A Review on CO2 Sequestration via Mineralization of Coal Fly Ash
Abstract
:1. Introduction
2. CO2 Mineralization
2.1. Direct Carbonation
Reference | Carbonation Condition | CaO and MgO Content in Fly Ash | Cn (g-CO2/kg-Fly Ash) |
---|---|---|---|
Shao et al. [20] | liquid/solid ratio of 6 mL/g, 30 °C, initial CO2 pressure of 2 MPa, 15 min | 8.8 wt% Ca, 0.36 wt% Mg | 54.9 |
Muriithi et al. [22] | brine, liquid/solid ratio of 1 mL/g, 90 °C, initial CO2 pressure of 4 MPa, 30 vol % CO2, 2 h | 9.2 wt% Ca, 2.44 wt% Mg | 65 |
in-situ natural carbonation, 20 years | 68 | ||
Yuan et al. [24] | 100 rpm, liquid/solid ratio of 100 mL/g, 80 °C, initial CO2 pressure of 1 MPa, 5 h | 25.83 wt% CaO, 2.17 wt% MgO | 42.3 |
100 rpm, liquid/solid ratio of 30 mL/g, 40 °C, initial CO2 pressure of 8 MPa, 5 h | 54.9 | ||
100 rpm, dry mineralization, 40 °C, initial CO2 pressure of 8 MPa, 5 h | 1.8 (raw ashes) | ||
12.9 (dry milled ashes) | |||
37.1 (wet milled ashes) | |||
Yuan et al. [25] | 100 rpm, dry mineralization, 40 °C, initial CO2 pressure of 8 MPa, 1 h | 10.37 wt% CaO, 2.17 wt% MgO | 1.8 |
100 rpm, liquid/solid ratio of 10 mL/g, 40 °C, initial CO2 pressure of 3, 5 and 8 MPa, 1 h | 10.37 wt% CaO, 2.17 wt% MgO | 55 (3 MPa), 58.2 (5 MPa), 89.3 (8 MPa) | |
100 rpm, liquid/solid ratio of 10 mL/g, 40 °C, initial CO2 pressure of 3, 5 and 8 MPa, 1 h | 6.67 wt% CaO, 0.84 wt% MgO | 19.7 (3 MPa), 23.8 (5 MPa), 38.3 (8 MPa) | |
100 rpm, liquid/solid ratio of 10 mL/g, 40 °C, initial CO2 pressure of 3, 5 and 8 MPa, 1 h | 6.55 wt% CaO, 1.14 wt% MgO | 17.5 (3 MPa), 19.4 (5 MPa), 35.5 (8 MPa) | |
100 rpm, liquid/solid ratio of 10 mL/g, 40 °C, initial CO2 pressure of 3, 5 and 8 MPa, 1 h | 4.68 wt% CaO, 0.24 wt% MgO | 10.7 (3 MPa), 11.7 (5 MPa), 13.9 (8 MPa) | |
Ji et al. [23] | liquid/solid ratio of 5 mL/g, 220 °C, initial CO2 pressure of 2 MPa, 2 h | 16.4 wt% CaO, 1.2 wt% MgO | 58 |
liquid/solid ratio of 5 mL/g, 220 °C, initial CO2 pressure of 2 MPa, 2 h | 9.4 wt% CaO, 27.9 wt% MgO | 125 | |
liquid/solid ratio of 5 mL/g, 140 °C, initial CO2 pressure of 2 MPa, 2 h | 3.6 wt% CaO, 7.1 wt% MgO | 13 | |
liquid/solid ratio of 5 mL/g, 140 °C, initial CO2 pressure of 2 MPa, 2 h | 13.4 wt% CaO, 0.5 wt% MgO | 26.5 | |
liquid/solid ratio of 5 mL/g, 220 °C, initial CO2 pressure of 2 MPa, 2 h | 32.4 wt% CaO, 29.3 wt% MgO | 132 | |
Siriwardena et al. [29] | liquid/solid ratio of 0.3 mL/g, 40 °C, 10 vol % CO2, humidity of 65%, 28 days | 22.75 wt% CaO, 4.48 wt% MgO | 41.6 |
Back et al. [30] | 600 rpm, liquid/solid ratio of 20 mL/g, 75 °C, initial CO2 pressure of 0.01 MPa, 4.5 h | 37.3 wt% CaO,15.4 wt% MgO | 230 |
La Plante et al. [31] | liquid/solid ratio of 100 mL/g, atmospheric pressure, 60 °C, 100 vol % CO2, 72 h | 28.5 wt% CaO, 6.6 wt% MgO | 95.0 |
Pan et al. [32] | 743 rpm, liquid/solid ratio of 18.9 mL/g, 57.3 °C, 15 vol % CO2 | 62.8 wt% CaO, 0.83 wt% MgO | 249.4 |
Revathy [33] | liquid/solid ratio of 13.35 mL/g, 61.6 °C, 4.87 MPa, 100 vol % CO2, 50 min | 6.74 wt% CaO | 50.72 |
