tests, identification of
cell parameters based on test results, and creation of a simulation model and simulations
(Figure 1). In the laboratory phase, tests were performed that were the basis for model
identification and its subsequent verification. Identification of the parameters of the cell
model was carried out using software written by the authors, using innovative optimization
algorithms based on particle swarm optimization (PSO) and the Levenberg–Marquardt
method. Known signal processing techniques, such as edge detection and filtering of
measurement data, were also used in an original way. As a result, a simulation model was
created in the MATLAB/Simulink environment, using the Simscape Electrical library.

The tests were carried out for the LFP (LiFePO4) battery cell with the rated parameters
given in Table 1. The following laboratory tests were carried out: discharge characteristics
to estimate the actual cell capacity, HPPC tests to identify the equivalent circuit parameters,
and a charge-depleting cycle (CDC) test [64] to verify the identified mathematical model.

Table 1. ThunderSky Winston LFP040AHA cell nominal parameters.

Parameter Value

Capacity Qn 40 Ah
Energy density 82.5 Wh/kg

Voltage (min./nominal/max.) 2.5/3.3/4.0
Current (typical/max. discharge) 20 A (0.5C 1)/400 A (10C 1)

1 Battery cell C-rating, based on nominal capacity: 1C = 40 A.

The tests were carried out in the laboratory setup shown in Figure 2. The voltage at
the cell terminals and at the shunt was recorded using a National Instruments NI 6251 M
A series data acquisition device was equipped with a 16-bit analog-to-digital converter.
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The sampling rate was 135 Hz during HPPC tests and 100 Hz during the CDC test. The
main element of the setup was a programmable power supply with a load function ITECH
IT6522C, additionally equipped with a dedicated power dissipater module IT-E502. This
set enables both power supply and active load up to 3000 W and 120 A DC. The power
supply may operate in constant current (CC) and constant voltage (CV) modes. The battery
cell was operated in CC mode, in accordance with the given reference current test profile,
only if the cell voltage value was within the tolerable limits given in Table 1. When the
cell voltage reached the minimum or maximum value, the power supply was switched
into CV mode, in which the current was limited to keep the voltage within specified limits.
Measurements were carried out at an ambient temperature of about 22 ◦C, with deviations
up to 1 ◦C.
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Figure 2. Laboratory setup overview.

The simulation model created during the research directly reflects the structure of the
laboratory setup. Not only a battery cell model based on Thevenin’s equivalent circuit
(Section 3.1) was created, but also an active power supply model was created, including the
implementation of CC/CV mechanisms. This makes it possible to compare the simulation
results with the laboratory CDC test results. In both cases, i.e., in the real power supply
and its simulation model, the same profile of the reference current was implemented.

3. Results

The aim of the research was to create an accurate simulation model of an LFP battery
cell. The basis of the model was the equivalent circuit described in Section 3.1, the parame-
ters of which were determined on the basis of HPPC test results as described in Section 3.3.
The cell capacity set in the simulation model was determined by the methods described in
Section 3.2. The method of verifying the identified model is described in Section 3.4.

3.1. Battery Cell Equivalent Circuit

A mathematical model of the battery cell in the form of a Thevenin equivalent cir-
cuit [21,37,38,46,65–67] was used (Figure 3). The circuit contains two RC pairs, thus simu-
lating two time constants of the dynamic model [65,66,68,69]:

τ1 = R1C1, τ2 = R2C2, (1)
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Thevenin models are usually used with one to five RC pairs and their corresponding
time constants. In the case of LFP cells, the first (smallest) time constant has values of a
few seconds, whereas the second has values of tens of seconds. The third time constant is
measured in tens of minutes, etc. HPPC tests can only identify the first two RC pairs (see
Section 3.3), so the others are omitted [22].

All the resistances, capacities as well as the OCV (UOC in Figure 3) depend on the SOC
of the cell [31], which is estimated on the basis of the cell current [22,37,51,57,67,68,70]:

SOC = SOC0 −
1
Q

t∫
0

Idτ, (2)

where SOC0 is the initial SOC of the cell, and Q is the cell capacity. Note that the actual cell
capacity depends on many factors, such as temperature and SOH of the cell, and is usually
different from the rated one, Qn. Here, it was estimated based on the measurement results
as described in Section 3.2.

