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Abstract: This paper presents a semi-analytical method for determining the distribution of the
thermal field in a system of two parallel round conductors, taking into account the skin and proximity
effects. The method of a suitably constructed Green’s function was applied to find an analytical
expression for the eigenfunctions describing the temperature distributions. In turn, the relevant
integrals, which cannot be determined analytically, were calculated numerically. The foundation
of the method is the knowledge of the current density distribution in the conductors. As a result,
the steady-state distribution of the temperature field in the conductors for various parameter values
can be determined. The obtained numerical results were positively verified using the finite element
method. Using the developed method, the share of skin and proximity effects in the temperature rise
and steady-state current rating was evaluated. Closed analytical formulas were obtained for the AC
case with the skin effect taken into account. When the skin depth is smaller than the wire radius, the
skin effect has quite a large impact on the conductor temperature. The impact of the proximity effect
is much smaller but clearly noticeable when the distance between the wires is smaller than five times
the wire radius. In addition, the influence of the value of the heat transfer coefficient on the thermal
field of the conductors was also examined.

Keywords: temperature distribution; cylindrical conductors; Green’s function; heat conduction
equation; skin effect; proximity effect; steady-state current rating

1. Introduction

Knowledge of the temperature distribution in conductors, busbars and cables related
to heating due to the current flowing through them is of great practical importance. Tem-
perature is the basic constructional parameter of the above-mentioned systems, affecting
their important parameters like ampacity. Too high a temperature can lead to a number of
unfavorable phenomena—it causes overheating of individual conductive and insulating
elements, oxidation of non-insulated surfaces and deterioration of contact quality, and
it may also threaten the thermal safety of the environment. In addition, with the flow of
alternating current, the skin effect cannot be omitted, and in the case of the presence of
neighboring conductors, the proximity effect should additionally be taken into account [1–3].
The skin effect is related to the displacement of the current towards the outer surface of the
conductor, causing an uneven distribution of the current density in the cross section of the
conductor. In turn, the proximity effect results from the induction of eddy currents due to
currents in neighboring conductors and additionally affects the non-uniform distribution of
current density. As a result, both effects contribute to an increase in resistance, power losses
in the conductors and, consequently, an increase in the temperature of the conductors. The
effects mentioned above are also highly dependent on the current frequency, the distance
between the conductors, and the cross-section of the conductors, as well as the material
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parameters and boundary conditions. It follows from the above that an analysis of the
thermal field in conductors, taking into account the effects of skin and proximity, is of
great importance and allows for a more precise determination of the temperature of the
conductors and other important quantities.

In the literature on the subject, one can find many publications in which thermal
fields were studied while taking into account the skin effect and proximity effects, and
in which their importance was emphasized. For example, in [4], the thermal field of a
three-phase system with three single cables laid in the ground was analyzed using the
finite element method (FEM), considering different configurations of adjacent cables and
different types of loads: linear and non-linear. As a result of the simulations, it was shown
that the configuration of the cables has a large impact on the thermal field distribution
of the cables. In [5], also using FEM, the thermal field in a three-phase gas-insulated
line (GIL) was determined, taking into account the skin and proximity effects. Based
on the results of calculations and simulations, it was shown that the effects increase the
equivalent resistance and power losses in the conductor by up to 33% compared to those
with direct current. In [6], the thermal field and ampacity of a single cylindrical cable
with several layers was considered for time-harmonic currents. In the papers mentioned
above, cylindrical conductors were investigated, but there are also works in which thermal
fields in conductors of other shapes and other devices (e.g., transformers) were analyzed.
The thermal field of a laminated busbar system with the skin and proximity effects taken
into account was studied in [7], where the method of thermal resistances with lumped
parameters was used. In turn, in [8], an analysis of the coupled electromagnetic and thermal
field in a busbar system of irregular shape was carried out using FEM. In [9], the finite
difference method was used for a coupled electro-thermal model of an overhead power
line, taking into account the skin effect. The thermal field of a transformer under non-linear
load was studied in [10] using FEM. In [11], an estimation of the temperature rise of a high-
power contactless transformer used in railway power supply systems was made by means
of the method of thermal resistances. In [12], the method of thermal resistances, together
with analytical expressions for current density, was used to determine the ampacity of a
three-phase cable with round conductors.

As shown above, many methods are used in the thermal analysis of conductors
carrying currents. They can be fully analytical, like direct solving of the heat transfer equa-
tion [6,13], the method of separation of variables [14] or the method of Green’s function [15].
Since analytical methods can only be used for specific shapes (e.g., cylindrical conductors)
and under simplified assumptions, numerical methods are often used. Among them, finite
elements are the most often encountered (e.g., [4,5,8,10]), but sometimes finite differences
are used (e.g., [9]). However, numerical methods often require considerable computational
effort; therefore, circuit-based methods are used, like the method of thermal resistances
(e.g., [7,11,12]), or other thermoelectric equivalent methods, like in [16]. To enhance the
accuracy and lower the computational effort, finite elements and circuit-based methods
are sometimes used together (e.g., [17,18]). The literature review presented in the previous
paragraph indicates that the thermal fields with the skin and proximity effects taken into
account in various models were mainly calculated numerically or using thermal resistances.
In turn, in this paper, a semi-analytical method based on Green’s function is proposed. In
the first step, a suitable Green’s function is determined analytically based on the considered
shape of the conductors’ cross section and boundary conditions. Then, the temperature
at any point of the conductor can be found for any current density. In this paper, the
current density in the cross sections of conductors takes into account the proximity and skin
effects. The main advantage of the proposed method is the analytical form of the solution.
Analytical formulas facilitate the physical interpretation of phenomena and discussions
on the influence of individual parameters, and they enable us to obtain a solution at any
point of the examined area. It should be mentioned that in frequently used numerical
methods or methods based on the use of lumped thermal resistances, appropriate solutions
are obtained only at discrete points.
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The aim of this paper is to determine the influence of the skin and proximity effects
on the temperature and ampacity of two parallel cylindrical conductors. In order to
achieve this, an analytical integral formula for the temperature is obtained using the
Green’s function method for any point inside the conductors. Then, the formula is used to
estimate the contribution of the skin and proximity effects, as well as the impact of various
parameters on the temperature distribution in the considered system of conductors.