Ukwattage et al. [34] | liquid/solid ratio of 5 mL/g, 40 °C, initial CO2 pressure of 6 MPa, 10 h | 39.8 wt% CaO, 7.3 wt% MgO | 7.66 |
Miao et al. [35] | liquid/solid ratio of 10 mL/g, 5 kWh/m3 energy input in slurry, 60 °C, 15 vol % CO2, 2 h | 33.1 wt% CaO, 0.95 wt% MgO | 128 |
Montes-Hernandez et al. [36] | liquid/solid ratio of 10 mL/g, 30 °C, initial CO2 pressure of 1 MPa, 18 h | 5.0 wt% CaO | 26.2 |
Bauer et al. [37] | 1500 rpm, liquid/solid ratio of 0.12 mL/g, 25–80 °C, initial CO2 pressure of 0.015 MPa, 2 h | 28.4 wt% Ca, 0.92 wt% Mg | 211 |
Ukwattage et al. [38] | 60 rpm, liquid/solid ratio of 3 mL/g, 60 °C, initial CO2 pressure of 3 MPa, 10 h | 24.8 wt% CaO, 13 wt% MgO | 27.1 |
Dananjayan et al. [39] | 900 rpm, liquid/solid ratio of 15 mL/g, 30 °C, initial CO2 pressure of 0.4 MPa, 2 h | 6.74 wt% CaO, 2.22 wt% MgO | 50.3 |
Patel et al. [40] | liquid/solid ratio of 0.24 mL/g, 50 °C, 30 vol % CO2 | 37.25 wt% CaO, 0.45 wt% MgO | 40 |
Ho et al. [41] | liquid/solid ratio of 100 mL/g, atmospheric pressure room temperature, 30 vol % CO2, 30 min | 3.44 wt% Ca, 0.82 wt% Mg | 16 |
Nyambura et al. [46] | brine, 600 rpm, liquid/solid ratio of 2 mL/g, 30 °C, initial CO2 pressure of 4 MPa, 2 h | 9.2 wt% Ca, 2.44 wt% Mg | 71.8 |
Jo et al. [43] | deionized water, liquid/solid ratio of 3 mL/g, 25 °C, 15 vol % CO2, 18 h | 7.2 wt% CaO, 1.5 wt% MgO | 19 |
1 M NH4 Cl, liquid/solid ratio of 3 mL/g, 25 °C, 15 vol % CO2, 18 h | 23 | ||
sea water, liquid/solid ratio of 3 mL/g, 25 °C, 15 vol % CO2, 18 h | 20 | ||
Ji et al. [42] | 0.5 M Na2CO3, liquid/solid ratio of 10 mL/g, 275 °C, initial CO2 pressure of 2 MPa, 2 h | 16.4 wt% CaO, 1.2 wt% MgO | 102 |
Ji et al. [44] | 0.5 mol/L piperazine solution, liquid/solid ratio of 10 mL/g, atmospheric pressure, 55 °C, 40 vol % CO2, 1.5 h | 24.3 wt% CaO, 0.9 wt% MgO | 102.9 |
2.2. Indirect Carbonation
3. CO2 Mineralization in Conjunction with Fly Ash-Derived by-Products Utilization
4. CO2 Sequestration of COFA by Dry Carbonation Process
5. CO2 Sequestration Materials Derived from COFA
6. Conclusions and Prospects
- (1)
- Although extensive research has been carried out to enhance the CO2 mineralization performance of COFA, the current research is limited to the optimization of experimental parameters at the laboratory scale. In the future, this technology needs to be promoted for industry, which needs to consider the cost of various raw materials and energy consumption. Moreover, the carbon assets obtained from CO2 fixation and the additional economic benefits of valued carbonation by-products also need to be considered. Therefore, it is urgent to achieve an integrated economic feasibility analysis or life cycle assessment concerning the industrial-scale CO2 mineralization of COFA. The researchers can obtain the technical cost of CO2 sequestration for direct and indirect carbonation of COFA via the above technical process economic analysis. This will be able to better demonstrate the practicality of the direct and indirect carbonation of COFA technology and the potential for industrial-scale promotion.