Determination of the OCV vs. SOC characteristic is described in Section 3.3.2. The deter-
mination of the dependence of RC parameters on SOC is described in Sections 3.3.4 and 3.3.5.

3.2. Capacity and State of Charge Estimation

The actual capacity of the cell is usually different from the nominal one and is crucial
from the point of view of correct parameterization of the created mathematical model. The
correctness of determining the SOC depends on this, and more precisely, it is necessary to
determine the value of Q in Formula (2), corresponding to SOC = 1.

By definition, the charge drawn from the battery is equal to the integral of the current
over time [71]:

Q =

t∫
0

Idτ. (3)

In geometric interpretation, Q is the area under the current waveform. However,
recording of the battery discharge current can be made at different values of I, and different
assumptions as to the operating conditions. Two different methods were used here. The first
was a measurement based on the discharge characteristics [44,48,49]. The second, proposed
by the authors, was the use of current waveforms recorded during HPPC tests [63].

Discharge tests were performed at four different current values (0.5 C, 1 C, 2 C, and
3 C) by recording the current and voltage. The tests were started with the cell charged
to the maximum voltage (Table 1) and after several hours of relaxation. The current was
recorded while the laboratory setup was operating in the CC mode, and the charge taken
under these conditions was called QCC (Figure 4).
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When the cell voltage reached the minimum value, and the system went into CV
mode, the recording continued until the current completely dropped to 0. The charge
determined under these conditions was called QCV. The results obtained during the tests
are summarized in Table 2, and the recorded transients are shown in Figure 5.
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Table 2. Cell capacity measurement results based on discharge characteristics.

Relative Discharge
Current

Total Discharge
Q [Ah]

Discharge in CC Mode
QCC [Ah]

Discharge in CV Mode
QCV [Ah]

0.5C 47.71 46.30 1.407
1C 47.71 45.78 1.934
2C 47.70 45.21 2.495
3C 47.62 45.41 2.212
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Table 2 shows that the total charge taken from the cell during the discharge tests
was slightly dependent on the current. However, the proportion between the QCC and
QCV values changes. The higher the discharge current, the lower the QCC and the higher
the QCV.

Then, the total charge taken from the cell during the HPPC tests (described in
Section 3.3) was determined by integrating the currents recorded in each of the 18 tests and
summing the results. The value of Q = 50.71 Ah was obtained (see Table 3 in Section 3.3).

Table 3. HPPC tests and impulses summary.

HPPC
Test
No.

Impulse No., Type and Relative Current Value
∆Q

[Ah]
∆Q/Qn

[%]
Q

[Ah]1
0.5 C

2
0.5 C

3
1 C

4
1 C

5
2 C

6
2 C

7
3 C

8
3 C

1 (−) (+) (−) (+) (−) (+) (−) (+) 2.41 6.03 2.41
2 (−) (+) (−) (+) (−) (+) (−) (+) 2.21 5.53 4.63
3 (−) (+) (−) (+) (−) (+) (−) (+) 4.21 10.53 8.84
4 (−) (+) (−) (+) (−) (+) (−) (+) 4.21 10.53 13.05
5 (−) (+) (−) (+) (−) (+) (−) (+) 4.22 10.54 17.27
6 (−) (+) (−) (+) (−) (+) (−) (+) 4.23 10.57 21.50
7 (−) (+) (−) (+) (−) (+) (−) (+) 4.22 10.56 25.72
8 (+) (−) (+) (−) (+) (−) (+) (−) 4.21 10.54 29.93
9 (+) (−) (+) (−) (+) (−) (+) (−) 4.22 10.55 34.16

10 (+) (−) (+) (−) (+) (−) (+) (−) 2.16 5.40 36.31
11 (+) (−) (+) (−) (+) (−) (+) (−) 2.18 5.45 38.49
12 (+) (−) (+) (−) (+) (−) (+) (−) 2.20 5.51 40.70
13 (+) (−) (+) (−) (+) (−) (+) (−) 2.21 5.52 42.90
14 (+) (−) (+) (−) (+) (−) (+) (−) 2.22 5.54 45.12
15 (+) (−) (+) (−) (+) (−) (+) (−) 2.20 5.49 47.32
16 (+) (−) (+) (−) (+) (−) (+) (−) 2.22 5.55 49.54
17 (+) (−) (+) (−) (+) (−) (+) (−) 0.92 2.31 50.46
18 (+) (−) (+) (−) (+) (−) (+) (−) 0.25 0.62 50.71

Impulses: •—healthy, •—trimmed, •—distorted, (+)—charging, (−)—discharging.

