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Abstract: This paper presents a parametric procedure to size a hybrid system consisting of renewable
generation (wind turbines and photovoltaic panels) and Battery Energy Storage Systems (BESS). To
cope with the increasing installation of grid-scale BESS, an innovative, fast and flexible procedure
for evaluating an efficient size for this asset has been developed. The tool exploits a high-fidelity
empirical model to assess stand-alone BESS or hybrid power plants under different service stacking
configurations. The economic performance has been evaluated considering the revenue stacking
that occurs when participating in up to four distinct energy markets and the degradation of the
BESS performances due to both cycle- and calendar-aging. The parametric nature of the tool enables
the investigation of a wide range of system parameters, including novel BESS control logic, market
prices, and energy production. The presented outcomes detail the techno-economic performances of a
hybrid system over a 20-year scenario, proposing a sensitivity analysis of both technical and economic
parameters. The case study results highlight the necessity of steering BESS investment towards the
coupling of RES and accurate planning of the service stacking. Indeed, the implementation of a
storage system in an energy district improves the internal rate of return of the project by up to 10% in
the best-case scenario. Moreover, accurate service stacking has shown a boost in revenues by up to
44% with the same degradation.

Keywords: battery energy storage system; renewables; market service stacking

1. Introduction

The energy sector is responsible for a large share of anthropogenic carbon emissions
that lead to climate change and global warming. The 2015 United Nations Climate Change
Conference in Paris set the milestone of limiting the average temperature increase to below
1.5 ◦C [1]. A total of 160 countries around the world have agreed to combat global heating
through the installation of renewable energy sources (RES) for a more sustainable energy
scenario. Consequently, the overall energy production by RES has increased from 20 to 28%
since 2010, and the target is for production to reach at least 43% by 2030 [2]. Focusing on
the European Union (EU), the EU Green Deal and the “Fit-for-55” package set the goal is of
reducing greenhouse gas emissions by 55% with respect to 1990 by 2030 [3].

RES have a low carbon footprint and are, therefore, among the main candidates
for energy sources that could be used to reach these decarbonization targets. In any
case, their integration into the energy system is not straightforward. These sources are
characterized by the high intermittency and non-programmability of the energy output,
which complicates the balance between supply and demand in the power system [4]. Grid-
connected battery energy storage systems (BESS) represent a viable resource to cope with
those issues and guarantee the balance, stability, and adequacy of a decarbonizing power
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system. Compared to other storage systems, BESS are close to market maturity, with prices
dropping by 87% from 2010 to 2019 [5]. The installed grid-scale battery storage capacity
will expand 44-fold between 2021 and 2030 to 680 GW according to IEA [6]. In addition,
lithium-ion batteries outperform other storage technologies in terms of energy density,
power density, and round-trip efficiency. Moreover, their operational reliability can last
up to 20 years with suitable management strategies, such as temperature regulation and
capacity augmentation [7]. The success of this technology is attributed to the flexibility
and scalability of these assets, coupled with their ability to behave as bulk energy systems.
These characteristics enable the provision of a wide set of services to system operators
and active users. Such services could reduce RES uncertainty and make BESS attractive
investments.

Despite the possible enhancement that BESS could provide to electric power system
operation, this technology still has shortcomings. Although battery prices are decreasing
yearly, the overall cost per kWh is still high, representing the most common challenge.
To cope with high capital costs, it is crucial to capture multiple cash flows to increase the
financial viability of the project. The dynamic stacking of BESS services ensures higher
profits for the asset [8]. Therefore, it is of paramount importance to evaluate an efficient
system operation that creates multiple streams of revenues to increase the economic benefits.
To properly assess and optimize the cash flow, the owner of the system must optimally
size the BESS, accounting for several economic aspects such as cell technology, installation
cost, and maintenance cost. These expenditures are mainly affected by lifetime, battery
capacity, and overall performance, which interact in a non-linear manner. The proper
evaluation of these aspects allows for more accurate modeling and, consequently, a more
precise economic analysis.

High-fidelity BESS modelization is mandatory to ensure accurate economic evaluation.
This paper proposes a model-aware BESS-sizing procedure that accurately represents the
performance of BESS in different energy markets during their lifetime, accounting for the
main non-linearities. In general, the stacking of the services is mostly addressed by constant
BESS models that do not consider the non-linearities of this technology and the presence of
auxiliaries. Furthermore, service stacking with grid-scale storage is mainly investigated in
a stand-alone configuration, without evaluating the possible services that the system can
provide to an RES power plant. Lastly, services such as the capacity market have not been
assessed to date. Based on the state-of-art described in the next section, the novelties of this
work are as follows:

• A sizing procedure is developed that investigates a 20-year BESS investment with a
high-fidelity empirical model developed in [9] and updated with equations capable
of emulating the capacity degradation of the system. The latter structure has been
exploited to create a fast and flexible tool that is able to evaluate the most cost-effective
storage investment, ensuring an efficient trade-off between computational effort and
accuracy.

