Centralized Offshore Hydrogen Production from Wind Farms in the Baltic Sea Area—A Study Case for Poland
Abstract
:1. Introduction
- −
- Phase I development projects with a total capacity of 5.9 GW (for which start-up dates are indicated by investors for 2025–2027),
- −
- Phase II development projects with a total capacity of 2.5 GW (which, according to the law, will be entitled to apply for the right to offset the negative balance in auctions scheduled for 2025 and 2027).
- Case 1: Distributed hydrogen production. Each wind turbine is outfitted with an electrolysis equipment, and hydrogen is created utilizing power generated directly on floating structures. Each turbine produces hydrogen, which is collected on the seafloor through risers and manifolds and sent onshore via a gas pipeline.
- Case 2: Centralized hydrogen production. A large-scale electrolysis system is constructed on an offshore platform next to a wind farm, receiving produced power to manufacture hydrogen and later delivering it to land through a gas pipeline.
- Case 3: Onshore hydrogen production: an offshore substation is built near the wind power plant, and the voltage is raised enough to supply currents onshore and transport them through high-voltage cables. This is a typical system of transmission for offshore wind farms.
- Onshore.
- Offshore: All offshore wind farms’ power is routed to the Hub, where hydrogen is created by a single electrolyser using desalinated seawater, compressed, and supplied to shore by pipeline.
- In-turbine: Electrolysers and desalination units are installed within or near to each wind turbine’s tower. The hydrogen generated is sent to the Hub via pipes that connect groupings of wind turbines. Then the hydrogen is collected, compressed, and piped to shore from the Hub.
2. Materials and Methods
2.1. Introduction
- AC/DC rectifiers
- Cable connection to shore as a backup power source
- PEM electrolyser and auxiliary electronics
- Desalination unit and desalinated water tanks
- Seawater pumping system
- Hydrogen pipeline to shore
- Control and measurement equipment.
2.2. Wind Farm
- It is assumed that each turbine uses the same wind power curve.
- Other turbines’ impacts on wind shear, air density changes, wake effects, and turbulence are ignored.
- The wind farm is 95% operational.
2.3. Wind Turbine Characteristics
2.4. Electrical Conversion and Losses
- The wind turbine generates DC power, which is subsequently converted to AC to power the array cables (66 kV AC inter-array cables are studied in this study).
- The electricity is then sent through cables through a grid to a converter located on an offshore platform. The AC electricity is then converted to DC and delivered into an electrolyser. The transmission loss is 3%, while the AC-DC loss is 4%.
2.5. Hydrogen Offshore Platform
- − Desalination and water treatment plant
- − Feed water storage
- − Electrolysers
- − Drying and separator system
- − Cooling system
- − Compensators
- − General area for the safety system
- − Living quarters for maintenance work
2.5.1. Electrolyser System
2.5.2. Hydrogen Production
2.5.3. Desalination and Water Tank System
2.5.4. Compressors
- Q—hydrogen flow rate (kg H2/h),
- Z—hydrogen compressibility factor: 1.03198
- T—temperature at the compressor’s intake: 310.95 K
- R—ideal gas constant: 8.314 J/K·mol
- —hydrogen molecular mass: 2.15 g/mol
- η—compressor system efficiency: 75%
- κ—diatomic constant factor: 1.4
- N—number of compressor stages: 1
- pin—compressor’s intake pressure: 3 MPa