It should be noted that all measured charge values (in discharge and HPPC tests)
were greater than the nominal cell capacitance Qn, but the differences between them were
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significant. Therefore, the question as to which of them should be treated as the final
one (the total capacity of the cell) should be asked, which will be used in the created
mathematical model. In order to find the answer, a number of simulations were carried out
for all the values obtained and the results of the selected values are presented in Section 3.4.
The best result was obtained for the value of Q = 45.7 Ah, calculated as the average of
the QCC values for all four current values (average of the values from the third column of
Table 2).

3.3. HPPC Tests

The basic idea of an HPPC test is to analyze the cell voltage response to a rectangular
current pulse. This response is a multi-exponential waveform, the time constants of which
should be determined in the identification process [17,44,46,48,69]:

U = UOC − IR0 − IR1

(
1 − e−

t
τ1

)
− IR2

(
1 − e−

t
τ2

)
. (4)

In order for the determination of the time constant to be possible and precise, the
recorded voltage response should last several times longer than the expected length of
the time constant [43]. So, the longer the recorded transient, the better. On the other
hand, a single HPPC pulse should be as short as possible so as not to change the SOC
of the battery, which results directly from (2). The HPPC pulse length used in practice is
therefore a compromise between these two requirements. In the case of nickel manganese
cobalt (NMC) cells, the first two time constants are relatively short [63] and do not exceed
a dozen or so seconds, so pulses from 9 s to 18 s are sufficient. Usually 10 s pulses are
used [16,43–45]. In the case of the considered LFP cell, the time constants are longer, so the
duration time of the HPPC pulses was extended to 60 s.

In practice, HPPC profiles containing different numbers of pulses are used, but it
is always an even number [16,44,55]. This is because the pulses always occur in pairs (a
charging pulse with a discharging pulse), so that the series of pulses does not change the
SOC of the cell. The number of pairs of pulses may be different, sometimes only one is
used [69]. When there is more than one pair, then individual pairs differ in current values.
Here, four pairs of pulses were used, successively with current values of 0.5 C, 1 C, 2 C,
and 3 C (Figure 6). The greater the current value, the greater the voltage change in response
to the impulse, so the easier it is to record (see Section 3.3.1). On the other hand, the greater
the current value, the greater the SOC change during the pulse duration, which may cause
the problems described in Section 3.3.3. The order of the pulses in the pair also matters.
For high SOC values, the discharge pulse was used first. Starting with a charging pulse
would risk increasing the cell voltage during the pulse duration, which for a high SOC
value (close to 1) could cause the measurement system to switch from CC to CV mode and
cut the pulse (see Section 3.3.3). For small SOC values (close to 0), for the same reason,
the order was reversed with the charging pulse used first. The sequence change is seen in
Table 3 after test number 7.

Another important consideration is the relaxation time between pulses. In principle, it
should be much longer than the expected values of the time constants of the cell, so that
before the next pulse occurs, the cell voltage has time to stabilize after the preceding pulse.
However, due to the very large time constants of the examined LFP cell, it was difficult to
meet this assumption. In the conducted tests, a relaxation time between pulses of 20 min
was used (Figure 6).

The last element of the HPPC profile shown in Figure 6 is the discharge of the cell
before the next HPPC test. The values of the cell equivalent circuit parameters change most
rapidly for very small and very large SOC values, but for intermediate values (SOC ≈ 0.5),
they are almost constant. To capture the shape of the characteristics, a discharge of 0.05 Qn
was used for large SOC values, and then the interval was increased to 0.1 Qn to return to
0.05 Qn for small SOC values.
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Figure 6. Exemplary HPPC test result.

Successive HPPC tests were carried out until the total charge taken from the battery
during the test dropped significantly below the set discharge value (0.05 Qn), which resulted
from the fact that the discharge pulses in the profile were cut off by the CC/CV mechanism
due to reaching the minimum voltage. All the performed tests are summarized in Table 3,
where ∆Q is the charge taken from the cell during the whole HPPC test (including final
discharge by 0.05/0.1 Qn). For the last two tests (17 and 18), this value drops significantly,
which means that the cell is already discharged. In Table 3, Q is the total value of the charge
taken from the cell at the end of the given test, taking into account the charge taken in the
preceding tests.