• Innovative algorithms are developed that are capable of stacking multiple services
with a sequential approach. The implemented solutions produce results seamlessly,
with two distinct configurations: stand-alone and hybrid-renewable power plants.

The work is structured as follows. Section 2 reviews the modelization and the algo-
rithms exploited for sizing BESS in the literature. Section 3 describes the proposed empirical
model, the methodology of the sizing procedure, and the novel algorithm proposed for
stacking the energy markets. Section 4 introduces the study cases. Section 5 discusses the
main results. Lastly, Section 6 summarizes the activities and lists future works.

2. Literature Review

The BESS sizing procedure consists of identifying the most cost-effective configuration
for the stakeholders. The application is complex and non-linear. This section aims to
describe two different fundamental aspects of the procedure: the modeling, and solution
methods [10].
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2.1. Modeling

Modeling focuses on the mathematical representation of the key components of BESS.
A wide number of approaches have been developed, with different levels of complexity
and computational effort. According to the degree of physical insight, battery models can
be divided into three different levels: electrochemical model, circuit-oriented (or electrical)
model, and black box models (empirical or stochastic) [11]. The selection of a model is
bounded to the application area. Namely, a specific model ensures a different degree of
accuracy and computational effort, and depending on the details required by the imple-
mentation, an efficient balance between the two characteristics improves the quality of
the analysis. For instance, electrochemical models are the most accurate approach to bat-
tery representation. They describe the chemical reactions that take place in the electrodes
and the electrolytes using a set of non-linear differential equations [12]. The expressions
detail the effect of the electrochemical reactions, such as the diffusion, migration, kinetic
phenomena, and lithium concentration, to truly represent the state variables of the sys-
tem [13]. A description of the batteries at a microscopic scale accurately represents the
key behaviors of the nonlinear system [14]. Although there is no doubt regarding the
accuracy of electrochemical models, they are used in low-speed applications, such as online
capacity estimation [15,16], predictive maintenance [17] or the validation of complemen-
tary models [18]. Circuit-oriented models are electrical equivalent models that are able
to represent the state variables of the batteries [11]. Electrical models consist of electrical
circuits made by capacitors and resistances, whose proper connection emulates the behavior
of the batteries. The basic electrical model, known as Rint, has a big capacitor that can
describe the open-circuit voltage of the cell, and a series resistance that can simulate the
battery’s internal resistance [19]. Moreover, RC circuits can be connected in series to the
Rint model to increase the order of the system and emulate relaxation and polarization
effects [20]. Despite the empirical nature of those elements, these modelizations are widely
adopted thanks to their computational efficiency in capturing the dynamic response of the
system [21]. The ability to estimate the state of batteries in real-time makes these models
suitable for applications such as EV state estimation [20], and grid stability [22,23]. Further-
more, electrical models ensure a good performance when evaluating the terminal voltage
and SOC of the batteries. Articulated modelization, such as a three-order model, allows
for these state variables to be described with errors lower than 1% [21,24]. However, if the
accuracy of the model increases, the same occurs regarding the computational effort [25].
In sizing applications, computational efficiency is a priority since it requires the evaluation
of steady-state performances over a long time-window (e.g., 15–20 years). Therefore, the
complexity of the electrical model could not produce results that are valuable for the pro-
cedure in a reasonable time. Empirical models ensure the optimal computational effort
for this kind of analysis. The modelization is characterized by mathematically constructed
models that utilize the observed data and measurements to represent the behavior and
performance of BESS systems. These models are developed by an analysis of real-world
operational data and the characteristics gathered from datasheets or experiments, allowing
for them to capture the key relationships and patterns between various parameters [26,27].
By leveraging statistical techniques, regression analyses, or other mathematical approaches,
empirical models provide a parametric representation of how different factors, such as
battery lifetime, efficiency, and capacity, interact and impact the overall performance of
BESS systems [9].