- pout—compressor’s output pressure: 10 MPa
- P—power (kW)
- DTE—Driver Thermal Efficiency: 90%
- P—compressor’s power (MW)
2.5.5. Power and Control System
2.6. Hydrogen Pipeline
- Q—hydrogen flow rate in (m3/s)
- Z—hydrogen compressibility factor: 1.03198
- L—pipeline length between platform and shore: 36 km
- T—gas temperature: 298 K
- d—relative density of hydrogen: 0.07
- p1—inlet pressure to pipeline: 10 × 105 Pa
- p2—pressure from pipeline: 9.9 × 105 Pa
3. Results
3.1. Wind Farm Calculations
3.2. Electrolysers and Hydrogen Production
3.3. Desalination and Water Tank System
3.4. Hydrogen Compression
3.5. Hydrogen Pipeline Sizing
3.6. Offshore Platform Sizing
4. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Peters, R.; Vaessen, J.; Van der Meer, R. Offshore hydrogen production in the North Sea enables far offshore wind development. In Proceedings of the Offshore Technology Conference, Houston, TX, USA, 4–7 May 2020; pp. 1–14. [Google Scholar]
- Tiwari, P.; Neupane, B.P.; Niraula, D. Prospects of green hydrogen production and supply from offshore renewable energy: Power-to-X pathways. Int. Res. J. Mod. Eng. Technol. Sci. 2021, 3, 307–315. [Google Scholar]
- Baldi, F.; Coraddu, A.; Kalikatzarakis, M.; Jeleňová, D.; Collu, M.; Race, J.; Maréchal, F. Optimisation-based system designs for deep offshore wind farms including power to gas technologies. Appl. Energy 2022, 310, 118540. [Google Scholar] [CrossRef]
- Lucas, T.R.; Ferreira, A.F.; Santos Pereira, R.B.; Alves, M. Hydrogen production from the WindFloat Atlantic offshore wind farm: A techno-economic analysis. Appl. Energy 2022, 310. [Google Scholar] [CrossRef]
- Zaik, K.; Werle, S. Solar and wind energy in Poland as power sources for electrolysis process—A review of studies and experimental methodology. Int. J. Hydrog. Energy 2023, 48, 11628–11639. [Google Scholar] [CrossRef]
- H-BLIX, Offshore Wind Vessel Availability until 2030: Baltic Sea and Polish Perspective. 2022. Available online: http://psew.pl/wp-content/uploads/2022/06/Offshore_wind_vessel_availability_until-2030.pdf (accessed on 24 May 2023).
- Polskie Stowarzyszenie Energetyki Wiatrowej, Potencjał Morskiej Energetyki Wiatrowej w Polsce. Kompleksowa Analiza Możliwości Rozwoju Morskiej Energetyki Wiatrowej w Polskich Obszarach Morskich., Warszawa, 11/2022. Available online: https://konferencja-offshore.pl/wp-content/uploads/2022/11/FarmyMorskie_RaportShort_Prev.pdf (accessed on 23 May 2023).
- Veenstra, A.T.; Schrotenboer, A.H.; Uit het Broek, M.; Ursavas, E. Green Hydrogen Plant: Optimal control strategies for integrated hydrogen storage and power generation wit wind energy. arXiv 2021, arXiv:2108.00530. [Google Scholar] [CrossRef]
- Stori, V. Offshore wind to green hydrogen. Insight from Europe, Clean Energy States Alliance. 2021. Available online: https://www.cesa.org/wp-content/uploads/Offshore-Wind-to-Green-Hydrogen-Insights-from-Europe.pdf (accessed on 23 May 2023).
- Brodacki, D.; Gajowiecki, J.; Hajduk, R.; Kacejko, P.; Kowalski, S.; Matczyńska, E.; Miętkiewicz, R.; Nowakowski, R.; Plaskiewicz, N.; Ruszel, M. Zielony Wodór z OZE w Polsce. Wykorzystanie Energetyki Wiatrowej i PV do Produkcji Zielonego Wodoru Jako Szansa na Realizację Założeń Polityki Klimatyczno-Energetycznej UE w Polsce, Dolnośląski Instytut Studiów Energetycznych, Polskie Stowarzyszenie Energetyki Wiatrowej, Raport 2021. Available online: https://www.psew.pl/wp-content/uploads/2021/12/Raport-Zielony-Wodor-z-OZE-77MB.pdf (accessed on 23 April 2023).