3.3.1. Filtering and Slope Detection

The recorded HPPC test transients shown in Figure 6 contain 1,500,000 samples over
time. For this reason, precise localization of the beginnings and ends of HPPC pulses is a
challenge. In addition, the recorded waveforms, in particular the voltages, contain a lot of
noise that hinders further analysis. The high noise content results from the unfavorable
proportion of the analyzed voltage changes to the measuring range of the data acquisition
device. The voltage changes caused by an HPPC pulse range from ten to several tens of mV,
whereas the measured voltage values reach up to 4 V. Therefore, a measuring transducer
with a range of 10 V was used. Consequently, the analyzed changes constitute only a few
percent of the measurement range, which, even with good quality converters and 16-bit
sampling, results in a relatively large amount of noise.

Both problems, noise removal in the voltage transient and detection of the beginnings
and ends of pulses based on the current transient, can be solved by using appropriate
data-filtering techniques.

To detect the edges marking the beginnings and ends of the pulses, a method based
on the analysis of the transient of the difference of two exponential averages was used:

ri(α) =

{
Ii i = 1

αIi + (1 − α)ri−1 i > 1,
(5)

∆i = ri(αfast)− ri(αslow). (6)

In (5) and (6), Ii is the i-th sample of the current waveform, ri is the i-th sample of the
exponential moving average, α is the weight coefficient, and ∆i is the i-th sample of the
waveform difference. The principle of operation of the method is shown in Figure 7. The
difference ∆ between two waveforms averaged with different weight values α (αslow = 0.02,
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αfast = 0.1) contains peaks at moments when there is a rapid change in the trend of the
source waveform.
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An edge is detected when the value of ∆ exceeds the set threshold, which was 0.5 here.
It should be noted that the values of the weight coefficient α are selected according to the
sampling frequency of the source waveform, and the threshold value should be selected
according to the noise content and disturbances in the source waveform.

A running average of order N = 5 was used to filter out the noise from the
voltage waveform:

Ufiltered i =
1

2N + 1

i+N

∑
k=i−N

Uk. (7)

In (7), i is the sample number of the measured voltage U that corresponds to the
Ufiltered i filtered voltage sample. The filtration consists of calculating the average for N
samples preceding and following the sample with the number i.

This simple method gave good results due to the high sampling frequency of the
recorded voltage waveform and the random character of the filtered noise. Order N = 5
was sufficient, and its low value introduced negligible distortion of the voltage waveform,
having no significant impact on the subsequent identification of time constants. The
filtration results for an exemplary HPPC pulse recorded at the smallest of the applied
currents of 0.5 C (i.e., in conditions where the relative noise content is the highest) are
shown in Figure 8.

3.3.2. OCV vs. SOC Characteristic

The OCV characteristic, represented by UOC (i.e., the voltage source in the Thevenin
equivalent circuit), is identified by measurement. The averaged charging and discharging
characteristics may be used here [44,48,49]. However, this method has some disadvantages.
The measured cell voltage contains not only the OCV but also the voltage drop at the
impedance, which also depends on the SOC. Moreover, the measured charge and discharge



Energies 2023, 16, 6239 10 of 21

capacities differ due to power losses. This makes it difficult to correlate them before
the averaging.
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Figure 8. Exemplary HPPC impulse before and after data filtering. Near t = 10 s, a false peak
generated by the control system of the active power supply is visible.

To avoid these problems, the authors proposed a method for determining the OCV
characteristics based on the results of HPPC tests, consisting of averaging (over a 10 s time
period) the voltage recorded in the no-current state before each pulse. The SOC value
corresponding to the voltage obtained this way is calculated in reference to the total charge
of all HPPC tests, that is, the Q value from the last row of Table 3.

