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Abstract: As the global third-largest stationary source of carbon emissions, petroleum refineries have
attracted much attention. Many investigations and methodologies have been used for the quantifica-
tion of carbon emissions of refineries at the industry or enterprise scale. The granularity of current
carbon emissions data impairs the reliability of precise mitigation, so analysis and identification of
influencing factors for carbon emissions at a more micro-level, such as unit level, is essential. In
this paper, four typical units, including fluid catalytic cracking, Continuous Catalytic Reforming,
delayed coking, and hydrogen production, were chosen as objects. A typical 5-million-ton scale
Chinese petroleum refinery was selected as an investigating object. The Redundancy analysis and
multiple regression analysis were utilized to explore the relationship between the process parameters
and carbon emissions. Three types of influencing factors include reaction conditions, processing
scale, and materials property. The most important mitigation of carbon emission, in this case, can be
summarized as measures of improving energy efficiency via optimizing equipment parameters or
prompting mass efficiency by upgrading the scale for material and energy flow.

Keywords: a petroleum refinery; process unit scale; carbon emission; influence factors; pathway
of mitigation

1. Introduction

Greenhouse gases (GHGs) mainly include CO2, CH4, N2O, hydrofluorocarbons, per-
fluorocarbons, sulfur hexafluoride, and nitrogen trifluoride [1]). GHG emissions cause
changes in net radiation flux in the troposphere or atmosphere, which can lead to climate
change. The production and use of fossil fuels mainly contribute to global GHG emis-
sions [2]. As the third-largest stationary source, the cumulative GHG emissions from global
petroleum refineries from 2000 to 2021 are approximately 3.41 billion tons, with an average
annual growth rate of 0.7% [3]. Carbon dioxide (CO2) and methane (CH4) are the primary
species emitted by refineries [4]. At present, many investigations and methodologies have
been used to explore carbon emissions from refineries at the industry or enterprise scale.
The current granularity of carbon emissions data impairs the reliability of precise mitiga-
tion, so analysis and identification of influencing factors for carbon emissions at a more
micro-level, such as unit level, is an urgent task for effective carbon reduction.

Different process units in a petroleum refinery show various intensities and patterns
of carbon emission [5]. The main process units include a crude distillate unit and vacuum
distillate unit (CD and VD), fluid catalytic cracking unit (FCC), catalytic reforming unit
(CR), hydrocracking unit (HC), hydrofining unit (HF), solvent deasphalting unit (SD), and
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delayed coking unit (DC). According to Jia et al. [6], FCC, DC, HC, and hydrotreatment
(HT) are the main carbon emission sources. FCC is the most important unit for increasing
the processing depth of crude oil in petroleum refining enterprises, accounting for 24.3%
of the total emissions in a refinery. According toAl-Salem [7], the burn of catalyst coke in
the regenerator’s stack within FCC can produce 40% of the total CO2 in a refinery. Steam
methane reforming (SMR) is the most widely used process to produce hydrogen. About
20% of the total CO2 emission could be attributed to hydrogen production (HP) units.
Stockle et al. [8] raised that a ton of hydrogen produced via SMR produced about 10 tons
of CO2. DC is an important way for the thermal treatment of heavy oil. Large amounts
of energy are consumed to provide reaction heat for the coking process, resulting in high
carbon emissions [9]. As for CR units, a lot of heaters should be used to maintain the
reaction due to the endothermic property of the reforming reaction [4].

In the research on influencing factors of carbon emission, the factorial decomposition
method is one of the more widely used methods [10]. It mainly consists of structural
decomposition analysis (SDA) and index decomposition analysis (IDA) [11]. Compared to
the SDA method, which needs to be established on the basis of input–output models, the
IDA method has been more widely used due to its characteristics of easier data acquisition
and easy operation [12]. However, the exponential decomposition method also has certain
drawbacks, such as being represented as a product of several factor indicators by the
explanatory variable while ignoring the dependence between the multiplied factors. More-
over, the influencing factors that are artificially selected to enter the model are subjective.
SDA or IDA can be carried out at the international level, national level, and sectoral levels
but rarely at the enterprise and process level [13]. Therefore, more suitable methods are
needed for identifying influencing factors of carbon emission at the micro level.