- Bandzul, W. Eneregetyka wiatrowa w Polsce. Elektroenergetyka 2005, 3, 1–28. [Google Scholar]
- Piotrowski, P.; Gryszpanowicz, K. Analiza statystyczna oraz prognozy godzinowej produkcji energii przez elektrownię wiatrową z horyzntem 1 godziny. Elektro Info 2012, 3, 90–95. [Google Scholar]
- Kotowicz, J.; Kwiatek, B. Analiza potencjału wytwórczego farmy wiatrowej. Rynek Energii 2019, 4, 38–47. [Google Scholar]
- Kupecki, J.; Błesznowski, M.; Motyliński, K.; Wierzbicki, M.; Jagielski, S.; Boiski, M.; Krauz, M.; Bąkała, M.; Razumkowa, K.; Skrzypkiewicz, M.; et al. Analiza Potencjału Technologii Wodorowych w Polsce do Roku 2030 z Perspektywą do 2040 Roku, Instytut Energetyki. 2020. Available online: https://klasterwodorowy.pl/images/zdjecia/9_Analiza_potencjalu_technologii_wodorowych_opracowanie.pdf (accessed on 23 April 2023).
- Ligęza, K. Zastosowanie metod elektrolizy wody PEM i SOEC do produkcji wodoru z wykorzystaniem energii z morskich farm wiatrowych. Przemysł Chem. 2021, 100, 754–757. [Google Scholar] [CrossRef]
- Calise, F. Recent Advances in Green Hydrogen Technology. Energies 2022, 15, 5828. [Google Scholar] [CrossRef]
- Sarrias-Mena, R.; Fernández-Ramírez, L.M.; García-Vázquez, C.A.; Jurado, F. Electrolyzer models for hydrogen production from wind energy systems. Int. J. Hydrog. Energy 2015, 40, 2927–2938. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, H.; Zhou, B.; Yang, D.; Li, G.; Yang, B.; Xi, C.; Hu, B. Optimal Operation Strategy for Wind–Hydrogen–Water Power Grids Facing Offshore Wind Power Accommodation. Sustainability 2022, 14, 6871. [Google Scholar] [CrossRef]
- Calado, G.; Castro, R. Hydrogen Production from Offshore Wind Parks: Current Situation and Future Perspectives. Appl. Sci. 2021, 11, 5561. [Google Scholar] [CrossRef]
- Giampieri, A.; Ling-Chin, J.; Roskilly, A.P. Techno-economic assessment of offshore wind-to-hydrogen scenarios: A UK case study. Int. J. Hydrog. Energy 2023, 1. [Google Scholar] [CrossRef]
- Pierozzi, N.; De Bacco, P.; Tascino, C.; Arcangeletti, G.; Tucceri, F.; De Simone, G.; Piazzi, L.; Agogliati, P. Emerging solutions in offshore green hydrogen production and storage. In Proceedings of the Offshore Technology Conference, Houston, TX, USA, 4–7 May 2022; pp. 1–12. [Google Scholar]
- Offshore Hydrogen Production Enables Far-Offshore Wind Deployment. Available online: https://hydrogentechworld.com/offshore-hydrogen-production-enables-far-offshore-wind-deployment (accessed on 23 May 2023).
- Jang, D.; Kim, K.; Kim, K.-H.; Kang, S. Techno-economic analysis and Monte Carlo simulation for green hydrogen production using offshore wind power plant. Energy Convers. Manag. 2022, 263. [Google Scholar] [CrossRef]
- Singlitico, A.; Østergaard, J.; Chatzivasileiadis, S. Onshore, offshore or in-turbine electrolysis? Techno-economic overview of alternative integration designs for green hydrogen production into Offshore Wind Power Hubs. Renew. Sustain. Energy Transit. 2021, 1, 100005. [Google Scholar] [CrossRef]
- Henry, A.; McCallum, C.; McStay, D.; Rooney, D.; Robertson, P.; Foley, A. Analysis of wind to hydrogen production and carbon capture utilisation and storage systems for novel production of chemical energy carriers. J. Clean. Prod. 2022, 354, 131695. [Google Scholar] [CrossRef]
- Walavalkar, A.C. A Comparative Study on Hydrogen Production and Storage Using an Offshore Wind Farm in The Netherlands. Master’s Thesis, Universiteit Utrecht, Utrecht, The Netherlands, 2021. [Google Scholar]
- Song, S.; Lin, H.; Sherman, P.; Yang, X.; Nielsen, C.P.; Chen, X.; McElroy, M.B. Production of hydrogen from offshore wind in China and cost-competitive supply to Japan. Nat. Commun. 2021, 12, 6953. [Google Scholar] [CrossRef]
- Nilsson, M. Offshore Wind Power Co-Operatwd Green Hydrogen and Sea-Water Oxygenation Plant: A Feasibility Case Study for Sweden. Master’s Thesis, Uppsala University, Uppsala, Sweden, 2022. [Google Scholar]
- Danish Energy Agency, Screening of possible hub concepts to integrate offshore wind capacity in the Nort Sea, Report 2022. Available online: https://ens.dk/sites/ens.dk/files/Vindenergi/final_report_-_screening_of_possible_hub_concepts_to_integrate_offshore_wind_capacity_in_the_north_sea.pdf (accessed on 23 May 2023).