A measurement-based OCV characteristic is too irregular to be directly applied in
the cell mathematical model and must be approximated [11,70,72–76]. Choice of the
appropriate approximating function is a further problem. Several types of functions were
tested, but a log-linear exponential (LLE) function [11,75] gave the best result [63]. The LEE
function has the following form:

UOC(SOC) = a + b ln(SOC + c) + d SOC + ee(SOC− f ). (8)

Its coefficients a to f were obtained by optimization with the particle swarm method
(PSO) described in [63]. The resulting function plot and its coefficient values are given in
Figure 9.
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3.3.3. Impulse Evaluation and Selection

Once identified and filtered (Section 3.3.1), the HPPC impulses need to be selected
for further time constant identification. The problem is that not all recorded impulses are
suitable for further analysis. They may contain defects resulting from the measurement
method (CC/CV mechanism) or from the physical properties of the cell.

Figure 10 schematically shows the shape and interpretation of a healthy (suitable for
further analysis) pulse [11,14] and two cases of faulty pulses. Examples of recorded healthy
impulses are shown in Figures 6 and 8.
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Figure 10. Shape of a single (charging) HPPC impulse and its potential flaws.

Pulse trimming (Figure 10) is easy to detect by analyzing the sequence of previously
detected edges and the distances between them. A healthy pulse has two edges, falling and
rising (which one is the first depends on whether the impulse is charging or discharging),
separated in time by the assumed pulse length. Deviation from this pattern suggests that
the pulse has been trimmed (Figure 7). Trimming occurs when the cell voltage reaches the
limit during the duration of the pulse, and therefore, the measurement system switches
from CC to CV mode.

In the performed tests, trimming always occurred together with the second defect,
distortion by the OCV characteristic (Figure 10). Pulse distortion occurs for small SOC
values, close to 0, and large ones, close to 1. This is because in these areas the OCV
characteristic is the steepest (Figure 9). Therefore, even a slight change in SOC during the
pulse duration causes a significant change in the voltage UOC of the cell, which translates
into the shape of the recorded waveform U (Figure 10). The shape of the waveform ceases
to depend only on the time constants τ1 and τ2, which is a necessary assumption to make
the identification of these constants possible. In the extreme case, the recorded waveform
bends in a direction opposite (Figure 11) so that it results from (4), assuming that the time
constants τ1 and τ2 are positive.
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Figure 11. Exemplary HPPC impulse distorted by OCV characteristic.

In Table 3, summarizing the HPPC tests, trimmed pulses are marked in red and dis-
torted pulses in yellow. Only healthy pulses marked in green were used in further analysis.

3.3.4. Impulse Waveform Approximation

The filtered and selected HPPC pulses were approximated by Function (4) to identify
the time constants τ1 and τ2 and the resistances R0, R1, and R2. Then, on the basis of
Formula (1), capacities C1 and C2 were calculated. The approximation was carried out
using the PSO optimization method. At this stage of the research, a configuration of the
PSO algorithm was found that guaranteed high repeatability of the obtained results. The
fully informed particle swarm cognition method and the 8th order ring lattice swarm
topology were used. The cognition factor was 4.1, the swarm consisted of 64 particles, and
the number of iterations of the algorithm was set to 180.

The optimization method used and the experiments performed with it were described
in a separate article [63].

3.3.5. R and C vs. SOC Characteristics Approximation

The results of the approximation described in Section 3.3.4 are the values of the
cell equivalent circuit parameters and the corresponding SOC values. These values are
presented in the form of points on the graphs in Figure 12. These points are arranged in
more or less regular bands, which should be approximated with continuous functions in
order to create a mathematical model of the cell. A polynomial approximation was used,
and several experiments were performed with polynomials of various orders. The best
results were obtained for 3rd order polynomials:

f (SOC) = a + b SOC + c SOC2 + d SOC3. (9)

The approximation was carried out using the Levenberg–Marquardt method. The re-
sistance and capacitance characteristics were approximated and the polynomial coefficients
obtained are summarized in Table 4. In Figure 12, in the graphs of R and C values, the blue
lines are the waveforms of Function (9) with the parameters from Table 4. The blue lines in
the graphs τ1 and τ2 are the product of the approximating functions, respectively R1 and
C1 for τ1, R2 and C2 for τ2, according to (1).

3.4. Model Verification

The approximated OCV (Section 3.3.2), R0, R1, R2, C1, and C2 (Section 3.3.5) character-
istics fully describe the Thevenin equivalent circuit shown in Figure 3. This circuit, together
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with functions describing its parameters, was implemented in the MATLAB/Simulink
environment by creating a simulation model of the cell, in a similar way as in [31]. The
last parameter describing the model is the charge value Q corresponding to SOC = 1. Due
to the problems with determining the actual capacity of the cell described in Section 3.2,
this value was found by performing a series of simulations of the cell operating in model
conditions and comparing their results with the transients recorded in the laboratory.
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Figure 12. Thevenin equivalent circuit R and C parameter characteristics approximated with 3rd
order polynomial.