Based on various carbon emission characteristics, Li et al. [14] divided the abatement
technologies of CO2 in the petroleum refining industry into the following six categories:
(1) Waste-heat recovery and over-bottom pressure recovery technology. (2) New mate-
rials technology. (3) Process optimization technology. (4) Intelligent system scheduling
optimization technology. (5) Circulating water system energy-saving technology. (6) New
equipment technology. For example, Liu et al. [15] suggested that upgrading process
heaters has been a priority in recent years, but heat recovery and advanced process control
systems will gradually begin to dominate the technological marketplace in the long term.
The use of renewable energy to produce renewable hydrogen via electrolysis for HT unit,
which replaces the steam methane reform, and to provide oxygen for oxy-combustion or
capture CO2 in FCC units can mitigate up to 22.11% of the GHG emissions in the petroleum
refineries [16]. The carbon-based methods emit large quantities of CO2, which motivates the
need to develop alternative and sustainable methods of generating hydrogen, such as the
thermochemical Cu-Cl cycle [17]. In addition, new equipment technologies have delivered
the greatest contribution to CO2 emissions reduction (more than 50%), while new material
technology only offers the lowest contribution to CO2 emissions reduction (less than 1%).
Xie et al. [18] suggested paying more attention to the research and development of energy-
saving technology, as well as the clean transformation of energy structure, by investigating
the driving factors of energy-related CO2 emissions in China’s petroleum refinery industry.
Morrow et al. [19,20] developed a refinery model that consisted of 12 process units for the
U.S. petroleum refining sector, and they classified CO2 emissions reduction technologies by
process unit. Recently, the carbon capture, utilization, and storage (CCUS) for industrial flue
gases has become an important issue in the petroleum industry [21–24]. It includes carbon
capture, carbon transport, CO2-enhanced energy recovery, and comprehensive utilization
of CO2 [25]. The CCUS could mitigate the emissions from refining operations and reduce
the refining sector’s share of global CO2 emissions by 4% [26]. Berghout et al. [27] evaluated
the combination of mitigation options at a complex refinery, including energy efficiency,
CCUS, and the introduction of biomass feedstock. Reasonable optimization of device
parameters is a low-cost means of achieving carbon emission reduction. Zhang et al. [28]
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configured the optimal parameters for the driving of steam and power systems to reduce
the carbon emissions of the device.

From above, previous studies made valuable contributions to our understanding of
carbon emissions and the mitigation of petroleum refineries from macroscopic aspects.
However, few studies have focused on exploring influencing factors of carbon emissions
from petroleum refineries at the process unit level. The impact of process parameters
on carbon emissions is still unclear because the influencing parameters are complex and
diverse. In addition, the carbon emission reduction technologies used for process units
are generally selected based on expert experience, which usually involves some general
knowledge and principles. The lack of specific analysis methods and data support generates
ambiguous suggestions for carbon emission reduction.

In response to these key issues, four typical process units of a certain refinery, including
FCC, Continuous Catalytic Reforming (CCR), HP, and DC, are chosen as objects. A typical
5-million-ton scale Chinese petroleum refinery was selected as an investigating object.
Redundancy analysis (RDA) and multiple regression analysis (MRA) were employed to
identify the key influencing factors of carbon emissions. The carbon reduction pathway
aiming at the identified influencing factors is further proposed for the target refinery. The
rest of this paper is organized as follows: Section 2 describes the main process units of the
refinery case, identifies the main process units of carbon emission, and describes the RDA
and MRA methods; Section 3 analyses and discusses the results of RDA and MRA, and
proposed carbon emission reduction pathways on the basis of results; Section 4 presented
the conclusions and some relevant suggestions

2. Data and Methods
2.1. Case Study

A petroleum refinery in China is taken as an example to conduct carbon emission and
mitigation-related analysis at process unit level. The enterprise can process up to 5 million
tons of crude oil annually. Mixed crude oil, methanol, and natural gas are used as the
primary raw materials to produce gasoline, diesel oil, liquefied gas, propylene, naphtha,
benzene, and other refined products. The carbon emission contribution of target refinery is
calculated on the basis of process classification (Figure 1). Refinery “off-site” (e.g., utilities
such as steam and electricity generation and hydrogen production) are neglected here.
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Figure 1. Proportion of carbon emissions from refinery processes. Notes: FCC—fluid catalytic
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From Figure 1, process units such as FCC, CCR, DC, and HP are the main sources
of carbon emission, accounting for 76% of the total carbon emissions of the enterprise.
Compared with other units, FCC has a large amount of raw material processing, longer
process flow, and more equipment. Thus, the scale of corresponding power and steam
consumption is larger [5]. The carbon emission of FCC and HP units exceeds that of other
production units. FCC is usually the processing unit with the highest carbon emission in
heavy oil treatment due to the complex reaction conditions and the requirement for catalyst
regeneration [29–32]. The main product of the HP unit is hydrogen. After purifying hydro-
gen through pressure swing adsorption (PSA), impurities such as CO2 will be discharged in
the form of waste gas [33]. Hydrogen is required as a raw material in each hydrogenation
process, and the carbon emissions of the HP unit in case study accounted for 21% of the
total carbon emissions of process discharges. The carbon emission from CCR and DC units
mainly comes from the heating process, and the combustion of the coke part of the DC unit
is also the main source of their carbon emissions [34].

Identification of specific sources is conducted for four process units. Process units can
be decomposed into subunits according to their technological processes. GHG species of
each subunit are further analyzed (Table 1). As for refineries, the emissions of CO2, CH4,
and N2O account for 98%, 2.25%, and 0.08% of the total GHG emissions. Facilities that do
not have FCC and HP units will tend to have higher fraction of their total GHG emissions
released as CH4 [4]. Thus, species analysis of GHG in refinery focuses on CO2 and CH4.
Additionally, GHG emission is mainly in the form of organized and unorganized emissions.
Due to the randomness and dispersibility of unorganized emission sources, organized
emission is emphatically discussed based on subunits.