- (2)
- COFA contains major associated elevated soluble trace elements (e.g., As, Cr, Mn, Cu, Sr, Ce, and V, etc.) that are potentially toxic to the biological system [63,81,82]. The heavy metal toxic elements are released into the surrounding environment (adversely affecting the plant and soil quality) by leaching of COFA once these are ponded or landfilled. Furthermore, these potentially toxic trace elements can reenter the food chain and human life cycle from these disposal sites via certain pathways [83]. Relevant scholars have investigated the accelerated carbonation of phosphogypsum [84] and municipal solid waste incineration (MSWI) fly ash [21,81,85], and found that the carbonation reaction can solidify the heavy metal elements within waste to a certain extent in the realization of CO2 sequestration. Hence, it is necessary to investigate the leaching characteristics of potentially toxic elements in COFA during the wet CO2 mineralization process.
- (3)
- For the synthesis of zeolites for CO2 capture, the types of zeolite products are not rich enough. More technologies and processes should be developed to prepare low-cost and high-grade zeolites. Furthermore, the development of zeolites with highly selective adsorption and multi-effect functions should be the focus of research.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wee, J.-H. A review on carbon dioxide capture and storage technology using coal fly ash. Appl. Energy 2013, 106, 143–151. [Google Scholar] [CrossRef]
- Dindi, A.; Quang, D.V.; Vega, L.F.; Nashef, E.; Abu-Zahra, M.R. Applications of fly ash for CO2 capture, utilization, and storage. J. CO2 Utilizat. 2019, 29, 82–102. [Google Scholar] [CrossRef]
- Wang, C.; Xu, G.; Gu, X.; Gao, Y.; Zhao, P. High value-added applications of coal fly ash in the form of porous materials: A review. Ceram. Int. 2021, 47, 22302–22315. [Google Scholar] [CrossRef]
- Łach, M.; Grela, A.; Pławecka, K.; Guigou, M.D.; Mikuła, J.; Komar, N.; Bajda, T.; Korniejenko, K. Surface modification of synthetic zeolites with Ca and HDTMA compounds with determination of their phytoavailability and comparison of CEC and AEC parameters. Materials 2022, 15, 4083. [Google Scholar] [CrossRef]
- Wang, J.; Yang, Y.; Jia, Q.; Shi, Y.; Guan, Q.; Yang, N.; Wang, Q.; Ning, P. A critical review on solid waste derived CO2 capturing materials. ChemSusChem 2019, 15, 4083. [Google Scholar]
- Sun, J.; Liang, C.; Tong, X.; Guo, Y.; Li, W.; Zhao, C.; Zhang, J.; Lu, P. Evaluation of high-temperature CO2 capture performance of cellulose-templated CaO-based pellets. Fuel 2019, 239, 1046–1054. [Google Scholar] [CrossRef]
- Sheng, C.; Li, Y. Experimental study of ash formation during pulverized coal combustion in O2/CO2 mixtures. Fuel 2008, 87, 1297–1305. [Google Scholar] [CrossRef]
- Xu, M.; Yu, D.; Yao, H.; Liu, X.; Qiao, Y. Coal combustion-generated aerosols: Formation and properties. Proc. Combust. Inst. 2011, 33, 1681–1697. [Google Scholar] [CrossRef]
- Uliasz-Bocheńczyk, A.; Pawluk, A.; Pyzalski, M. The mineral sequestration of CO2 with the use of fly ash from the co-combustion of coal and biomass. Gospod. Surowc. Mineral. 2017, 33, 143–155. [Google Scholar] [CrossRef]
- Jia, B.; Tsau, J.-S.; Barati, R. A review of the current progress of CO2 injection EOR and carbon storage in shale oil reservoirs. Fuel 2019, 236, 404–427. [Google Scholar] [CrossRef]
- Jia, B.; Xian, C.; Tsau, J.-S.; Zuo, X.; Jia, W. Status and outlook of oil field chemistry-assisted analysis during the energy transition period. Energ. Fuel 2022, 36, 12917–12945. [Google Scholar] [CrossRef]