As model operating conditions, a current load profile based on the CDC [64], used
to test batteries of hybrid vehicles, was used. The application of cycle-based tests is a
typical strategy for battery cell mathematical model verification. Other popular cycle-
based tests are the dynamic stress test (DST) [46,51,65,68], ARTEMIS [57,77], and oth-
ers [17,28,54,66,69,75,78,79]. The applied CDC cycle consists of a set of discharge pulses
of different value (acceleration and driving at a constant speed) as well as charging ones
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(regenerative braking). A single cycle was about 7 min long and discharged the cell by 3.3%
of Qn, so it was repeated over 30 times until the cell was fully discharged.

Table 4. R and C parameters 3rd order polynomial approximation coefficients values.

a b c d

R0 3.551 × 10−3 −6.172 × 10−3 8.993 × 10−3 −4.267 × 10−3

R1 9.601 × 10−4 −1.154 × 10−3 1.611 × 10−3 −5.716 × 10−4

R2 6.169 × 10−3 −2.678 × 10−2 4.690 × 10−2 −2.485 × 10−2

C1 5549 −1.359 × 104 5.058 × 104 −3.397 × 104

C2 1.712 × 104 8.510 × 104 −2.850 × 104 −4.243 × 104

Figure 13 shows the selected simulation results compared with the waveform recorded
in the laboratory. The values of capacitance Q used in the simulation model are summarized
in Table 5. The simulation accuracy has been evaluated with root-mean-square (RMS)
error [49,65,68,69,74] given by the formula:

erms =

√√√√ 1
K

K

∑
k=1

(Umeasurement(tk)− Usimulation(tk))
2. (10)

Table 5. Cell capacities used in simulations and resulting voltage error value.

Voltage
RMS Error

Cell Capacity
Q [Ah] Comment

0.0432 45.7 Average for discharge characteristics, CC mode only
0.0487 47.7 Average for discharge characteristics, CC + CV
0.120 50.7 HPPC tests total discharge
0.167 40.0 Qn—nominal cell capacity

The data in Table 5 are ordered from the lowest erms value (best result) to the highest.
In Figure 13, the voltage relative error transients are shown, calculated as follows:

δU =
Umeasurement − Usimulation

Umeasurement
100%. (11)

The δU error statistics for transients presented in Figure 13 are presented in Table 6.
The order of the data in Table 6 is the same as in Table 5 and Figure 13.

Table 6. Simulation results—voltage relative error statistics.

Cell Capacity
Q [Ah]

Average Error
|δU| [%]

Average Error for t from 5
min to 180 min |δU| [%]

Peak Error
|δU| [%]

Peak Error for t from 5 min to
180 min |δU| [%]

45.7 0.977 0.751 14.9 9.62
47.7 1.07 0.805 14.6 9.83
50.7 2.44 0.873 22.9 10.1
40 2.73 0.579 20.4 9.04
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4. Discussion

When identifying the parameters of the mathematical model of the cell, a major
problem was determining its actual capacity, which comes from a comparison of the
transients obtained for various Q values shown in Figure 13. The values obtained by the
different methods (Section 3.2) varied considerably. They also differed from the nominal
capacity Qn. It should be noted that according to the discharge characteristics provided in
the cell data sheet by the cell manufacturer, the cell capacity at normal temperature (i.e., the
temperature at which the tests described herein were performed) varied with the discharge
current from about 1.04 Qn (3 C) to 1.15 Qn (0.5 C).

These values correspond to QCC values in Table 2. Particularly significant here was
the value of the discharge current. This is why the capacity determined from the HPPC
tests was the largest. This was because, during these tests, the charge was taken from the
cell in small increments separated by long relaxation times. Thus, the cell had a lot of time
to regenerate and rebuild the voltage lowered by the discharge.

For these reasons, we decided to treat the result of the CDC test (Section 3.4) as an
indication, because the working conditions during this test were close to the real working
conditions of the battery in the vehicle. Cell capacitance identified using the method giving
a result consistent with the CDC test will, therefore, have the highest value in use.