Table 1. Identification results of emission source and compositions of GHG in a petroleum refinery.

Process Unit Process Subunit Emission Source of GHG Compositions of GHG

FCC
Reaction-regeneration Catalyst-coking exhaust emissions CO2

Fractionation Unorganized escape CH4
Absorption and stabilization Unorganized escape CH4

CCR

Pre-hydrogenation Pre-hydrogenation furnace combustion,
unorganized emission CO2, CH4

Reforming Heating furnace combustion, unorganized emission CO2, CH4
Extraction system unorganized emission CH4

Regeneration Catalyst-coking exhaust emissions CO2

DC
Reaction and fractionation Heating furnace combustion, unorganized emission CO2, CH4

Absorption and stabilization unorganized emission CH4
Cold coke, coke water reuse unorganized emission CH4

HP

Loading system Pre-heating furnace combustion emission CO2, CH4
hydrodesulfurization unorganized emission CH4
Conversion furnace Fuel combustion, unorganized escape CO2, CH4

PSA unorganized emission CO2

Notes: FCC—fluid catalytic cracking; DC—delayed coking; CCR—Continuous Catalytic Reforming; HP—
hydrogen production.

The FCC includes reaction-regeneration, fractionation, and absorption stabilization
subunits. In reaction-regeneration subunit, the feedstock is cracked under high-temperature
catalyst, and the coke is deposited on the catalyst, which reduces its catalytic activity. The
spent catalysts are sent to regeneration system to burn off the deposited coke, producing
large amount of flue gas mainly consisting of CO2. The resulting effluent from reaction-
regeneration sub-unit is processed in fractionators, which separate the effluent based on
various boiling points into several intermediate products. Absorption and rectification
methods are used in absorption stabilization systems to separate rich gas and crude gaso-
line [35]. Carbon emission of fractionation and absorption stabilization subunits is mainly
attributed to CH4 leakage from components or devices.
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CCR includes three subunits: pre-treatment, reforming, and catalyst continuous regen-
eration. Impurities, such as heavy metals, S, N, are removed to refine the raw material of
naphtha in pre-hydrogenation, and oil productions with a high content of aromatics are
generated in reforming subprocess, in which combustion emission of pre-hydrogenation
furnace and reforming heating furnace emits CO2 and not fully burned CH4. The used
catalysts are regenerated by oxychlorination, drying, and chemical reduction in continuous
regeneration sub-process [36]. Coke burning oxidizes the carbon on the surface of catalysts,
leading to CO2 emission.

DC mainly includes reaction and fractionation, absorption and stabilization, cold coke,
and coke water reuse [37]. This thermal cracking unit rapidly heats heavy residual oil to
high temperatures under intense heat conditions through the heating furnace tube. The oil
reaches the temperature for coking reaction within a short period of time and quickly leaves
the heating furnace, entering the coke tower. Combustion of heating furnace generates
CO2 and CH4. After pyrogenic reaction, the coke tower needs to be cooled with water.
During this process, oil and gas together with water vapor, enter the cold coke water vent
system, absorbing the oil and gas after contacting the circulating cooling water. When the
temperature of the coke tower is high, poor adsorption of oil and gas causes vent emission
of CH4.

Steam methane reforming (SMR) technology is generally used in HP unit, which
includes loading system, hydrodesulfurization, conversion furnace, and PSA subunits.
Feedstocks are heated to appropriate temperature by preheating furnace, and unsaturated
hydrocarbons are converted to saturated hydrocarbons in the hydrogenation reactor. The
hydrogenated gas and water vapor undergo a conversion reaction in a certain proportion.
Combustion of preheating furnace and conversion furnace produces CO2 and CH4. Then,
conversion gas undergoes heat exchange, condensation, and other processes, allowing the
gas to pass through a PAS device equipped with various adsorbents under automated
control. Impurities such as carbon monoxide and carbon dioxide are adsorbed by the
adsorption tower, obtaining the final product, hydrogen [38]. Desorption of PAS devices
leads to lots of CO2 emissions.

2.2. Data Sources

The process data adopts the monthly GHG emission monitoring data and monthly
monitoring process parameters from 2021 to 2023. The data come from self-monitoring of
the refinery in this study. Other technical reports sponsored by the United States Govern-
ment are sourced from online downloads. There are a total of 128 process parameters related
to carbon emissions in the FCC unit, mainly including data items about reaction regen-
eration, pressure swing adsorption (PSA), fractional distillation, absorption-stabilization,
desulfurization, mercaptan removal, flue gas desulfurization and denitrification, catalyst
dosage, properties, and processed product volume. There are a total of 43 process parame-
ters related to carbon emissions in the DC unit, mainly including data regarding hydrogen
production, PSA, hydrogen balance, heating furnace, and consumption of raw materi-
als and intermediate products. The HP unit has 36 process parameters associated with
hydrogen production, PS, hydrogen balance, heating furnace section, and consumption
of raw materials and intermediate products. There are 45 process parameters related to
carbon emissions in CCR, mainly including that of pre-hydrogenation, reforming, regener-
ation, lye dissolving tank (V-901), heating furnace, and consumption of raw materials and
intermediate products.