- Bui, M.; Adjiman, C.S.; Bardow, A.; Anthony, E.J.; Boston, A.; Brown, S.; Fennell, P.S.; Fuss, S.; Galindo, A.; Hackett, L.A. Carbon capture and storage (CCS): The way forward. Energy Environ. Sci. 2018, 11, 1062–1176. [Google Scholar] [CrossRef]
- Bobicki, E.R.; Liu, Q.; Xu, Z.; Zeng, H. Carbon capture and storage using alkaline industrial wastes. Prog. Energy Combust. 2012, 38, 302–320. [Google Scholar] [CrossRef]
- Verrecchia, G.; Cafiero, L.; de Caprariis, B.; Dell’Era, A.; Pettiti, I.; Tuffi, R.; Scarsella, M. Study of the parameters of zeolites synthesis from coal fly ash in order to optimize their CO2 adsorption. Fuel 2020, 276, 118041. [Google Scholar] [CrossRef]
- Muriithi, G.N.; Petrik, L.F.; Doucet, F.J. Synthesis, characterisation and CO2 adsorption potential of NaA and NaX zeolites and hydrotalcite obtained from the same coal fly ash. J. CO2 Utilizat. 2020, 36, 220–230. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, Z.; Zhao, W.; Hou, J.; Cui, L.; Zou, L.; Li, C.; Li, H.; Wu, Y.; Xu, R. Hierarchical porous nanosilica derived from coal gasification fly ash with excellent CO2 adsorption performance. Chem. Eng. J. 2023, 455, 140622. [Google Scholar] [CrossRef]
- Yan, F.; Jiang, J.; Li, K.; Liu, N.; Chen, X.; Gao, Y.; Tian, S. Green synthesis of nanosilica from coal fly ash and its stabilizing effect on CaO sorbents for CO2 capture. Environ. Sci. Technol. 2017, 51, 7606–7615. [Google Scholar] [CrossRef]
- Chen, H.; Khalili, N. Fly-ash-modified calcium-based sorbents tailored to CO2 capture. Ind. Eng. Chem. Res. 2017, 56, 1888–1894. [Google Scholar] [CrossRef]
- Guo, B.; Zhang, J.; Wang, Y.; Qiao, X.; Xiang, J.; Jin, Y. Study on CO2 adsorption capacity and kinetic mechanism of CO2 adsorbent prepared from fly ash. Energy 2023, 263, 125764. [Google Scholar] [CrossRef]
- Shao, X.; Qin, B.; Shi, Q.; Yang, Y.; Ma, Z.; Xu, Y.; Hao, M.; Jiang, Z.; Jiang, W. Study on the sequestration capacity of fly ash on CO2 and employing the product to prevent spontaneous combustion of coal. Fuel 2023, 334, 126378. [Google Scholar] [CrossRef]
- Bertos, M.F.; Li, X.; Simons, S.; Hills, C.; Carey, P. Investigation of accelerated carbonation for the stabilisation of MSW incinerator ashes and the sequestration of CO2. Green Chem. 2004, 6, 428–436. [Google Scholar] [CrossRef]
- Muriithi, G.N.; Petrik, L.F.; Fatoba, O.; Gitari, W.M.; Doucet, F.J.; Nel, J.; Nyale, S.M.; Chuks, P.E. Comparison of CO2 capture by ex-situ accelerated carbonation and in in-situ naturally weathered coal fly ash. J. Environ. Manag. 2013, 127, 212–220. [Google Scholar] [CrossRef]
- Ji, L.; Yu, H.; Zhang, R.; French, D.; Grigore, M.; Yu, B.; Wang, X.; Yu, J.; Zhao, S. Effects of fly ash properties on carbonation efficiency in CO2 mineralisation. Fuel Process. Technol. 2019, 188, 79–88. [Google Scholar] [CrossRef]
- Yuan, Q.; Yang, G.; Zhang, Y.; Wang, T.; Wang, J.; Romero, C.E. Supercritical CO2 coupled with mechanical force to enhance carbonation of fly ash and heavy metal solidification. Fuel 2022, 315, 123154. [Google Scholar] [CrossRef]
- Yuan, Q.; Zhang, Y.; Wang, T.; Wang, J.; Romero, C.E. Mineralization characteristics of coal fly ash in the transition from non-supercritical CO2 to supercritical CO2. Fuel 2022, 318, 123636. [Google Scholar] [CrossRef]
- Baciocchi, R.; Costa, G.; Lategano, E.; Marini, C.; Polettini, A.; Pomi, R.; Postorino, P.; Rocca, S. Accelerated carbonation of different size fractions of bottom ash from RDF incineration. Waste Manag. 2010, 30, 1310–1317. [Google Scholar] [CrossRef] [PubMed]