The paper is organized as follows: In Section 2 the assumptions, governing equations
and methodology are presented. Section 3 presents the main results, such as the Green’s
function for the considered problem, the temperature distribution inside the conductors and
on their surfaces, and considerations on the influence of the skin and proximity effects on
the temperature and steady-state current rating. Several numerical examples are presented
in Section 4, and a discussion of the results is provided in Section 5.

2. Methods
2.1. Assumptions

The subject of consideration is a system of two parallel cylindrical conductors of the
same cross section, being a circle of radius R and spaced apart by distance d (see Figure 1).
It is assumed that this system is placed at ambient temperature T0, shielded from direct
solar radiation, and the length of the conductors is much greater than their outer diameters
and the separation distance. The material parameters, like electrical conductivity and
thermal conductivity, are assumed to be constant.
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The thermal field is generated by time harmonic currents flowing through the conduc-
tors with complex root-mean-square values of I1 and I2, respectively (Figure 1). In order to
determine the thermal field, it is necessary to know the current density distribution in the
conductors in advance. Therefore, for the purposes of the proposed method, the analytical
relationships from a previous article [19] were used in this paper. The complex phasor of
current density in conductor 1 has the following form [19]:

J1(r, ϕ) =
I1

πR2
ΓR
2
I0(Γr)
I1(ΓR)

− I2

πR2 ΓR
∞

∑
n=1

(−1)n
(

R
d

)n In(Γr)
In−1(ΓR)

cos nϕ. (1)

In turn, the current density in the second conductor can be expressed as follows:

J2(r, ϕ) =
I2

πR2
ΓR
2
I0(Γr)
I1(ΓR)

− I1

πR2 ΓR
∞

∑
n=1

(
R
d

)n In(Γr)
In−1(ΓR)

cos nϕ, (2)

where (r, ϕ) are polar coordinates relative to each conductor, In is the modified Bessel func-
tion of the first kind of order n, and Γ =

√
j2π f µ0γ is the complex propagation constant, in

which j =
√
−1 is the imaginary unit, f is the current frequency (Hz), µ0 = 4π × 10−7 H/m

is the permeability of vacuum, and γ is the electrical conductivity of the conductors (S/m).
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Equations (1) and (2) describe the current density in the conductors in the system as
in Figure 1, taking into account the skin effect (first component of Formulas (1) and (2))
and the proximity effect (second component of Formulas (1) and (2)). In truth, the second
component is a first approximation for the proximity effect, because it was obtained by
assuming that the neighboring wire is a thin filament. This approximation is, however,
very accurate in most cases, especially when the skin depth is not extremely low compared
to the wire radius [19]. Formulas (1) and (2) were determined in [19] by solving the
Helmholtz equation [20,21] resulting from the classical Maxwell equations. In the literature,
one can also find other relationships determining the current density in conductors. One
of the earliest developed is given in [22], which presented integral equations that take
into account the phenomena discussed above. There are also other formulas, such as
approximate relationships in the form of power series given in [23].

Figure 2 shows exemplary contour plots of the current density modulus distribution in
the cross section of the conductors, obtained on the basis of Equations (1) and (2) and assum-
ing the same values of load currents flowing in the same direction. The following numerical
values of the model parameters were assumed: I1 = I2 = 595.46 A, f = 50 Hz, d = 0.05 m,
R = 0.009772 m, and γ = 55 MS/m (copper wires). These values were also used later in
the paper.
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Figure 2 shows that with the same load on the conductors and the same direction of
current flow, the current density distributions are symmetrical with respect to the vertical
axis of symmetry marked in Figure 1. The same remark applies to currents of equal
magnitude but oppositely directed. Therefore, in the following, the analysis of the thermal
field is limited to the case where there is symmetry, which allows the analysis of the thermal
field of only one conductor.