2.3. Methods
2.3.1. Redundancy Analysis

In this study, CO2 and CH4 were considered as two response variables, and the other
parameters were set as explanatory variables. In this situation, correspondence analysis
(CA) was used to explore the relationship between process parameters and carbon emissions
within each production unit. Redundancy analysis (RDA) and Canonical Correspondence
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Analysis (CCA) are both CA-based sequencing methods [39]. RDA is a linear model, while
CCA is a unimodal model. The nonlinear model of CCA can accommodate the linear model,
and the results of RDA will be more accurate in the case of shorter gradient length [40].
Another method of method selection can be judged by the lengths of gradient value result
of Detrending Correspondence Analysis (DCA); if its maximum value is less than 3, the
RDA analysis is more accurate. If it is greater than 4, CCA analysis should be selected.
Between 3–4, both methods can be used [41]. The results of DCA analysis of FCC, DC, HP,
and CCR are shown in Table 2.

Table 2. DCA analysis results of four process units.

Name FFC DC HP CCR

Data (Monthly) January 2021–January
2023

January 2021–March
2023

January 2021–February
2023

January 2021–March
2023

Maximum gradient
length 0.15 1.05 0.06 0.22

Suitable method RDA RDA RDA RDA

The results indicate that RDA analysis is more suitable for this study than CCA analy-
sis, and the data changes of carbon emissions are gentle without significant fluctuations.
Therefore, using a linear model is more suitable. Redundancy analysis (RDA) is a sorting
method that combines regression analysis with principal component analysis. RDA is
a principal component analysis for the fitting value matrix of multiple linear regression
between the response variable matrix and the explanatory variable matrix. It simplifies the
number of variables by screening the eigenvalues and then intuitively reflects the relation-
ship between the explanatory variable and the response variable on the same coordinate
axis. At the same time, RDA can provide the contribution of each explanatory variable
to the response variable, identifying variables that have a significant impact on carbon
emission [42].

The calculation of RDA method is to first perform multiple regression between each
response variable in the centralized response variable matrix (Y) and all explanatory
variable matrix (X) in order to obtain the vector of fitted value (ŷ) of each response variable
and the vector of residual (yres). The vectors of all fitted values form a matrix of fitted
values (Ŷ). Then, principal component analysis was applied to the matrix (Ŷ) to obtain
the canonical eigenvector matrix (U). Two sets of sorting coordinates were calculated
based on matrix YU and ŶU, which represents the sorting coordinates of Y space and that
of X space, respectively. All calculations related to the DCA and RDA were performed
based on Canoco 5.0 software, and its significance was evaluated by using the Monte Carlo
permutation test [43].

2.3.2. Multiple Regression Analysis

The carbon emission can be regarded as one response variable for CO2 dominates to
the point where other gases can be ignored. Therefore, the multiple regression analysis
is used to identify the link between the dependent variable (y)’value of a CO2 emission
and many known independent variables (x). The unknown dependent variable can be
determined in a predictive model if all parameters have been evaluated. The model for the
MRA can be described as follows [44]

yi = β0 + β1xi1 + β2xi2 + · · ·+ βkxik (1)

where yi: dependent variable; xi1, · · · , xik: independent variables; β0: constant; β1, · · · , βk :
coefficients of variables. All calculations for parameter estimation and validation are based
on IBM SPSS Statistics 27 software.
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3. Results
3.1. Influencing Parameters and Reducing Pathways of FCC Unit

Through RDA analysis, a total of five relevant influencing factors with a contribution
of 87.2% to CO2 and CH4 emissions were identified, as shown in Figure 2 and Table 3. It
shows that the angle between the middle circulation reflux (L6) and the CO2 axis is small,
and the length is the longest, indicating that it has the highest positive correlation on CO2
emission. At the same time, catalyst surface area (SA) and slurry (P7) also have strong
positive correlations on CO2 emission. The main factors affecting CH4 emission mainly
include C-5002 pressure (PR11) and bottom loose steam (VF6).
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Table 3. Testing significances of process variables to GHG emissions of FCC.

Factor Name Abb. Explains (%) Contribution (%) p-Value

Middle Circulation Reflux (t/h) L6 54.8 54.8 0.002
Slurry (kg) P7 17.5 17.5 0.002

Catalyst surface area (m2/g) SA 6.6 6.6 0.020
C-5002 pressures (MPa) PR11 5.8 5.8 0.022

Bottom loose steam (kg/h) VF6 2.5 2.5 0.016

Testing significances of process variables to carbon emissions are shown in Table 3.
The contribution of L6 is 54.8% of the total variance of the response variable matrix. That of
P7 ranks second, accounting for 17.5% of the total variance. The p-values of L6 and P7 are
less than 0.01, indicating that the significance of these two factors is high. The p-values of
other parameters, such as SA, PR11, and VF6, are all less than 0.05, indicating that these
factors are significant.