- Shih, S.-M.; Lin, J.-P.; Shiau, G.-Y. Dissolution rates of limestones of different sources. J. Hazard. Mater. 2000, 79, 159–171. [Google Scholar] [CrossRef] [PubMed]
- Sanchez, F.; Gervais, C.; Garrabrants, A.; Barna, R.; Kosson, D. Leaching of inorganic contaminants from cement-based waste materials as a result of carbonation during intermittent wetting. Waste Manag. 2002, 22, 249–260. [Google Scholar] [CrossRef] [PubMed]
- Siriwardena, D.P.; Peethamparan, S. Quantification of CO2 sequestration capacity and carbonation rate of alkaline industrial byproducts. Constr. Build. Mater. 2015, 91, 216–224. [Google Scholar] [CrossRef]
- Back, M.; Kuehn, M.; Stanjek, H.; Peiffer, S. Reactivity of alkaline lignite fly ashes towards CO2 in water. Environ. Sci. Technol. 2008, 42, 4520–4526. [Google Scholar] [CrossRef]
- La Plante, E.C.; Mehdipour, I.; Shortt, I.; Yang, K.; Simonetti, D.; Bauchy, M.; Sant, G.N. Controls on CO2 mineralization using natural and industrial alkaline solids under ambient conditions. ACS Sustain. Chem. Eng. 2021, 9, 10727–10739. [Google Scholar] [CrossRef]
- Pan, S.-Y.; Hung, C.-H.; Chan, Y.-W.; Kim, H.; Li, P.; Chiang, P.-C. Integrated CO2 fixation, waste stabilization, and product utilization via high-gravity carbonation process exemplified by circular fluidized bed fly ash. ACS Sustain. Chem. Eng. 2016, 4, 3045–3052. [Google Scholar] [CrossRef]
- Revathy, T.D.R.; Ramachandran, A.; Palanivelu, K. Carbon capture and storage using coal fly ash with flue gas. Clean Technol. Environ. Policy 2021, 24, 1053–1071. [Google Scholar] [CrossRef]
- Ukwattage, N.; Ranjith, P.; Wang, S. Investigation of the potential of coal combustion fly ash for mineral sequestration of CO2 by accelerated carbonation. Energy 2013, 52, 230–236. [Google Scholar] [CrossRef]
- Miao, E.; Du, Y.; Zheng, X.; Zhang, X.; Xiong, Z.; Zhao, Y.; Zhang, J. Kinetic analysis on CO2 sequestration from flue gas through direct aqueous mineral carbonation of circulating fluidized bed combustion fly ash. Fuel 2023, 342, 127851. [Google Scholar] [CrossRef]
- Montes-Hernandez, G.; Perez-Lopez, R.; Renard, F.; Nieto, J.; Charlet, L. Mineral sequestration of CO2 by aqueous carbonation of coal combustion fly-ash. J. Hazard. Mater. 2009, 161, 1347–1354. [Google Scholar] [CrossRef]
- Bauer, M.; Gassen, N.; Stanjek, H.; Peiffer, S. Carbonation of lignite fly ash at ambient T and P in a semi-dry reaction system for CO2 sequestration. Appl. Geochem. 2011, 26, 1502–1512. [Google Scholar] [CrossRef]
- Ukwattage, N.L.; Ranjith, P.; Yellishetty, M.; Bui, H.H.; Xu, T. A laboratory-scale study of the aqueous mineral carbonation of coal fly ash for CO2 sequestration. J. Clean. Prod. 2015, 103, 665–674. [Google Scholar] [CrossRef]
- Dananjayan, R.R.T.; Kandasamy, P.; Andimuthu, R. Direct mineral carbonation of coal fly ash for CO2 sequestration. J. Clean. Prod. 2016, 112, 4173–4182. [Google Scholar] [CrossRef]
- Patel, A.; Basu, P.; Acharya, B. An investigation into partial capture of CO2 released from a large coal/petcoke fired circulating fluidized bed boiler with limestone injection using its fly and bottom ash. J. Environ. Chem. Eng. 2017, 5, 667–678. [Google Scholar] [CrossRef]
- Ho, H.-J.; Iizuka, A.; Shibata, E. Utilization of low-calcium fly ash via direct aqueous carbonation with a low-energy input: Determination of carbonation reaction and evaluation of the potential for CO2 sequestration and utilization. J. Environ. Manag. 2021, 288, 112411. [Google Scholar] [CrossRef] [PubMed]
- Ji, L.; Yu, H.; Wang, X.; Grigore, M.; French, D.; Gözükara, Y.M.; Yu, J.; Zeng, M. CO2 sequestration by direct mineralisation using fly ash from Chinese Shenfu coal. Fuel Process. Technol. 2017, 156, 429–437. [Google Scholar] [CrossRef]