2.2. Governing Equations

The mathematical model of the thermal field for the conductor located on the right side
of the axis of symmetry (conductor 1 in Figure 1) was formulated in terms of increments
relative to the ambient temperature T0, i.e.,

ϑ(r, ϕ) = T(r, ϕ)− T0, (3)

where T(r, ϕ) is the steady-state 2D distribution of the thermal field in the conductor’s
cross section, and (r, ϕ) are polar coordinates relative to the conductor.
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The temperature increase (3) in the conductor, with the simplifying assumptions given
above, is described by the heat conduction equation [24,25] of the following form:

∂2ϑ(r, ϕ)

∂r2 +
1
r

∂ϑ(r, ϕ)

∂r
+

1
r2

∂2ϑ(r, ϕ)

∂ϕ2 = − g(r, ϕ)

λ
, (4)

where λ is the thermal conductivity of the conductor, and g(r, ϕ) represents the heat
generated inside the conductor per unit of time and volume, i.e., it equals the power losses
per volume unit (W/m3). For a sinusoidal current of density expressed by complex root-
mean-square phasor J passing through a conductor of electrical conductivity γ, the power
density equals J · J∗/γ. Hence, in this case,

g(r, ϕ) =
|J1(r, ϕ)|2

γ
. (5)

In further analysis, it was assumed that the outer surface of the conductors emits
heat through natural convection and radiation [25,26]. The aforementioned heat transfer is
described by the Hankel boundary condition of the following form:

−λ
∂ϑ(r, ϕ)

∂r

∣∣∣∣
r=R

= αϑ(R, ϕ), 0 ≤ ϕ < 2π, (6)

where α is the heat transfer coefficient. Such a boundary condition is the most commonly
used one in thermal field calculations. It is a linear combination of the Dirichlet and Neuman
boundary conditions, and it approximately describes the exchange of heat between the
surface of the object and its environment in accordance with Newton’s law of cooling. The
heat transfer coefficient α is an effective way to take into account the natural convection and
radiation. Due to the various conditions of the conductor location, e.g., inside or outside a
room, its exact determination is difficult; therefore, calculations should be performed for
various values of α.

Equations (3)–(6) together with (1) describe the boundary problem of the thermal field
of the conductor.

2.3. The Method of Green’s Function

The aforementioned boundary problem was solved using the Green’s function
method [27–29]. Green’s function is the kernel of the inverse Laplace integral operator.
Its physical interpretation is a thermal field generated by a heat pulse in the form of the
Dirac delta. For comparison, in the case of the frequently used method of separation of
variables, the solution of Equation (4) consists of a general integral, which is a solution
to the Laplace equation, and a particular integral, dependent on the right-hand side of
Equation (4), related to the heat source. Due to the complex form of the heat source
expressed by function g, which contains a series of Bessel functions, the determination
of the particular integral is practically impossible. In contrast, the main advantage of the
Green’s function method is the possibility of solving inhomogeneous equations such as
(4) without the need to calculate a particular integral. In addition, the final solutions in the
Green’s function method are obtained in integral form, which are usually characterized
by high convergence. Details on the Green’s functions and their use in heat conduction
equations and other partial differential equations are given in [27,29].

After using the second Green’s identity, properties of the Dirac delta, dependencies (4)
and (6) and corresponding equations for Green’s function, the temperature increase in the
conductor can be represented by the following relationship [27]:

ϑ(r, ϕ) =
∫ R

ξ=0

∫ 2π

θ=0

g(ξ, θ)

λ
G(r, ϕ; ξ, θ)ξdξdθ, 0 ≤ r, ξ ≤ R, 0 ≤ ϕ, θ < 2π, (7)
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where g(ξ, θ) is given by Equation (5) (after substitutions r → ξ , ϕ→ θ ), G(r, ϕ; ξ, θ) is the
Green’s function, and (ξ, θ) are the polar coordinates of the Dirac impulse associated with
the definition of the Green’s function.

In order to use (7), prior knowledge of the Green’s function is required. It can be
determined in several ways [27,28]. These include the method of direct integration of
the equations describing the boundary problem defining Green’s function, the method
of eigenfunctions, the method using Fourier transform, Laplace transform (in the case of
transient states) and others. In the considered case, the auxiliary (homogeneous) boundary
problem was used, which was formulated for the Green’s function using Equation (4) and
boundary conditions (6), i.e.,

∂2G
∂r2 +

1
r

∂G
∂r

+
1
r2

∂2G
∂ϕ2 = − δ(r− ξ)δ(ϕ− θ)

r
, (8)

−λ
∂G
∂r

∣∣∣∣
r=R

= αG|r=R, 0 ≤ ϕ, θ < 2π, (9)

where the right-hand side of Equation (8) is the product of the shifted Dirac pulses (with
respect to coordinates ξ and θ).

2.4. The Algorithm

The above methodology can be summarized as follows:

1. Begin from the shape of the conductor (here, two cylindrical conductors of radius R
separated by distance d), material parameters γ and λ, heat transfer coefficient α and
the current density in the conductors (here given by Equation (1)).

2. Determine the Green’s function corresponding to the shape and equations describing
heat exchange—here given by Equations (3)–(6). Note that Green’s function does
not depend on the current density or electrical parameters and is calculated only
once—see Equations (8)–(9).

3. Use Equation (7) to determine the temperature at any point in the conductor.
4. Calculate such quantities as the steady-state current rating.