The parameters in Table 3 can be classified into three categories based on their charac-
ters: processing scale, reaction condition, and material property, as shown in Table 4. L6 is
regarded as the processing scale as it is usually used as the heat source for the absorption
tower, in which a large amount of energy is consumed during the heat-up process. The
increase in L6 results in an increase in carbon emissions. PR11 and VF6 are parameters
related to reaction conditions. Thermodynamic and chemical kinetic considerations es-
tablish pressures and temperatures required to maximize the yield of desirable products.
The temperature and pressure will jointly affect the reaction process. The P7 reflects the
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scale of refinery processing. The output of the oil slurry is proportional to the circulating
volume in the fractionation tower. The larger the output of the oil slurry, the greater the
energy consumption required, and the carbon emissions will increase [45]. The properties
of SA usually lead to coke deposition into the catalyst particles or matrix pores. During
this process, carbon emissions will increase as a result [46].

Table 4. Types of influencing factors and emission reduction pathways of FCC unit.

Factor Name Abb. Factor Type Emission Reduction Pathways

Middle Circulation Reflux (t/h) L6 processing scale (1) Changing the composition of raw oil
(2) Slow heating up

C-5002 pressures (MPa) PR11 reaction conditions
(1) Optimize process parameters

Bottom loose steam (kg/h) VF6 processing scale

Catalyst surface area (m2/g) SA Material property
(1) Improving the properties of raw oil
(2) Controlling temperature
(3) Increasing catalyst pore size

Slurry (kg) P7 processing scale (1) Recycling and filtration

Based on the 21 indicators identified by RDA analysis, multiple regression analysis
(MRA) was conducted, and the stepwise method was used to screen independent variables.
The results obtained are shown in Table 5. The adjusted R2 of the model reached 0.761,
indicating a high fitting effect and significant t-test for independent variables.

Table 5. Coefficients and t-test of regress model for FCC.

Model
Unstandardized Coefficient Standardized Coefficient

t Significance
B Standard Error Beta

Constant 5.455 3.603 1.514 0.149
L6 0.07 0.009 1.031 8.225 0
P7 1.21 × 10−6 0 0.538 4.29 0.001

The regression model is shown in Formula (2), which is as follows:

y = 0.07x1 + 1.21 × 10−6x2 + 5.455 (2)

where y—CO2 emissions, mg/m3; x1—Intermediate circulation volume, t/h; x2—slurry,
kg. The equation indicates that carbon dioxide emissions can be explained or predicted
by the intermediate circulation volume (L6) and oil slurry (P7). The results are basically
consistent with that of the RDA analysis.

3.2. Influencing Parameters and Reducing Pathways of DC Unit

Through RDA analysis, a total of 9 relevant influencing factors with a contribution of
82.5% to carbon emissions were identified, as shown in Figure 3 and Table 6.

It shows that the heat efficiency of the furnace (JC) has the highest negative correlation
on CO2 emission, followed by the temperature at the bottom of the desorption tower (XA)
and sealing oil pressure (FAA). At the same time, Heating furnace outlet pressure (FM),
Heating furnace feed rate (FO), dry gas (G5), heating furnace oxygen content (JA), Excess
air coefficient (JB) and heating furnace temperature (FR) have strong positive correlations
on CH4 emission.
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Figure 3. Diagram of the redundancy analysis (RDA) presenting the correlations between the GHG
emission (CO2, CH4) and process parameters of the DC unit.

Table 6. Testing significances of process variables to GHG emissions of DC.

Name Abbas. Explains % Contribution % p-Value

Heat efficiency of the furnace (%) JC 32.6 32.6 0.002
Heating furnace outlet pressure (MPa) FM 12.3 12.3 0.036

Heating furnace temperature (◦C) FR 8.1 8.1 0.068
Excess air coefficient JB 6.1 6.1 0.05

Heating furnace oxygen content (%) JA 5.8 5.8 0.09
Temperature at the bottom of the desorption tower (◦C) XA 5.0 5.0 0.084

Heating furnace feed rate (t) FO 4.8 4.8 0.153
Dry gas (t) G5 4.4 4.4 0.125

Sealing oil pressure (MPa) FAA 3.4 3.4 0.076

Types of influencing factors and emission reduction pathways of DC units are shown
in Table 7. The influencing factors are classified into two categories: reaction condition
and processing scale. The main influencing factors related to reaction conditions are the
operating parameters related to the heating furnace. Improving the thermal efficiency of
the heating furnace will improve energy efficiency and reduce carbon emissions. The excess
air coefficient will affect the thermal efficiency of the heating furnace. If the coefficient is
too small, it will cause incomplete combustion of fuel in the heating furnace, resulting in
more coke production. The pressures and temperatures are prerequisites for many physical
and chemical reactions based on thermodynamic and chemical kinetic considerations.
The changes of them will change the yield of intermediate, final products, and wastes.
Its establishment also requires energy consumption, thereby affecting carbon emissions.
The temperature change at the bottom of the desorption tower will affect the amount
of desorbed gas, which in turn affects the absorption effect of the absorption tower. An
increase in the bottom temperature of the analytical tower will lead to an increase of the
C3 component in the dry gas, resulting in a decrease in the absorption efficiency and an
increase in the carbon emission.
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Table 7. Types of influencing factors and emission reduction pathways of DC unit.