- Jo, H.Y.; Ahn, J.-H.; Jo, H. Evaluation of the CO2 sequestration capacity for coal fly ash using a flow-through column reactor under ambient conditions. J. Hazard. Mater. 2012, 241, 127–136. [Google Scholar] [CrossRef]
- Ji, L.; Zheng, X.; Zhang, L.; Feng, L.; Li, K.; Yu, H.; Yan, S. Feasibility and mechanism of an amine-looping process for efficient CO2 mineralization using alkaline ashes. Chem. Eng. J. 2022, 430, 133118. [Google Scholar] [CrossRef]
- Ji, L.; Yu, H.; Li, K.; Yu, B.; Grigore, M.; Yang, Q.; Wang, X.; Chen, Z.; Zeng, M.; Zhao, S. Integrated absorption-mineralisation for low-energy CO2 capture and sequestration. Appl. Energy 2018, 225, 356–366. [Google Scholar] [CrossRef]
- Nyambura, M.G.; Mugera, G.W.; Felicia, P.L.; Gathura, N.P. Carbonation of brine impacted fractionated coal fly ash: Implications for CO2 sequestration. J. Environ. Manag. 2011, 92, 655–664. [Google Scholar] [CrossRef]
- Hosseini, T.; Selomulya, C.; Haque, N.; Zhang, L. Indirect carbonation of victorian brown coal fly ash for CO2 sequestration: Multiple-cycle leaching-carbonation and magnesium leaching kinetic modeling. Energy Fuel 2014, 28, 6481–6493. [Google Scholar] [CrossRef]
- He, L.L.; Yu, D.X.; Lv, W.Z.; Wu, J.Q.; Xu, M.H. CO2 Sequestration by Indirect Carbonation of High-Calcium Coal Fly Ash; Advanced Materials Research, Trans Tech Publications: Geneva, Switzerland, 2013; pp. 2870–2874. [Google Scholar]
- He, L.; Yu, D.; Lv, W.; Wu, J.; Xu, M. A novel method for CO2 sequestration via indirect carbonation of coal fly ash. Ind. Eng. Chem. Res. 2013, 52, 15138–15145. [Google Scholar] [CrossRef]
- Jo, H.Y.; Kim, J.H.; Lee, Y.J.; Lee, M.; Choh, S.-J. Evaluation of factors affecting mineral carbonation of CO2 using coal fly ash in aqueous solutions under ambient conditions. Chem. Eng. J. 2012, 183, 77–87. [Google Scholar] [CrossRef]
- Sun, Y.; Parikh, V.; Zhang, L. Sequestration of carbon dioxide by indirect mineralization using Victorian brown coal fly ash. J. Hazard. Mater. 2012, 209, 458–466. [Google Scholar] [CrossRef]
- Ho, H.-J.; Iizuka, A.; Shibata, E.; Ojumu, T. Circular indirect carbonation of coal fly ash for carbon dioxide capture and utilization. J. Environ. Chem. Eng. 2022, 10, 108269. [Google Scholar] [CrossRef]
- Lu, L.; Fang, Y.; Huang, Z.; Huang, Y.; Ren, Z.J. Self-sustaining carbon capture and mineralization via electrolytic carbonation of coal fly ash. Chem. Eng. J. 2016, 306, 330–335. [Google Scholar] [CrossRef]
- Huang, Y.; Zheng, X.; Wei, Y.; He, Q.; Yan, S.; Ji, L. Protonated amines mediated CO2 mineralization of coal fly ash and polymorph selection of CaCO3. Chem. Eng. J. 2022, 450, 138121. [Google Scholar] [CrossRef]
- Zheng, X.; Liu, J.; Wang, Y.; Wang, Y.; Ji, L.; Yan, S. Regenerable glycine induces selective preparation of vaterite CaCO3 by calcium leaching and CO2 mineralization from coal fly ash. Chem. Eng. J. 2023, 459, 141536. [Google Scholar] [CrossRef]
- Zheng, X.; Liu, J.; Wei, Y.; Li, K.; Yu, H.; Wang, X.; Ji, L.; Yan, S. Glycine-mediated leaching-mineralization cycle for CO2 sequestration and CaCO3 production from coal fly ash: Dual functions of glycine as a proton donor and receptor. Chem. Eng. J. 2022, 440, 135900. [Google Scholar] [CrossRef]
- Ragipani, R.; Sreenivasan, K.; Anex, R.P.; Zhai, H.; Wang, B. Direct Air Capture and Sequestration of CO2 by Accelerated Indirect Aqueous Mineral Carbonation under Ambient Conditions. ACS Sustain. Chem. Eng. 2022, 10, 7852–7861. [Google Scholar] [CrossRef]