3. Results
3.1. Green’s Function

The Green’s function was determined on the basis of the solution of the above-
mentioned auxiliary problem (8)–(9). In order to solve it, expansion into a series of
eigenfunctions with respect to the angular coordinate was carried out, and the Dirac
delta δ(ϕ− θ) was represented in the form of a trigonometric series of cosines. A special
case for the constant term in the Fourier series was considered separately. As for the radial
coordinate, direct integration of Equation (8) was applied taking into account the boundary
condition (9) and the properties of the Green’s function (continuity and discontinuity of
derivatives at the point (ξ, θ)). On the basis of the above, the sought Green’s function was
obtained separately for r < ξ and r > ξ as follows:

G(r, ϕ; ξ, θ) = − 1
2π

(
ln

ξ

R
− λ

αR

)
+

∞

∑
n=1

1
2nπ

[(
ξr
R2

)n nλ− αR
nλ + αR

+

(
r
ξ

)n]
cos n(ϕ− θ), 0 ≤ r ≤ ξ, 0 ≤ ϕ, θ < 2π, (10)

and

G(r, ϕ; ξ, θ) = − 1
2π

(
ln

r
R
− λ

αR

)
+

∞

∑
n=1

1
2nπ

[(
ξr
R2

)n nλ− αR
nλ + αR

+

(
ξ

r

)n]
cos n(ϕ− θ), ξ ≤ r ≤ R, 0 ≤ ϕ, θ < 2π. (11)

3.2. Temperature Distribution

After using the obtained Green’s function (10)–(11) in Equation (7) and taking into
account the previously given definition of temperature increment (3), the sought 2D distri-
bution of the thermal field in the conductor takes the following form:



Energies 2023, 16, 6341 7 of 20

T(r, ϕ) = T0 +
∫ r

ξ=0

∫ 2π
θ=0

g(ξ,θ)
λ

{
− 1

2π

(
ln r

R −
λ

αR

)
+

∞
∑

n=1

1
2nπ

[(
ξr
R2

)n nλ−αR
nλ+αR +

(
ξ
r

)n]
cos n(ϕ− θ)

}
ξdξdθ

+
∫ R

ξ=r

∫ 2π
θ=0

g(ξ,θ)
λ

{
− 1

2π

(
ln ξ

R −
λ

αR

)
+

∞
∑

n=1

1
2nπ

[(
ξr
R2

)n nλ−αR
nλ+αR +

(
r
ξ

)n]
cos n(ϕ− θ)

}
ξdξdθ,

0 ≤ r ≤ R, 0 ≤ ϕ < 2π.

(12)

Due to the complex form of g(ξ, θ), it is impossible to calculate the integrals in (12)
analytically for g given by Equations (5) and (1). Nevertheless, Formula (12) may be the
basis for obtaining simplified solutions, e.g., by expanding the Bessel functions appearing
in (1) into appropriate series [30].

In the case when the proximity effect can be neglected, which occurs for a large
enough distance between the wires, function g is independent of the angular coordinate θ.
Therefore, integration over θ can be easily performed. As a result, the infinite sum after
integration yields zero, and Equation (12) is simplified considerably as follows:

TAC(r) = T0 −
ln r
λ

∫ r

0
g(ξ)ξdξ +

(
ln R

λ
+

1
αR

)∫ R

0
g(ξ)ξdξ − 1

λ

∫ R

r
g(ξ)ξln ξdξ. (13)

This formula can also be used for direct current, when g(ξ, θ) = J2
DC/γ = const. In such a

case, the integrals in Equation (13) can easily be found analytically as follows:

TDC(r) = T0 +
J2
DC

4λγ

(
R2 − r2

)
+

J2
DC

2αγ
R, 0 ≤ r ≤ R, (14)

where JDC = |I1|/πR2 is the direct current density.
A slightly more complicated situation occurs when the skin effect is taken into account.

In such a case, after omitting the series related to the proximity effect in Equation (1), it
follows that

g(ξ) =
|JAC(ξ)|2

γ
=
|I1|2

π2R4
|ΓR|2

4γ

I0(Γξ)I0

(
Γ*ξ
)

I1(ΓR)I1

(
Γ*R

) = cI0(Γξ)I0

(
Γ*ξ
)

. (15)

In the above formula,

c =
J2
DC
γ

k2R2

2I1(ΓR)I1

(
Γ*R

) , (16)

where Γ = (1 + j)k, and k =
√

π f µ0γ is the reciprocal of the skin depth. Then, integrals of
g(ξ)ξ and g(ξ)ξln ξ with respect to ξ must be evaluated. Since∫

I0(Γξ)I0(Γ∗ξ)ξdξ =
ξ

Γ2 − Γ∗2
(

ΓI0(Γ∗ξ)I1(Γξ)− Γ*I0(Γξ)I1

(
Γ*ξ
))

, (17)

it follows that ∫
g(ξ)ξdξ =

c
2

ξ2W(kξ), (18)

where the following functionW(z) was introduced for brevity:

W(z) =
1
z2R(z(1 + j)I0((1 + j)z)I1((1− j)z)). (19)

The other integral is transformed using partial integration as follows:∫
g(ξ)ξln ξdξ =

c
2

ξ2W(kξ)ln ξ − c
2

∫
W(kξ)ξdξ, (20)
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where Equation (18) was used. The last integral is not elementary; therefore, W(z) is
expanded into a power series, which has the following form:

W(z) =
∞

∑
n=0

wnz4n, (21)

where

wn =
1

(2n + 1)22n(n!)2(2n)!
=

{
1,

1
24

,
1

7680
, . . .