The applied edge detection algorithm was an effective method of extracting individual
pulses from the entire recorded HPPC test transient (Section 3.3.1). It was also helpful in
identifying trimmed pulses (Section 3.3.3). Nevertheless, the detection of slopes sometimes
encountered problems resulting from the properties of the equipment used in the labo-
ratory setup. For example, in Figure 7, the enlarged fragment of the ∆ waveform shows
disturbances in the form of short peaks. These disturbances often occurred just after the
power supply switched from CC to CV mode. They probably resulted from the way the
operation of the control system was implemented in the applied active power supply. In
Figure 7, this disturbance caused the detection of an additional, non-existent edge. The
result of the operation of the power supply control system is also visible in the current
waveform in Figure 8, this being the cause of the “false impulse”. This pulse, despite the
high peak value, was very short, so it had no significant effect on the SOC of the cell. These
types of pulses appeared in the no-current state when the change took place in the set
value of the cut-off voltage (voltage at which the power supply switched from CC to CV
mode). Such a change was performed before each change in the direction of the current
flow: before charging, the value was set to 4 V, and before discharging, the value was set to
2.5 V. These pulses also sometimes resulted in the detection of a non-existent edge, which
had to be taken into account in the analysis.

After identifying the time constants, the applied HPPC pulses, extended to 60 s, were
too short to correctly identify the second time constant of Thevenin’s model. The graphs
in Figure 12 show that the points corresponding to the identified R0 values are arranged
in a narrow, regular band, which proves good quality of identification. In the case of the
time constant τ1, the obtained band is much wider and the dispersion of values is greater,
but some regularity is still visible. In the case of the time constant τ2, the dispersion of
the results is very large, and their arrangement on the graph does not show any regularity.
Note that the values of the time constant τ2 in Figure 12 changed in the interval from 30 s to
120 s, i.e., by 400%. Probably, in individual cases, values greater than 120 s would have been
obtained, if not for the fact that such a value was set as a limitation of the search space in
the applied PSO algorithm. It should be noted that, as stated in Section 3.3, to ensure good
quality identification of the exponential waveform time constants, the length of its recorded
fragment should be several times greater than the length of its time constants. However,
with the applied HPPC pulse length equal to 60 s, more than half of the identified τ2 values
were greater, even up to two times. Increasing the duration of the HPPC pulses would
be undesirable, because it would cause changes too large in the SOC during the pulse
duration. In the case of the tested LFP type cell, resignation from determining two time
constants in favor of only one should be considered, as well as shortening the duration
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of the HPPC pulse. Let us also pay attention to the obtained resistance and capacitance
values, given in Figure 12. The resistances are of the order of mΩ, which results in high
short-circuit currents of lithium-ion cells. Capacitances are of the order of kF. Similar values
were obtained, for example, in [32].

Reducing the HPPC pulse duration would reduce problems with distortion of their
voltage response by the OCV characteristics (Section 3.3.3). It should be noted that the
distortion effect in the form of a voltage waveform bent in the opposite direction shown in
Figures 10 and 11 is an extreme case. When the distortion was small, the distorted impulse
did not differ in shape from the healthy one, but the time constants identified on its basis
had overestimated values. It is possible that this effect (at least partially) is responsible for
the lack of regularity of the results presented in the τ2 graph in Figure 12. This problem,
however, requires confirmation and further analysis.

Among the functions known in the literature, the LEE function was selected to approx-
imate the OCV characteristic. It has three SOC-dependent terms that are the most suitable
for the specific shape of the LFP cell OCV characteristic. The logarithmic term describes
the shape of the characteristic for SOC close to 0, linear describes the slope of the middle
part of the characteristic, and exponential describes its shape for SOC close to 1. As the
comparison of the measurement and simulation results showed, the OCV characteristic
had the greatest impact on the accuracy of the simulation model. The enlarged fragment
of the graph in Figure 13 shows that the simulated and measured voltage waveforms had
a very similar shape, but there was a slowly varying offset between them. The Thevenin
equivalent circuit (Figure 3) shows that the cell impedance, composed of the R and C
elements, was responsible for the shape of the waveform, this being the response to current
changes. The offset, on the other hand, is the result of differences in UOC (OCV) voltages.