- Dinh, V.N.; Leahy, P.; McKeogh, E.; Murphy, J.; Cummins, V. Development of a viability assessment model for hydrogen produc-tion from dedicated offshore wind farms. Int. J. Hydrog. Energy 2021, 46, 24620–24631. [Google Scholar] [CrossRef]
- Bonacina, C.N.; Bordbar Gaskare, N.; Valenti, G. Assessment of offshore liquid hydrogen production from wind power for ship refueling. Int. J. Hydrog. Energy 2022, 47, 1279–1291. [Google Scholar] [CrossRef]
- Ibrahim, O.S.; Singlitico, A.; Proskovics, R.; McDonagh, S.; Desmond, C.; Murphy, J.D. Dedicated large-scale floating offshore wind to hydrogen: Assessing design variables in proposed typologies. Renew. Sustain. Energy Rev. 2022, 160, 112310. [Google Scholar] [CrossRef]
- Akyuz, E.; Oktay, Z.; Dincer, I. Energy Analysis of Hydrogen Production from a Hybrid Wind Turbine-Electrolyzer System. In Progress in Exergy, Energy, and the Environment; Springer: Berlin/Heidelberg, Germany, 2014. [Google Scholar] [CrossRef]
- Egeland-Eriksen, T.; Flatgård, J.J.; Ulleberg, Ø.; Sartori, S. Simulating offshore hydrogen production via PEM electrolysis using real power production data from a 2.3 MW floating offshore wind turbine. Int. J. Hydrog. Energy 2023, 48, 28712–28732. [Google Scholar] [CrossRef]
- Cho, Y.; Lee, S.; Lim, J.; Lee, J. Economic Analysis of P2G Green Hydrogen Generated by Existing Wind Turbines on Jeju Island. Energies 2022, 15, 9317. [Google Scholar] [CrossRef]
- Cheng, C.; Hughes, L. The role for offshore wind power in renewable hydrogen product in Australia. J. Clean. Prod. 2023, 391, 136223. [Google Scholar] [CrossRef]
- Jang, D.; Kim, J.; Kim, D.; Han, W.-B.; Kang, S. Techno-economic analysis and Monte Carlo simulation of green hydrogen production technology through various water electrolysis technologies. Energy Convers. Manag. 2022, 258, 115499. [Google Scholar] [CrossRef]
- Sæbø, A.O.; Trøen, T.L.; Sydness, G.S.; Lerøy Schaefer, J.M.; Baardsen, A.H.; Notkevich, L.; Fosse, V.; Guldbrandsen Frøysa, K.; Solbrekke, I.M.; Oltedal, V.M. “Optimal utnyttelse av energi fra havvind i Sørlige Nordsjø II,” Greenstat, Bergen. 2021. Available online: https://www.uib.no/sites/w3.uib.no/files/attachments/optimal_utnyttelse_av_energi_fra_havvind_i_sorlige_nordsjo_ii-compressed.pdf (accessed on 20 April 2023).