}
, n = 0, 1, 2, . . . (22)

Then, the integral in Equation (20) becomes

∫
W(kξ)ξdξ =

ξ2

2
S(kξ). (23)

In the above equation S(z) is an auxiliary function defined as follows:

S(z) =
∞

∑
n=0

snz4n, (24)

where

sn =
wn

2n + 1
=

1

(2n + 1)222n(n!)2(2n)!
=

{
1,

1
72

,
1

38400
, . . .

}
, n = 0, 1, 2, . . . (25)

As a result, the considered integral (20) yields∫
g(ξ)ξln ξdξ = c

∫
I0(Γξ)I0

(
Γ*ξ
)

ln ξξdξ =
c
2

ξ2
(
W(kξ)ln ξ − 1

2
S(kξ)

)
. (26)

Equations (18) and (26) are then used in (13). After some transformations, the steady-
state temperature takes the following form:

TAC(r) = T0 +
c

2αR
R2W(kR) +

c
4λ

(
R2S(kR)− r2S(kr)

)
. (27)

Taking into account Equation (16), one finally obtains

TAC(r) = T0 +
J2
DC
γ

k2R2

2I1(ΓR)I1

(
Γ*R

)[ R
2α
W(kR) +

1
4λ

(
R2S(kR)− r2S(kr)

)]
. (28)

When the skin effect is very weak (kR � 1), we have 2I1(ΓR)I1

(
Γ*R

)
≈ (kR)2/2,

W(kR) ≈ 1, and S(kR) ≈ 1, which yields the same expression as for the DC case—see
Equation (14).

3.3. Temperature on the Conductor’s Surface

When r = R, the second integral in Equation (12) equals zero due to the integration
limits; thus, the increase in temperature becomes

ϑ(R, ϕ) =
1

2π

∫ R

ξ=0

∫ 2π

θ=0
g(ξ, θ)

{
1

αR
+ 2

∞

∑
n=1

1
nλ + αR

(
ξ

R

)n
cos n(ϕ− θ)

}
ξdξdθ. (29)
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Before dispatching the general case, this integral is considered for the case when the
proximity and skin effects are neglected. Equation (14) then yields

ϑDC(R) = J2
DC

R
2αγ

=

(
|I1|
πR2

)2 R
2αγ

. (30)

A slightly more complicated situation takes place if the skin effect is taken into account
(with the proximity effect neglected). In such a case, Equations (13) and (18) can be used to
obtain

ϑAC(R) =
1

αR

∫ R

0
g(ξ)ξdξ =

J2
DC
γ

R
2α

k2R2

2I1(ΓR)I1

(
Γ*R

)W(kR). (31)

To estimate the influence of the skin effect on the conductor’s temperature (on its
surface), the following indicator can be introduced:

TAC(kR) =
ϑAC(R)
ϑDC(R)

= R

(
(1 + j)kRI0((1 + j)kR)

2I1((1 + j)kR)

)
. (32)

This expresses the relative increase in temperature due to the skin effect, illustrated in
Figure 3 (blue trace). This expression has the following power series expansion:

TAC(kR) = 1 +
(kR)4

48
− (kR)8

2880
+

11(kR)12

1720320
− . . . . (33)

The increase in temperature due to a weak skin effect (kR ≤ 1) is below 1/48 (around 2%).
On the other hand, the asymptotic expansion for large kR yields

TAC(kR) ≈ 1
2

kR +
1
4

, kR > 2. (34)

Hence, a strong skin effect contributes to the temperature increase proportionally to kR.
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In a similar way, the general case with the proximity effect taken into account is
considered. To avoid being distracted by mathematical details, only the final formula
is given here, and the derivation is provided in Appendix A. The relative increase in
temperature due to skin and proximity effects together is as follows:

T =
ϑ

ϑDC
=

1
2

(
∞

∑
l,n=0

2blR
(

an+l
∗
a
n

Il,l+n,n

)
cos lϕ +

∞

∑
l=0

(1 + δl,0)blcos lϕ
l

∑
n=0

al−n
∗
a
n

Il,l−n,n

)
, (35)
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where δl,0 is the Kronecker delta,

a0 =
ΓR
2

1
I1(ΓR)

, an>0 = −s(−1)nΓR
(

R
d

)n 1
In−1(ΓR)

, n = 1, 2, 3, . . . (36)

b0 = 1, bl>0 =
2αR

lλ + αR
, l = 1, 2, 3, . . . (37)

s =
I2
I1

, (38)

Il,m,n =
∫ 1

0
Im(ΓRρ)In(Γ∗Rρ)ρl+1dρ. (39)

In general, integral (39) must be evaluated numerically, except for special cases, e.g.,
m = n and l = 0. Equation (35) reveals that the relative temperature increase is a function
of the following dimensionless parameters:

• the skin effect strength, ΓR = (1 + j)kR;
• the relative distance between the conductors, d/R;
• the heat transport ratio, λ/αR;
• the direction and modulus of current in the neighboring wire, s (complex number);
• the observation point on the wire surface (angle ϕ).