Table 6 summarizes the voltage RMS error statistics, corresponding to the waveforms
in Figure 13. Error values averaged over time and peak values are presented. The data are
presented for entire transients and for a limited time range, from 5 min to 180 min. In this
range, the cell operates on the almost linear part of the OCV characteristic, i.e., in the most
typical conditions from a practical point of view.

The data show that for the optimal cell capacity (Q = 45.7 Ah) the average voltage
errors were less than 1%, which proves the very good fidelity of the obtained simulation
model. Error peaks under typical operating conditions (5–180 min) are at an acceptable level
of about 10%. The peak values correspond to the dynamic states (with rapid changes in the
load current), and their values are influenced primarily by the quality of identifying the
parameters of the RC pairs related to the time constants. Note, that for the reasons described
in Section 3.3, only two time constants have been identified, which affects the precision of
the model in dynamic states. It should also be noted that in the literature, models with only
one time constant [24,25,30,31,39] are sufficiently considered to be accurate.

In conclusion, despite the previously described problems, the identification of time
constants and R and C elements had a satisfactory effect, and the accuracy of the obtained
simulation model can be improved by better methods of identification and approximation
of the OCV characteristics.

5. Conclusions

The research showed the following:

• Among the various cell capacity values obtained as measurements, the best perfor-
mance of the mathematical model was obtained for the averaged charge taken from
the cell during discharge in the CC mode for different current values. Therefore, this
method is recommended for determining the actual capacity of the cell.

• The OCV characteristics of the LFP cell are best approximated by the LEE function.
• Identification of the second time constant of the LFP cell is difficult, because of its large

value, greater than a typical HPPC impulse duration.
• Suggestions for further research:
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• It would be advisable to develop methods for automatic quality evaluation of HPPC
impulses, based on the criteria given in Section 3.3.3, which would enable full automa-
tion of the HPPC test results processing.

• A method should be developed to detect the occurrence of distortion of HPPC pulses
in cases where the distortion is small and does not significantly change the shape of the
voltage waveform yet, but already overestimates the obtained values of time constants.

• Simulation model accuracy may be improved by better OCV characteristic approximation.
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24. Maletić, F.; Deur, J. Analysis of ECM-based Li-Ion Battery State and Parameter Estimation Accuracy in the Presence of OCV and
Polarization Dynamics Modeling Errors. In Proceedings of the IEEE 29th International Symposium on Industrial Electronics
(ISIE), Delft, The Netherlands, 17–19 June 2020; pp. 1318–1324. [CrossRef]

25. Simin, P.; Gang, S.; Yunfeng, C.; Xu, C. Control of different-rating battery energy storage system interface to a microgrid. Przegląd
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79. Marušić, D.; Vašak, M. Efficient Method of Identifying a Li-Ion Battery Model for an Electric Vehicle. In Proceedings of the
IEEE 20th International Power Electronics and Motion Control Conference (PEMC), Brasov, Romania, 25–28 September 2022;
pp. 421–426. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.3390/en16103995
https://doi.org/10.2172/991910
https://doi.org/10.1016/j.est.2022.106462
https://doi.org/10.3390/batteries9020101
https://doi.org/10.1109/ISGTEurope.2012.6465855
https://doi.org/10.1016/j.est.2021.103485
https://doi.org/10.3390/batteries7030051
https://doi.org/10.1109/ICIEA.2019.8833993
https://doi.org/10.1109/VPPC.2010.5729127
https://doi.org/10.3390/en14071797
https://doi.org/10.1109/TCAPT.2002.803653
https://doi.org/10.3390/electronics8080834
https://doi.org/10.3390/en10060764
https://doi.org/10.3390/en15186803
https://doi.org/10.1016/j.egyr.2021.10.086
https://doi.org/10.1109/TVT.2004.832408
https://doi.org/10.1109/PEMC51159.2022.9962945

	Introduction 
	Materials and Methods 
	Results 
	Battery Cell Equivalent Circuit 
	Capacity and State of Charge Estimation 
	HPPC Tests 
	Filtering and Slope Detection 
	OCV vs. SOC Characteristic 
	Impulse Evaluation and Selection 
	Impulse Waveform Approximation 
	R and C vs. SOC Characteristics Approximation 

	Model Verification 

	Discussion 
	Conclusions 
	References