- Lundvall, N. Modelling Hydrogen Production from Offshore Wind Parks. A Techno-Economic Analysis of Dedicated Hydrogen Production. Master’s Thesis, Mälardalen University, Västerås, Sweden, 2022. [Google Scholar]
- MFW Bałtyk II Sp. z o.o. Available online: https://www.ure.gov.pl/pl/oze/mfw/plany/9458,MFW-Baltyk-II-Sp-z-oo.html (accessed on 23 May 2023).
- Grupa Doradcza SMDI, Morska Farma Wiatrowa Bałtyk Środkowy II. Raport o Oddziaływaniu na Środowisko. Tom IV, Warszawa. 2015. Available online: https://portalgis.gdansk.rdos.gov.pl/morskafarmawiatrowa-BaltykSrodkowyII/RAPORT/Tom%20IV_Ocena%20oddzialywania/Sekcja%203_OOS%20bentos/BSII_TIV_S3_bentos_ost.pdf (accessed on 20 April 2023).
- Przyszłość Morskiej Energetyki Wiatrowej w Polsce. Available online: http://psew.pl/wp-content/uploads/2019/06/Przysz%C5%82o%C5%9B%C4%87-morskiej-energetyki-wiatrowej-w-Polsce-raport.pdf (accessed on 23 May 2023).
- 12120 Łeba Weather Station. Available online: https://www.ogimet.com/display_synops.php?lang=en&tipo=ALL&ord=REV&nil=SI&fmt=html&anof=2023&mesf=06&dayf=19&horaf=11&minf=54&ano=2023&mes=06&day=18&hora=11&min=54&lugar=12120 (accessed on 22 February 2023).
- Bodbar Gaskare, N. Techno-Economic Analysis of the Production of Green Liquid Hydrogen on Offshore Platforms from Wind Energy to Refuel Ships. Master’s Thesis, Politecnico di Milano, Milan, Italy, 2021. [Google Scholar]
- Wind Turbine V236-15.0 MW. Available online: https://www.vestas.com/en/products/offshore/V236-15MW (accessed on 22 April 2023).
- Teien, M.A. Combining Offshore Power and Hydrogen Production. Master’s Thesis, Norwegian University of Science and Technology, Trondheim, Norway, 2022. [Google Scholar]
- North Sea Wind Power Hub. Available online: https://northseawindpowerhub.eu/sites/northseawindpowerhub.eu/files/media/document/NSWPH_Grid-integrated%20offshore%20Power-to-Gas_Discussion%20paper%20%231.pdf (accessed on 24 May 2023).
- M Series Containerized PEM. Available online: https://nelhydrogen.com/wp-content/uploads/2021/01/M-Series-Containerized-Spec-Sheet-Rev-F.pdf (accessed on 24 May 2023).
- Hydrogen Generators. Available online: https://nelhydrogen.com/wp-content/uploads/2022/06/High-Purity-Brochure-Rev-J-Single-Pages.pdf (accessed on 24 May 2023).
- Baardsen Høines, A. A Concept Study on Offshore Floating Hydrogen Production, Storage and Offloading. Master’s Thesis, University of Bergen, Bergen, Norway, 2022. [Google Scholar]
- Odongo, C. Feasibility Study of Hydrogen Production from Wind Energy in Narvik. Master Thesis, The Arctic University of Norway, Tromsø, Norway, 2021. [Google Scholar]
- Vestrheim, M. Offshore Hydrogen Production from Floating Offshore Wind—A Study of Unitech Zefyros. Master’s Thesis, University of Bergen, Bergen, Norway, 2022. [Google Scholar]
- Alvestad, K. Combined Hydrogen and Offshore Wind Production. Design and Market Value. Master’s Thesis, University of Oslo, Oslo, Norway, 2022. [Google Scholar]
- Włodek, T.; Łaciak, M.; Kurowska, K.; Węgrzyn, Ł. Thermodynamic analysis of hydrogen pipeline transportation—Selected aspects. AGH Drill. Oil Gas 2016, 33, 379–395. [Google Scholar] [CrossRef]
- Seamless Pipe Sizes. Available online: https://www.nan-steel.com/news/seamless-steel-pipe-sizes.html (accessed on 24 May 2023).