It is worth noting that the case s = 0 (no current in the neighboring wire) corresponds
to neglecting the proximity effect. In such a case, an = 0 for n > 0, and Equation (35)
simplifies to 2a0a∗0 I0,0,0, which is the same as (32). Figure 4 shows the influence of various
parameters on the relative increase in temperature T .
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Figure 4. The relative increase in temperature due to the skin and proximity effects (solid
lines—opposing currents, dashed lines—same currents): (a) the effect of kR for various distances
between the wires; (b) the effect of distance between the wires for various kR; (c) the effect of the heat
transfer ratio for various kR; (d) the effect of kR for various distances and transfer ratios.
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3.4. Steady-State Current Rating of the Conductor

One of the most important indicators of conductors carrying currents is the steady-
state current rating. It is limited by the maximum permissible temperature (Tmaxp) to
which the conductor can heat up under long-term load conditions. The temperature is
usually considered on the conductor’s surface. As a result, the steady-state current rating
is determined by solving the following equation with respect to Icr:

max
ϕ

T(r = R, ϕ, Icr) = Tmaxp. (40)

Equation (40) is solved using Equation (29). In general, this requires a numerical approach,
but for direct current, Equation (30) can be used to obtain

IcrDC =

√
2π2αγR3(T maxp − T0

)
. (41)

The current rating with skin and proximity effects taken into account can be found using
Equations (31) and (40). The result can be expressed as follows:

Icr = AIcrDC, (42)

where
A =

1√
T

(43)

is the ampacity ratio representing the influence of skin and proximity effects on the current
rating, and T is given by Equation (35) or (32). For s = 0 (when the proximity effect
is neglected), it is plotted in Figure 3 (magenta trace). In such a case, the power series
expansion for small kR equals

AAC(kR) = 1− 1
96

(kR)4 +
31

92160
(kR)8 − . . . . (44)

The drop in long-term ampacity due to a weak skin effect (kR ≤ 1) is below 1/96
(around 1%). In turn, the asymptotic expansion for large kR is as follows:

AAC(kR) ≈ 2√
1 + 2kR

, kR > 2, (45)

which means that the ampacity drops slowly with an increase in kR. Figure 5 illustrates the
effect of various parameters on the value of A.
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Figure 5. The relative drop in the steady-state current rating due to the skin and proximity effects
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4. Numerical Examples

The developed model was implemented in the Wolfram Mathematica 11.1 environ-
ment [31]. The program calculates the distribution of the thermal field using Equation (12)
and evaluates the steady-state current rating. The integral expressing the temperature
is calculated numerically with the use of methods implemented internally in Wolfram
Mathematica. The results of calculations of thermal field distributions using integral (12)
are presented graphically. In all numerical examples, a system of two conductors with a
cross-sectional area of 300 mm2 was considered. Unless explicitly stated otherwise, the
following parameter values were used: R = 0.009772 m, d = 0.05 m, I1 = I2 = 595.46 A (same
currents), γ = 55 MS/m, f = 50 Hz, T0 = 20 ◦C, λ = 360 W/(m·K), α = 7 W/m2 K. The
DC load I1 = I2 = 595.46 A heats the conductor to a temperature of Tmax = 70 ◦C. Figure 6
shows the 2D distributions of the thermal field in the cross section of the conductor for the
frequencies f = 50, 100, 200 and 500 Hz.
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but without the proximity effect (𝑇େ), and alternating current with both the skin and 

Figure 6. Distribution of the temperature in the cylindrical conductor for frequency f = 50 Hz (a),
100 Hz (b), 200 Hz (c), 500 Hz (d); other parameters given at the beginning of Section 4.

The presented analytical–numerical method was verified by comparing the results
with those determined numerically using the finite element method [32,33]. The Heat
Transfer module of Comsol Multiphysics software [34] was applied, in which 1000 source
elements were used to approximate the heat source distribution g(r, ϕ) in the conductor.
Numerical calculations were made for a frequency f of 200 Hz. Figure 7 shows the 2D
distribution of the thermal field in the conductor obtained in the Comsol Multiphysics
program. In order to determine the temperature difference between the calculation results
obtained by the analytical–numerical method Tan(r, ϕ) and by finite elements TFEM(r, ϕ),
the temperature differences Tan − TFEM at different points of the conductor were examined.
Based on the analysis, it was found that the differences did not exceed 0.075 ◦C at any point
in the conductor.
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cylindrical conductor at a frequency of 200 Hz and with parameters given at the beginning of
Section 4.

In order to determine the temperature increase caused by the skin and proximity
effects, the distributions due to direct current (TDC), alternating current with the skin effect
but without the proximity effect (TAC), and alternating current with both the skin and
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proximity effects (TAC+prox) were determined. The results are presented in Figure 8, where
temperatures at point r = R and ϕ = 0 are plotted versus frequency.
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Figure 8. Temperature values at point r = R, ϕ = 0 versus frequency (parameter values given at the
beginning of Section 4): TDC—due to direct current; TAC—due to alternating current with the skin
effect but without the proximity effect; TAC+prox—due to alternating current with both the skin and
proximity effects.