A fair share of BESS sizing procedures are based on scalar linear empirical systems that
resemble the BESS performances. In [28], a constant battery and inverter efficiency model
has been exploited to size a PV residential system by evaluating the economic criteria of
the annuity method. Study [29] investigates the optimal sizing of BESS through a life-cycle
cost model. This model inspects the different phases of the system, also accounting for
the final decommissioning, maintenance and recycling, and disposal as a reduction in
the economics of the system. Ref. [30] proposes a constant-efficiency empirical model to
size an energy storage system, accounting for hosting capacity and reductions in wind
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curtailment. Although these simplified empirical models represent the easiest approach
to configuring and producing results for BESS, they are generally the least accurate [31].
Nevertheless, high-fidelity empirical models that represent varying efficiencies and power
capabilities depending on SoC and C-rate improve the accuracy of the analysis [32]. These
approaches rely on experimental campaigns to create a computationally efficient BESS
model that contains an error. In [33], a regression technique has been exploited to build
a non-linear BESS with an average SOC root mean square error of 3%. In [34], a detailed
non-linear power losses model has been implemented to more precisely capture the low-
efficiency working region of the storage system. In [9], a grid-scale BESS has been modeled
with lookup tables to represent the non-linear efficiency and the auxiliary consumption
of the system, ensuring an average SOC error of 0.168%. Despite the high fidelity of the
modelization, the latter applications are limited to the operation perspective, and no one
has used the accuracy of the model to size the BESS.

2.2. Solution Method

The solution method consists of the approach used to investigate the optimal size of
the BESS, i.e., the mathematical procedure adopted to set the schedule and the dispatching
of different services. The goal of the algorithm selected in the sizing procedure is to identify
the best power setpoint to efficiently maximize the benefits generated by the BESS. The
algorithm needs to emulate the provision of diverse and multiple services by the BESS.
Namely, at each time step, given the actual SOC, the storage system is charged or discharged
according to a logic that improves the welfare of the BESS owner. Most existing studies
are based on mathematical programming due to their ability to identify a global optimum
for the objective function under analysis. Stochastic Dynamic Programming (DP), and
stochastic Mixed-Integer Linear Programming (MILP) or techniques derived from these
two approaches are the most-adopted solutions to the sizing problem [35]. For instance,
studies [36,37] propose a stochastic MILP and DP, respectively, to optimize the sizing
of a grid-scale storage system with constant efficiency. However, these methodologies
show important limitations in terms of the modeling and objectivity of the solution [38].
The optimal sizing problem is a non-convex and non-linear combinatorial optimization
problem [39]. Therefore, MILP-sizing procedures need to rely on techniques such as
relaxation, piecewise linear approximation, or the implementation of a constant efficiency
to generate a problem that can be treated by the standard solvers [32,40,41]. However, DP is
afflicted by dimensionality problems that need to be solved with the so-called approximated
dynamic programming [42,43]. Although these techniques solve the main issues related to
computational effort, their implementation comes at the expense of accuracy. Moreover,
sizing problems are computationally intensive, and many works consider a timeframe that
does not evaluate the whole investment lifespan. Lastly, to properly manage technical
and economic targets, multi-objective functions are typically required [44]. These lead to
a lack of objectivity in the solutions, which needs to be properly evaluated with Pareto
analysis [45]. It follows that mathematical programming cannot provide diversified system
operation. However, without the support provided by these techniques, it is necessary
to develop algorithms that are capable of efficiently scheduling the assets. Furthermore,
considering the actual cost of BESS, the profits from multiple applications are fundamental
to generating a positive investment. Therefore, algorithms capable of effectively stacking
the services are necessary to improve the economics of a storage system. Implementing
those algorithms is not straightforward, since BESS are limited in power and energy. The
desired output of the service stacking problem is a strategy for optimal capacity allocation
during a given period, accounting for market prices and system dynamics. Three distinct
types of service stacking are defined in the literature: sequential, parallel, and dynamic [46].
In parallel stacking, a constant allocation of storage capacity is given to the services whilst
the sequential multi-use provides these services in turn. The dynamic multi-use aims to
increase profit as it combines the advantages of the two predecessors. It follows that service
stacking in sizing applications is a complex topic and aspects such as the type of stacking
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or the services’ optimum sizing represent important challenges for the stakeholder [47].
Furthermore, power plant configuration has a relevant role in the BESS-sizing procedure
due to the different services that this technology can provide. For instance, a BESS coupled
with an energy district could perform tasks such as load peak reductions and smooth power
injections. Vice versa, in a stand-alone setup, the main activities are exclusively grid- and
market-oriented. BESS-sizing approaches have been categorized into four main categories
to deal with different configurations: microgrids, distributed renewable energy systems,
standalone hybrid renewable energy systems, and renewable energy power plants [48].
Despite the wide interest in BESS-sizing in the literature, the proposed approaches typically
focus on a single configuration. Conversely, industrial and utility-scale BESS stakeholders
are interested in flexible tools that are able to evaluate heterogeneous configurations of
power plants, storage systems, markets, and services.