- Ren, K.; Ma, S.; Feng, Y.; Xu, N.; Bai, S. Study on the composite gravel preparation and the synergistic absorption of CO2 by fly ash of CFB boiler. Fuel 2023, 342, 127843. [Google Scholar] [CrossRef]
- Siriruang, C.; Toochinda, P.; Julnipitawong, P.; Tangtermsirikul, S. CO2 capture using fly ash from coal fired power plant and applications of CO2-captured fly ash as a mineral admixture for concrete. J. Environ. Manag. 2016, 170, 70–78. [Google Scholar] [CrossRef]
- Chen, T.; Bai, M.; Gao, X. Carbonation curing of cement mortars incorporating carbonated fly ash for performance improvement and CO2 sequestration. J. CO2 Utilizat. 2021, 51, 101633. [Google Scholar] [CrossRef]
- Freire, A.L.; Moura-Nickel, C.D.; Scaratti, G.; De Rossi, A.; Araújo, M.H.; Júnior, A.D.N.; Rodrigues, A.E.; Castellón, E.R.; Moreira, R.d.F.P.M. Geopolymers produced with fly ash and rice husk ash applied to CO2 capture. J. Clean. Prod. 2020, 273, 122917. [Google Scholar] [CrossRef]
- Yin, T.; Yin, S.; Srivastava, A.; Gadikota, G. Regenerable solvents mediate accelerated low temperature CO2 capture and carbon mineralization of ash and nano-scale calcium carbonate formation. Resour. Conservat. Recycl. 2022, 180, 106209. [Google Scholar] [CrossRef]
- Monasterio-Guillot, L.; Alvarez-Lloret, P.; Ibañez-Velasco, A.; Fernandez-Martinez, A.; Ruiz-Agudo, E.; Rodriguez-Navarro, C. CO2 sequestration and simultaneous zeolite production by carbonation of coal fly ash: Impact on the trapping of toxic elements. J. CO2 Utilizat. 2020, 40, 101263. [Google Scholar] [CrossRef]
- Yan, F.; Jiang, J.; Liu, N.; Gao, Y.; Meng, Y.; Li, K.; Chen, X. Green synthesis of mesoporous γ-Al2O3 from coal fly ash with simultaneous on-site utilization of CO2. J. Hazard. Mater. 2018, 359, 535–543. [Google Scholar] [CrossRef]
- Liu, W.; Su, S.; Xu, K.; Chen, Q.; Xu, J.; Sun, Z.; Wang, Y.; Hu, S.; Wang, X.; Xue, Y. CO2 sequestration by direct gas–solid carbonation of fly ash with steam addition. J. Clean. Prod. 2018, 178, 98–107. [Google Scholar] [CrossRef]
- Ćwik, A.; Casanova, I.; Rausis, K.; Koukouzas, N.; Zarębska, K. Carbonation of high-calcium fly ashes and its potential for carbon dioxide removal in coal fired power plants. J. Clean. Prod. 2018, 202, 1026–1034. [Google Scholar] [CrossRef]
- Blamey, J.; Manovic, V.; Anthony, E.J.; Dugwell, D.R.; Fennell, P.S. On steam hydration of CaO-based sorbent cycled for CO2 capture. Fuel 2015, 150, 269–277. [Google Scholar] [CrossRef]
- González, B.; Liu, W.; Sultan, D.; Dennis, J. The effect of steam on a synthetic Ca-based sorbent for carbon capture. Chem. Eng. J. 2016, 285, 378–383. [Google Scholar] [CrossRef]
- Liu, R.; Wang, X.; Gao, S. CO2 capture and mineralization using carbide slag doped fly ash. Greenhouse Gases Sci. Technol. 2020, 10, 103–115. [Google Scholar] [CrossRef]
- Chen, H.; Wang, F.; Zhao, C.; Khalili, N. The effect of fly ash on reactivity of calcium based sorbents for CO2 capture. Chem. Eng. J. 2017, 309, 725–737. [Google Scholar] [CrossRef]
- Ma, X.; Li, Y.; Yan, X.; Zhang, W.; Zhao, J.; Wang, Z. Preparation of a morph-genetic CaO-based sorbent using paper fibre as a biotemplate for enhanced CO2 capture. Chem. Eng. J. 2019, 361, 235–244. [Google Scholar] [CrossRef]
- Li, Y.; Zhao, C.; Ren, Q.; Duan, L.; Chen, H.; Chen, X. Effect of rice husk ash addition on CO2 capture behavior of calcium-based sorbent during calcium looping cycle. Fuel Process. Technol. 2009, 90, 825–834. [Google Scholar] [CrossRef]
- Liu, Y.; Yang, X.; Zhao, L.; Lei, F.; Xiao, Y. Effects of steam on CO2 absorption ability of calcium-based sorbent modified by peanut husk ash. Sci. China Technol. Sci. 2017, 60, 953–962. [Google Scholar] [CrossRef]