Name Abbas. Factor Type Emission Reduction Pathways

Heat efficiency of the furnace (%) JC reaction conditions Improving heat efficiency

Heating furnace outlet pressure (MPa) FM reaction conditions Appropriate pressure

Heating furnace temperature (◦C) FR reaction conditions Reduce the temperature

Excess air coefficient JB reaction conditions Reduce excess air coefficient while ensuring
complete combustion

Heating furnace oxygen content (%) JA reaction conditions Appropriate oxygen content

Temperature at the bottom of the
desorption tower (◦C) XA reaction conditions Reduce the temperature

Heating furnace feed rate (t) FO processing scale Choose the appropriate recycle ratio in
delayed coking

Dry gas (t) G5 processing scale Choose the appropriate recycle ratio in
delayed coking

Sealing oil pressure (MPa) FAA reaction conditions Optimize the pressure to reduce carbon emissions

Based on the 22 indicators identified by RDA analysis, MRA was conducted, and
the stepwise method was used to screen independent variables. The results obtained are
shown in Table 8. The adjusted R2 of the model reached 0.801, indicating a high fitting
effect and significant t-test for independent variables.

Table 8. Coefficients and t-test of regress model for DC.

Model
Unstandardized Coefficient Standardized Coefficient

t Significance
B Standard Error Beta

Constant 354.4 51.022 6.946 <0.001
JC −2.609 0.466 −0.636 −5.598 <0.001
XA −0.377 0.087 −0.591 −4.342 <0.001
JB −61.448 17.040 −0.365 −3.606 0.002
FR 0.036 0.016 −0.297 2.293 0.033

The regression model is shown in Formula (3), which is as follows:

y = −2.609x1 − 0.377x2 − 61.448x3 + 0.036x4 + 354.4 (3)

where y—CO2 emissions, mg/m3; x1—heat efficiency of the furnace, %; x2—temperature
at the bottom of the desorption tower, ◦C; x3—excess air coefficient; x4—heating furnace
temperature, ◦C. The equation indicates that carbon dioxide emissions can be explained or
predicted by the JC, XA, JB, and PR. The results are basically consistent with that of the
RDA analysis.

3.3. Influencing Parameters and Reducing Pathways of HP Unit

Through RDA analysis, a total of five relevant influencing factors with a contribution
of 81.5% to GHG emissions were identified, as shown in Figure 4 and Table 9. The mixed
excess air coefficient of the heating furnace (JB) has the highest positive correlation and
the greatest impact on CO2 emission, followed by conversion furnace feed flow (ZW). The
converter outlet temperature (ZJ) has the highest negative correlation to CH4 emission.
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emission (CO2, CH4) and process parameters of HP unit.

Table 9. Testing significances of process variables to GHG emissions of HP.

Factor Name Abb. Explains% Contribution% p-Value

Converter outlet temperature (◦C) ZJ 27.1 27.1 0.026
Excess air coefficient of heating furnace JB 26.3 26.3 0.014
Conversion furnace feed flow (Nm3/h) ZW 17.9 17.9 0.010
Product hydrogen flow rate (Nm3/h) HD 10.4 10.4 0.078

Testing significances of influencing factors are shown in Table 9. It can be seen that
the explained variance of ZJ, JB, and ZW accounts for 27.1%, 26.3%, 17.9%, and 10.4%,
respectively. The p values of ZJ, JB, and ZW are all less than 0.05, indicating the significance
of these factors.

Types of influencing factors and emission reduction pathways of HP units are shown
in Table 10. The conversion of natural gas steam to hydrogen will produce carbon emissions,
mainly including process carbon emissions caused by the conversion reaction of methane
steam and indirect carbon emissions caused by energy consumption during the hydrogen
production process [47]. The significant indicators related to process scale will increase
or decrease the load of the conversion furnace and heating furnace, thereby affecting
fuel consumption and device emissions. Regarding reaction conditions, mainly about
temperature and excess air coefficient, there is a significant impact on energy and thermal
efficiency during chemical reaction process, further affecting carbon emissions.

Table 10. Types of influencing factors and emission reduction pathways of HP unit.

Factor Name Abb. Factor Type Emission Reduction Pathways

Converter outlet temperature (◦C) ZJ reaction conditions Optimize temperature control to reduce
energy consumption

Excess air coefficient of heating furnace JB reaction conditions Optimize oxygen content to increase
energy efficiency

Conversion furnace feed flow (Nm3/h) ZW Process scale Decrease water/carbon ratio
Product hydrogen flow rate (Nm3/h) HD Process scale Decrease water/carbon ratio
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Based on the 22 indicators identified by RDA analysis, MRA was conducted, and
the stepwise method was used to screen independent variables. The results obtained are
shown in Table 11. The adjusted R2 of the model reached 0.637, indicating a high fitting
effect and significant t-test for independent variables.

Table 11. Coefficients and t-test of regress model for HP.