- Gomez Vidales, A.; Millan, N.C.; Bock, C. Modeling of anion exchange membrane water electrolyzers: The influence of operating parameters. Chem. Eng. Res. Des. 2023, 194, 636–648. [Google Scholar] [CrossRef]
- Gomez Vidales, A.; Omanovic, S. Evaluation of nickel-molybdenum-oxides as cathodes for hydrogen evolution by water electrolysis in acidic, alkaline, and neutral media. Electrochim. Acta 2018, 262, 115–123. [Google Scholar] [CrossRef]
- Gomez Vidales, A.; Choi, K.; Omanovic, S. Nickel-cobalt-oxide cathodes for hydrogen production by water electrolysis in acidic and alkaline media. Int. J. Hydrog. Energy 2018, 43, 12917–12928. [Google Scholar] [CrossRef]
- Gomez Vidales, A.; Dam-Quang, L.; Hong, A.; Omanovic, S. The influence of addition of iridium-oxide to nickel-molybdenum-oxide cathodes on the electrocatalytic activity towards hydrogen evolution in acidic medium and on the cathode deactivation resistance. Electrochim. Acta 2019, 302, 198–206. [Google Scholar] [CrossRef]
- Vidales, A.G.; Sridhar, D.; Meunier, J.-L.; Omanovic, S. Nickel oxide on directly grown carbon nanofibers for energy storage applications. J. Appl. Electrochem. 2020, 50, 1217–1229. [Google Scholar] [CrossRef]
- Gomez Vidales, A.; Semai, M. Platinum nanoparticles supported on nickel-molybdenum-oxide for efficient hydrogen production via acidic water electrolysis. J. Mol. Struct. 2023, 1290, 135956. [Google Scholar] [CrossRef]
- Wan, C.; Zhou, L.; Xu, S.; Jin, B.; Ge, X.; Qian, X.; Xu, L.; Chen, F.; Zhan, X.; Yang, Y.; et al. Defect engineered mesoporous graphitic carbon nitride modified with AgPd nanoparticles for enhanced photocatalytic hydrogen evolution from formic acid. Chem. Eng. J. 2022, 429, 132388. [Google Scholar] [CrossRef]
- Abohamzeh, E.; Salehi, F.; Sheikholeslami, M.; Abbassi, R.; Khan, F. Review of hydrogen safety during storage, transmission, and applications processes. J. Loss Prev. Process Ind. 2021, 72, 104569. [Google Scholar] [CrossRef]
- Sayed, E.T.; Olabi, A.G.; Alami, A.H.; Radwan, A.; Mdallal, A.; Rezk, A.; Abdelkareem, M.A. Renewable Energy and Energy Storage Systems. Energies 2023, 16, 1415. [Google Scholar] [CrossRef]
- Yaxiong, W.; Shunbin, Z.; Fengchun, S. Research Progress in Vehicular High Mass Density Solid Hydrogen Storage Materials. Chin. J. Rare Met. 2022, 46, 796–812. [Google Scholar]
- Zhang, L.; Nyahuma, F.M.; Zhang, H.; Cheng, C.; Zheng, J.; Wu, F.; Chen, L. Metal organic framework supported niobium pentoxide nanoparticles with exceptional catalytic effect on hydrogen storage behavior of MgH2. Green Energy Environ. 2023, 2, 589–600. [Google Scholar] [CrossRef]
Geocentric Geodetic Coordinate System GRS80h | ||
---|---|---|
No. | λ—Geodetic Longitude | φ—Geodetic Latitude |
1 | 16°58′30,687″ E | 55°00′50,524″ N |
2 | 16°51′35,533″ E | 55°02′06,260″ N |
3 | 16°50′52,962″ E | 55°02′07,171″ N |
4 | 16°46′23,733″ E | 55°06′08,711″ N |
5 | 16°46′19,179″ E | 55°06′11,836″ N |
6 | 16°44′36,995″ E | 55°07′06,218″ N |
7 | 16°47′08,284″ E | 55°07′25,002″ N |
8 | 16°50′28,666″ E | 55°07′54,264″ N |
9 | 16°53′34,432″ E | 55°08′05,318″ N |
10 | 16°55′19,642″ E | 55°08′17,668″ N |
11 | 16°56′59,967″ E | 55°08′12,077″ N |