One of the fundamental parameters determining the proximity effect is the distance d
between the conductors’ axes (Figure 1). Therefore, in Figure 9, the effect of the distance is
presented—the temperature at point r = R, ϕ = 0 versus distance d at a frequency of 100 Hz
is plotted (the values of the remaining parameters were the same as those mentioned at the
beginning of the section).
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From a practical point of view, it is also important to determine the influence of the
heat transfer coefficient α on the temperature of the conductors. Due to different cooling
conditions or conductor positions, it is difficult to estimate the exact value of this parameter.
Therefore, calculations of the conductor temperature were made for the coefficient α varying
in the range from 5 to 12 W/m2 K. The temperature at point r = R, ϕ = 0 versus the heat
transfer coefficient α for various frequencies is presented in Figure 10.
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The heat transfer coefficient also greatly affects the value of the permissible steady-
state current rating of the conductor. Figure 11 presents the dependence of the steady-state
current rating on the heat transfer coefficient α for a frequency of 50 Hz. This was obtained
based on Equations (43) and (35), where ϕ was assumed to be 0 in accordance with the
results presented in Figure 6, where the maximum temperature on the surface occurs at
ϕ = 0.
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5. Discussion

The theoretical considerations show that the skin and proximity effects raise the
temperature of the conductors and decrease the ampacity. The skin effect contribution
to these quantities was evaluated analytically (Figure 3 and Equations (32) and (43)). It
follows that a weak skin effect, when the skin depth is not smaller than the wire radius,
increases the incremental temperature T − T0 by up to 2% (Equation (33)) and decreases
the ampacity by around 1% compared to the DC case (Equation (44)). However, when the
skin depth is at least 2 times smaller than the wire radius, the contribution to an increase in
temperature is proportional to the radius/skin depth ratio (Equation (34)). As for ampacity,
the drop is approximately inversely proportional to the square root of the aforementioned
ratio (Equation (45)).

The influence of the proximity effect on the temperature and steady-state current rating
was detected using Equations (35) and (43) and illustrated in Figures 4 and 5. It was shown
that the proximity effect contributes to an increase in temperature and a drop in ampacity,
both being greater with a smaller distance between the wires (Figures 4a,b,d and 5a,b,d).
When the distance between the wires is at least five times the radius and the skin effect is
weak, the proximity effect can usually be neglected. The effect of the heat transfer ratio was
also shown in Figures 4c and 5c. It follows that for λ/αR > 1000, the ratio has a negligible
effect. Assuming the numerical values given at the beginning of Section 4, it follows that
λ/αR > 5000, so in this case the effect of λ/αR can be neglected.

It is worth noting that the case of opposing currents gives a higher temperature and
lower ampacity than the case of the same currents. This is because the maximum current
density for opposing currents is larger than that for the same currents (this can be seen
when analyzing Equation (1)). Hence, opposing currents generate more heat than the same
currents (under the same circumstances).

The temperature distributions in the cylindrical conductor shown in Figure 6 indicate
that an increase in frequency has a significant effect on the temperature of the conductor
and causes an increase in temperature. The physical reason for this is that the electrical
resistance of the cylindrical conductor grows with frequency, which causes more heat to be
generated in the conductor. The plots in Figure 6 also show that an increase in frequency
causes the temperature maximum to move from the center of the conductor towards the
outer sides of the conductors, which is related to the increasing intensity of induced eddy
currents. However, the temperature values across the cross section for a given frequency
are very close because of the very high thermal conductivity of copper. In the case of
opposing currents, the corresponding temperature distributions in each conductor are
nearly symmetrical to those shown in Figure 6, but with the maximum shifted towards the
left side, which corresponds to the closest points of both conductors (plots not included).
However, for the considered values of the parameters, the temperatures are almost identical
to those for currents flowing in the same direction.

The temperature distributions obtained using the proposed method and finite el-
ements for a frequency of 200 Hz (Figures 6c and 7) are very close. The temperature
differences between the two methods are insignificant and can be attributed to the numer-
ical computations. Thus, the semi-analytical method presented in the paper should be
considered verified.

Figure 8 shows that the skin and proximity effects contribute to an increase in temper-
ature, and the higher the frequency, the higher the impact. For example, the approximate
temperature increase due to the skin effect is TAC − TDC ≈ 1.1 ◦C at a frequency of 50 Hz,
whereas it is around 44.1 ◦C at a frequency of 500 Hz. Since TDC − T0 ≈ 50 ◦C in this
case, the relative increases are around 2% and 88%, which agrees with the theoretical
considerations for TAC and Figure 3. As for the contribution to temperature due to the
proximity effect, it equals around TAC+prox− TAC ≈ 0.46 ◦C for 50 Hz and 5.3 ◦C for 500 Hz.
It follows that the skin effect has a greater impact on the temperature rise of the conductor
than the proximity effect (TAC–TDC > TAC+prox − TAC). Moreover, the proximity effect
plays an important role only when the conductors are close (Figure 9). At greater distances,



Energies 2023, 16, 6341 17 of 20

i.e., for d > 5R, the influence of the proximity effect on the temperature of the conductor
becomes negligible.

An increase in the heat transfer coefficient has a large influence on the temperature of
the conductor (Figure 10). Increasing the value of the heat transfer factor corresponds to
higher heat exchange with the environment and significantly reduces the temperature of
the conductor. As a result, it is possible to load the conductor with higher current. Also,
an increase in the value of the heat transfer coefficient significantly affects the value of the
steady-state current rating, enlarging its value with an increase in α (Figure 11).

6. Conclusions

In this paper, a semi-analytical method for determining the distribution of the tem-
perature in two parallel cylindrical conductors, taking into account the skin and proximity
effects, was developed. Based on the shape and assumed heat exchange model, the Green’s
function was determined. Then, the integral formula for temperature at any point in the
conductor can be obtained provided that the current density is known. Unfortunately, the
integral cannot be fully evaluated analytically due to the complexity of the integrand for
the general case; therefore, a numerical procedure is required at this step. Nevertheless,
the obtained integral relationships are the basis for obtaining approximations or simplified
solutions for special cases. Although the numerical examples are for the case of the same
currents in the conductors, the developed method makes it possible to calculate the thermal
field distributions for any currents and for any dimensions of both conductors.