- Yan, F.; Jiang, J.; Li, K.; Tian, S.; Zhao, M.; Chen, X. Performance of Coal Fly Ash Stabilized, CaO-based Sorbents under Different Carbonation–Calcination Conditions. ACS Sustain. Chem. Eng. 2015, 3, 2092–2099. [Google Scholar] [CrossRef]
- Sreenivasulu, B.; Sreedhar, I.; Venugopal, A.; Reddy, B.; Raghavan, K. Thermokinetic investigations of high temperature carbon capture using a coal fly ash doped sorbent. Energy Fuel 2017, 31, 6320–6328. [Google Scholar] [CrossRef]
- Liu, C.-F.; Yang, C.-H.; Shih, S.-M. CO2 Capture by Fly Ash/Hydrated Lime Sorbents at Low Temperatures. Ind. Eng. Chem. Res. 2022, 61, 4774–4783. [Google Scholar] [CrossRef]
- De Aquino, T.F.; Estevam, S.T.; Viola, V.O.; Marques, C.R.; Zancan, F.L.; Vasconcelos, L.B.; Riella, H.G.; Pires, M.J.; Morales-Ospino, R.; Torres, A.E.B. CO2 adsorption capacity of zeolites synthesized from coal fly ashes. Fuel 2020, 276, 118143. [Google Scholar] [CrossRef]
- Chen, W.; Song, G.; Lin, Y.; Qiao, J.; Wu, T.; Yi, X.; Kawi, S. A green and efficient strategy for utilizing of coal fly ash to synthesize K-MER zeolite as catalyst for cyanoethylation and adsorbent of CO2. Micropor. Mesopor. Mater. 2021, 326, 111353. [Google Scholar] [CrossRef]
- Cheng, S.-Y.; Liu, Y.-Z.; Qi, G.-S. Experimental study of CO2 capture enhanced by coal fly ash-synthesized NH2-MCM-41 coupled with high gravity technology. Chem. Eng. J. 2020, 400, 125946. [Google Scholar] [CrossRef]
- Qu, F.; Yan, F.; Shen, X.; Li, C.; Chen, H.; Wang, P.; Zhang, Z. Novel PEI@ CSH adsorbents derived from coal fly ash enabling efficient and in-situ CO2 capture: The anti-urea mechanism of CSH support. J. Clean. Prod. 2022, 378, 134420. [Google Scholar] [CrossRef]
- Chen, T.-L.; Chen, Y.-H.; Dai, M.-Y.; Chiang, P.-C. Stabilization-solidification-utilization of MSWI fly ash coupling CO2 mineralization using a high-gravity rotating packed bed. Waste Manag. 2021, 121, 412–421. [Google Scholar] [CrossRef]
- Fernandez-Turiel, J.; De Carvalho, W.; Cabañas, M.; Querol, X.; Lopez-Soler, A. Mobility of heavy metals from coal fly ash. Environ. Geol. 1994, 23, 264–270. [Google Scholar] [CrossRef]
- Koukouzas, N.; Ketikidis, C.; Itskos, G. Heavy metal characterization of CFB-derived coal fly ash. Fuel Process. Technol 2011, 92, 441–446. [Google Scholar] [CrossRef]
- Cardenas-Escudero, C.; Morales-Flórez, V.; Pérez-López, R.; Santos, A.; Esquivias, L. Procedure to use phosphogypsum industrial waste for mineral CO2 sequestration. J. Hazard. Mater. 2011, 196, 431–435. [Google Scholar] [CrossRef]
- Chen, J.; Fu, C.; Mao, T.; Shen, Y.; Li, M.; Lin, X.; Li, X.; Yan, J. Study on the accelerated carbonation of MSWI fly ash under ultrasonic excitation: CO2 capture, heavy metals solidification, mechanism and geochemical modelling. Chem. Eng. J. 2022, 450, 138418. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, L.; Cheng, L.; Zhang, Y.; Liu, G.; Sun, J. A Review on CO2 Sequestration via Mineralization of Coal Fly Ash. Energies 2023, 16, 6241. https://doi.org/10.3390/en16176241
Jiang L, Cheng L, Zhang Y, Liu G, Sun J. A Review on CO2 Sequestration via Mineralization of Coal Fly Ash. Energies. 2023; 16(17):6241. https://doi.org/10.3390/en16176241
Chicago/Turabian StyleJiang, Long, Liang Cheng, Yuxuan Zhang, Gaojun Liu, and Jian Sun. 2023. "A Review on CO2 Sequestration via Mineralization of Coal Fly Ash" Energies 16, no. 17: 6241. https://doi.org/10.3390/en16176241
APA StyleJiang, L., Cheng, L., Zhang, Y., Liu, G., & Sun, J. (2023). A Review on CO2 Sequestration via Mineralization of Coal Fly Ash. Energies, 16(17), 6241. https://doi.org/10.3390/en16176241