Model
Unstandardized Coefficient Standardized Coefficient

t Significance
B Standard Error Beta

Constant −132.556 52.997 −2.501 0.020
JB 34.684 8.948 0.874 3.876 0.001
ZJ 0.167 0.060 0.625 2.772 0.011

The regression model is shown in Formula (4), which is as follows:

y = 34.684x1 + 0.167x2 − 132.556 (4)

where y—CO2 emissions, mg/m3; x1—excess air coefficient of a heating furnace; x2—
converter outlet temperature, ◦C. The equation indicates that carbon dioxide emissions can
be explained or predicted by the excess air coefficient of a heating furnace (JB) and converter
outlet temperature (ZJ). The results are basically consistent with that of the RDA analysis.

3.4. Influencing Parameters and Reducing Pathways of CCR Unit

Through RDA analysis, a total of 7 factors with a significant impact on GHG emissions
(contributing to 81.9% explained variances of GHG emissions) were identified, as shown in
Figure 5 and Table 12.
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Table 12. Testing significances of process variables to GHG emissions of CCR.

Name Abb. Explains % Contribution % p-Value

Pre-hydrogenation feed volume (t/h) YA 42.8 42.8 0.002
Oxygen content in box furnace (%) J2C 11.1 11.1 0.02

Excess air coefficient J1A 10.4 10.4 0.018
Regenerated oxygen content (%) ZF 7.7 7.7 0.014

The amount of hydrogen mixed (m3/h) CB 4.6 4.6 0.056
Yield of C6 (t) G2 3.1 3.1 0.08

Gas-liquid separation pressure (MPa) YC 2.2 2.2 0.12

According to Table 12, the contribution of YA is much higher than that of other devices,
accounting for a 42.8% variance contribution. The p-values of J1A, J2C, ZF, and CB are
about less than 0.05, indicating significant factors.

The identified factors can be categorized into reaction conditions and processing
scale, as shown in Table 13. The parameters that have the most obvious impact on carbon
emissions are mainly related to temperature, which not only affects the catalytic process but
also affects the composition of the product. As the temperature increases, carbon emissions
will increase [48]. The YA will have an impact on the hydrogen oil ratio. The high YA will
increase the steam consumption of the recycled gas compressor, resulting in higher energy
consumption. The oxygen content and excess air coefficient are both related to the heating
furnace, and the oxygen content of the heating furnace determines whether the internal
fuel can be completely burned, which is an important parameter to measure the energy
efficiency of the heating furnace. The ZF needs to be controlled within a certain level for
both high or low is not good. Compared with C7, the conversion rate of C6 straight-chain
alkanes in the raw materials is much lower, and the conversion of C6 straight-chain alkanes
into benzene in the reforming raw materials is more difficult, resulting in increased energy
consumption.

Table 13. Types of influencing factors and emission reduction pathways of CCR unit.

Name Abb. IMPACT TYPE Emission Reduction Pathways

Pre-hydrogenation feed volume (t/h) YA processing scale Control the feeding speed of materials

Oxygen content in box furnace (%) J2C reaction conditions Determine the optimal oxygen content
based on the coke temperature gradient in

the regeneration coke zone
Excess air coefficient J1A reaction conditions

Regenerated oxygen content (%) ZF reaction conditions

Hybrid gasoline and Hydrogen (m3/h) CB processing scale Optimizing the hydrogen/carbon ratio

Yield of C6 (t) G2 processing scale Optimizing components and the Initial
Distillation Point of raw Materials

Based on the 24 indicators identified by RDA analysis, MRA was conducted, and
the stepwise method was used to screen independent variables. The results obtained are
shown in Table 14. The adjusted R2 of the model reaches 0.732, indicating a high fitting
effect and significant t-test for independent variables.

Table 14. Coefficients and t-test of regress model for CCR.

Model
Unstandardized Coefficient Standardized Coefficient

t Significance
B Standard Error Beta

Constant 67.138 13.696 3.816 0.001
YA −0.315 0.057 −0.723 −5.799 0
J2C 8.368 1.65 1.075 3.585 0.002
J1A −47.9 12.581 −0.859 −2.591 0.017
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The regression model is shown in Formula (5), which is as follows:

y = −0.315x1 + 8.368x2 − 47.9x3 + 67.138 (5)

where y—CO2 emissions, mg/m3; x1—pre-hydrogenation feed rate, t/h; x2—oxygen
content of box furnace, %; x3—excess air coefficient. The equation indicates that carbon
dioxide emissions can be explained or predicted by the YA, J2C, and J1A. The results are
basically consistent with that of the RDA analysis.

4. Discussions

Decomposition analysis has been widely used to quantify driving factors of changes in
an indicator over time [12]. Xie et al. [18] decomposed the CO2 emissions changes of China’s
petroleum refining and coking industry (PRCI) into five factors and compared their diverse
contributions by using the Logarithmic Mean Divisia Index (LMDI) decomposition method.
The results show that industrial activity is the dominant driving force of the growth of
CO2 emissions, followed by industrial scale and energy intensity. Liu et al. [49] combined
the structural decomposition analysis method and the input–output subsystem analysis
method to construct a decomposition model of the factors influencing the amount of change
in carbon dioxide emissions in China. However, due to methodological limitations, factor
decomposition methods focus on a small number of highly comprehensive driving force
indicators, making it difficult to provide driving force analysis of core parameters at the
critical process level.