The method presented in this paper also makes it possible to determine other impor-
tant parameters of the conductors, e.g., the steady-state current rating. The theoretical
considerations were applied to evaluate the skin and proximity effects on the conductor’s
temperature and steady-state current rating. The skin effect contributions are negligible for
skin depths greater than the wire radius. The proximity effect can be neglected when the
distance between the wires is greater than around five times the radius and when the skin
depth is not smaller than the wire radius.

Although this paper focused on two round conductors, the method can also be used
for configurations with more round wires, e.g., three-phase cables. It is worth noting
that the Green’s function will remain unchanged in this case. The same methodology
can be used for tubular wires or other shapes, provided that the Green’s function can be
determined and the current density is known.
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Appendix A. Derivation of Equation (35)

Let us introduce the symbols given by Equations (36)–(38). Then, the current density
defined by Equation (1) can be expressed as follows:

J1(ξ, θ) =
I1

πR2

∞

∑
n=1

anIn(Γξ)cos nθ, (A1)

so that the power density given by Equation (5) becomes equal to

g(ξ, θ) =
1
γ

(
|I 1|
πR2

)2 ∞

∑
m,n=0

am
∗
a
n
Im(Γξ)In

(
Γ*ξ
)

cos mθcos nθ. (A2)

Using this in Equation (29) yields

ϑ(R, ϕ) =
1

2π

1
αRγ

(
|I 1|
πR2

)2 ∞

∑
m,n,l=0

Cl,m,nDl,m,n, (A3)

where

Cl,m,n =
∫ 2π

0
cos l(ϕ− θ)cos mθcos nθdθ, (A4)

Dl,m,n =
∫ R

ξ=0
bl

(
ξ

R

)l
amIm(Γξ)

∗
a
n
In

(
Γ*ξ
)

ξdξ = blam
∗
a
n
R2 Il,m,n, (A5)

where Il,m,n is given by Equation (39). Let us consider Cl,m,n. Since the integrand is a
periodic function with period 2π, the integration interval can be changed from [0, 2π] to
[−π, π]. Then, by using the identity cos(x− y) = cos xcos y + sin xsin y, it follows that

Cl,m,n = cos lϕ
∫ π

−π
cos lθcos mθcos nθdθ + sin lϕ

∫ π

−π
sin lθcos mθcos nθdθ. (A6)

The second integral equals zero, because an odd function is being integrated over a sym-
metric interval. The first integral can be easily calculated:

Cl,m,n =
1
2

[
sin (l −m− n)π

l −m− n
+

sin (l + m− n)π
l + m− n

+
sin (l −m + n)π

l −m + n
+

sin (l + m + n)π
l + m + n

]
cos lϕ. (A7)

If none of the denominators in the brackets is zero, then Cl,m,n = 0; otherwise, a limit
of sin xπ

x as x → 0 , which yields π, should be used. As a result, it follows that the expression
in the brackets can be 0, π, 2π or 4π. More specifically,

• if l = m = n = 0, then [. . .] = 4π;
• if l = m = n > 0, then [. . .] = 0;
• if two numbers of l, m, n are equal and greater than zero and the third one equals zero,

then [. . .] = 2π;
• if two numbers of l, m, n are greater than zero and the third one equals their sum, then

[. . .] = π;
• otherwise, [. . .] = 0.

The above results can be gathered into one formula as follows:

Cl,m,n =
π

2
(δm,n+l + δn,m+l + (1 + δl,0)δm,l−n)cos lϕ, (A8)

where δi,j is the Kronecker delta. Using this in Equation (A3) yields

ϑ(R, ϕ) =
1

4αγR

(
|I 1|
πR2

)2 ∞

∑
l=0

(
∞

∑
n=0

(Dl,n+l,n + Dl,n,n+l) + (1 + δl,0)
l

∑
n=0

Dl,l−n,n

)
cos lϕ, (A9)
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and by using Equation (A5), it follows that

ϑ(R, ϕ) =
R

2αγ

(
|I 1|
πR2

)2 1
2

∞

∑
l=0

bl

(
∞

∑
n=0

(
an+la∗n Il,n+l,n + ana∗n+l Il,n,n+l

)
+ (1 + δl,0)

l

∑
n=0

al−na∗n Il,l−n,n

)
cos lϕ. (A10)

Since ana∗n+l Il,n,n+l = (an+la∗n Il,n+l,n)
∗, the complex identity z + z∗ = 2Rz can be

used to simplify the expression. Finally, taking into account Equation (30) defining ϑDC,
Equation (35) is thus obtained.

References
1. Anders, G.J. Rating of Electric Power Cables: Ampacity Computations for Transmission, Distribution and Industrial Application; McGraw-

Hill Professional: Columbus, OH, USA, 1997.
2. Morgan, V.T. The current distribution, resistance and internal inductance of linear power system conductors—A review of explicit

equations. IEEE Trans. Power Deliv. 2013, 38, 1252–1262. [CrossRef]
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