Parameter | Value |
---|---|
Total area | 122 km2 |
Developable area | 77–78 km2 |
Depth of the sea | 23–41 m |
Distance from the shore in a straight line | 37 km |
Turbine power | 15 MW |
Number of turbines | 48 |
Maximum rotor diameter | 250 m |
Type of foundations for wind turbines | monopile |
Length of offshore export cable | 65 km |
Transmission voltage—internal cables | 66 kV |
Transmission voltage—cables from offshore to onshore substation | 220 kV |
Electricity transmission technology | alternating current |
Parameter | Value |
---|---|
Rated power | 15 MW |
Cut-in wind speed | 3 m/s |
Cut-out wind speed | 25 m/s |
Rotor diameter | 236 m |
Rotor swept area | 43,742 m2 |
Aerodynamic brake | 3 blades full feathering |
Frequency | 50/60 Hz |
Hub height | 110 m |
Number of turbines | 48 |
V110 | <3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | >25 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
η | 0 | 0.12 | 0.29 | 0.34 | 0.43 | 0.43 | 0.4 | 0.37 | 0.33 | 0.32 | 0.27 | 0.21 | 0.17 | 0.14 | 0.12 | 0.1 | 0.09 | 0.07 | 0.06 | 0.06 | 0.05 | 0.04 | 0 |
Parameter | Value |
---|---|
Class | 2.5 MW |
Electrolyte | Proton Exchange Membrane |
Nominal production rate | 492 Nm3/h 1062 kg/24 h |
Delivery pressure | 30 bar |
System Power Consumption per Volume of H2 Gas Produced at 100% Capacity | 5.1 kWh/Nm3 |
Purity (high purity dryer system) | 99.9995% |
Start-up Time (from standby) | <8 min |
Ramp-up Time (from zero to full load) | <15 s |
Feed water consumption | 0.9 L/Nm3 |
Input Water Quality | Potable, subject to site water quality analysis |
Water Purification System (included) | Reverse Osmosis (RO) |
Electrical Requirements | Medium voltage: 6.6–35 kV, 3 phase, 50/60 Hz |
Dimensions W × D × H | 6.1 m × 2.5 m × 2.6 m—power supply enclosure 12.2 m × 2.5 m × 3 m—electrolyser enclosure |
Standard Siting Location | Outdoor, pad mounted |
Part of Hydrogen Platform | Value |
---|---|
Electrolyser system including separation distances | 22,468.3 m2 |
Desalination system including separation distances | 204 m2 |
Water storage system/buffer | 280.6 m2 |
Board and control rooms | 585.2 m2 |
Transformators and rectifiers | 488 m2 |
Safety and muster areas | 300 m2 |
Maximum operating weight | 38,000 t |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ligęza, K.; Łaciak, M.; Ligęza, B. Centralized Offshore Hydrogen Production from Wind Farms in the Baltic Sea Area—A Study Case for Poland. Energies 2023, 16, 6301. https://doi.org/10.3390/en16176301
Ligęza K, Łaciak M, Ligęza B. Centralized Offshore Hydrogen Production from Wind Farms in the Baltic Sea Area—A Study Case for Poland. Energies. 2023; 16(17):6301. https://doi.org/10.3390/en16176301
Chicago/Turabian StyleLigęza, Klaudia, Mariusz Łaciak, and Bartłomiej Ligęza. 2023. "Centralized Offshore Hydrogen Production from Wind Farms in the Baltic Sea Area—A Study Case for Poland" Energies 16, no. 17: 6301. https://doi.org/10.3390/en16176301
APA StyleLigęza, K., Łaciak, M., & Ligęza, B. (2023). Centralized Offshore Hydrogen Production from Wind Farms in the Baltic Sea Area—A Study Case for Poland. Energies, 16(17), 6301. https://doi.org/10.3390/en16176301