A few recent studies aim to assess CO2 mitigation potential for a complex refinery
by using a bottom-up method, in which the studies of the oil industry process-chain
(production, transport, and refining) were used to identify energy efficiency measures
(EEM) based on operational data at the process unit level [50]. The first step of the general
approach is identifying an inventory of existing facilities and key parameters of the core
process of the refinery (e.g., CO2 emissions, reaction parameters, material and energy flows).
Morrow et al. [19,20] identified energy efficiency-related measures and CO2 emissions
reduction potential for the U.S. refining industry by dividing petroleum refining into
12 process units. Jia et al. [6] established a modeling framework to address the petroleum
and its derivatives, energy, and CO2 emissions nexus at the process unit-level based on
energy flow analysis and bottom-up method when refining paraffin-based crude oil in
China. Although the bottom-up approach starts from process-level data of petroleum
refining, it lacks the ability to objectively identify influencing factors. The energy flow
analysis-based bottom-up approach can only identify the influencing factor of flux or
scale type and cannot analyze the influencing factors of chemical reactions and material
properties types. Therefore, the integrated RDA and MRA method proposed in this
article can deal with all kinds of factors to one or multiple response variables, providing
a quantitative method for identifying significant influencing factors and expanding the
application scope of “Decomposition Analysis”.

FCC, CCR, DC, and HP units are selected as the object of study according to the
proportion of carbon emissions. The results of four main units indicate that the main types
of influencing factors are energy consumption, reaction conditions, processing scale, and
catalyst-related factors. In the reaction conditions, regardless of the device, any part that
involves heating will have a significant impact on carbon emissions. In most processes, the
fractionation parts are the main factors that influence the GHG emission. It is probable
that continuous heating sources are required, which results in a significant amount of
energy consumption and carbon emissions. The impact of process scale is reflected in the
production load. If other parameter conditions remain unchanged, an increase in load leads
to higher carbon emissions. The coke burning of catalyst regeneration produces a large
amount of greenhouse gases. Any factor that affects the carbon deposition on the catalyst
will have a significant impact on carbon emissions.
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5. Conclusions

When estimating or reducing carbon emissions in a refinery, researchers often focus on
carbon emissions at industries and enterprise levels, neglecting that of process or equipment.
This reduces the resolution of the estimation and the operability of the measures. Taking a
certain petroleum refinery in China as an example, the study identified the relationship
between the parameters of each operating device and carbon emissions through process
analysis combined with statistical analysis of MRA and RDA and provided more targeted
suggestions for reducing carbon emissions in the refinery.

The proposed method, compared to the factorial decomposition method, can analyze
the factors affecting carbon emissions at a more microscopic level and provide more detailed
information, such as analyzing the factors affecting carbon emissions of an enterprise or
equipment. The proposed method is easy to understand, simpler to calculate, and can
identify significant factors affecting carbon emissions from numerous production process
parameters, avoiding the subjective selection of research factors. The proposal method
provides a higher resolution factor identification method, but it is still qualitative, based
on multi-objective optimization and multi-objective experimental design methods. The
influencing factors can be further studied to obtain the optimal values while balancing the
economy, environment, and other issues.

Potential carbon mitigating pathways for FCC unit after analyzing significant influenc-
ing factors include changing the composition of raw oil and improving catalyst performance
to reduce the amount of produced coke. Optimizing process parameters and strengthening
the circulation and recovery of heat and steam to improve energy efficiency. Potential
carbon mitigating pathways for DC unit is to optimize process parameters to improve the
thermal efficiency of the heating furnace. In the HP unit, optimizing the reaction conditions
and inlet and outlet loads of the conversion furnace and heating furnace are main ways to
reduce carbon emissions. The potential emission reduction methods of the CCR device are
mainly through optimizing the raw material composition, controlling reaction parameters,
and optimizing the reaction load.

In this case, the most mitigations of carbon emission can be classified as implementing
energy or mass efficiency measures. It can be implied by operational control measures
and scale control measures. The former mainly involves the optimization of equipment
parameters, while the latter mainly involves the optimization of scale for material and
energy flow. This paper mainly concentrated on proposing mitigation pathways based on
identified influencing factors that have a negative effect on the GHG emission of certain
refinery units. The discussion of current trends in novel carbon reduction technologies for
the petroleum refining industry, including combined heat and power (CHP), carbon capture,
utilization, and storage (CCUS), and the potential introduction of biomass energy and Green
Hydrogen [51], are not addressed in this paper. These opportunities are recommended for
further research and analysis. Moreover, this study is based on data from only one refinery,
so the sample size is not large. If the study could use more data from more refineries, the
results would be more objective. Due to the complexity of the petroleum refining process,
only the main carbon emission equipment was selected for this study, and further research
is needed on the remaining carbon emission equipment.
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