Table 1 lists the studies that have addressed the stacking of services for a grid-scale
BESS.

Table 1. List of studies that have inspected the stacking of services for a grid-scale BESS.

Reference Services Performance
Assumptions Configuration Scope

[49] Fast Frequency—Balancing market Efficiency as a function of SOC
and power Stand-alone Operation

[50] Arbitrage—Frequency regulation Constant efficiency Stand-alone Operation
[51] Arbitrage—Frequency regulation Constant efficiency Stand-alone Operation
[52] Arbitrage—Frequency regulation- Constant efficiency Stand-alone Sizing
[53] Power shifting—aFRR Constant efficiency Wind farm coupling Operation
[54] Ancillary services market Constant efficiency Stand-alone Operation

[55] Arbitrage—distribution investment
deferral—frequency regulation Constant efficiency Stand-alone Operation

[34] Arbitrage—Frequency regulation Non-linear power losses
depending on C-rate and SOC Stand-alone Operation

[56] Frequency regulation—power
shifting Constant efficiency Microgrid Sizing

This work
Arbitrage—Frequency
regulation—mFRR—

capacity market

Efficiency as a function of SOC
and power

Stand-alone and
PV–wind coupled Sizing

As stated in the Introduction, this work improves on the state-of-the-art by developing
a high-fidelity model of BESS and novel stacking algorithms, considering both stand-alone
and RES-coupled operations.

3. Methodology

This work proposes a novel flexible tool evaluating the size of a BESS and computing
its cost-effectiveness while providing multiple services. The exploitation of the tool has been
eased thanks to a graphic user interface (GUI) developed in MATLABTM. The structure
allows for the easy evaluation of candidate groups of BESS and identifies the configuration
that ensures the best economic return. The GUI compares different specific BESS sizes to
accurately assess the trade-off between the size and the cost. The procedure is designed to
be compatible with the generic EU market (e.g., it implements standard balancing products,
and considers the day-ahead market according to the EU framework), meaning that it can
be easily adapted to different requirements. However, the focus of the proposed algorithm
in this paper is specifically related to the Italian market (e.g., the ancillary services market
price scenarios and award rates, a well as the rules and prizes of the capacity remuneration
mechanism, suit the Italian case).

This procedure may investigate both stand-alone and BESS hybrid-renewable en-
ergy power plants with wind and photovoltaic services connected to the national grid.
Furthermore, the power managed at the point of delivery (POD) with the grid can be
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limited to a specified value to address study cases where there is an existing contractual
connection power, and the curtailment of the overproduction is foreseen. The proxy model
adopted in the procedure is a high-fidelity (cf. realistic) empirical battery model based
on an experimental campaign at the Joint Research Centre (JRC) of Ispra (VA-Italy) on
nickel–manganese cobalt (NMC) BESS [9]. The main features are the efficiency of the overall
system, including transformer and power-conversion systems, and the auxiliary consump-
tion. The nonlinear round-trip efficiency is expressed as a function of power and SOC
through look-up tables. Instead, the auxiliaries’ consumption relies on the power flown in
the BESS and the ambient temperature. Although the model emulates the performances of
NMC technology, its structures easily allow for the fitting of the data of different electro-
chemical technologies (e.g., lithium iron phosphate or even non-lithium-based batteries).
Figure 1 depicts the block diagram of the high-fidelity empirical model adopted in this
work using SIMULINKTM. Each block has a specific purpose that ensures the emulation
of a large-scale BESS. The overall efficiency block takes the AC power, and the SOC as input
and converts them into DC power using the previously mentioned look-up table. After
this, the DC input is processed by the capability curve that limits the C-rate depending on
the actual SOC. Lastly, the actual C-rate is used to update the SOC of the system. Inside the
latter block, the energy content of the system is evaluated at each time sample.
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To ensure a realistic representation of BESS performances, an aging model from the
literature was inserted into this framework. It is well-known that capacity degradation
is affected by various chemical reactions, which can typically be classified into two major
phenomena: calendar and cycle aging [57]. To account for these processes, two equations
that describe the cycle and the calendar aging of the system have been inserted into the SOC
update block to reduce the nominal capacity throughout the simulation. Both expressions
were obtained from the literature. The cycle aging is related to the use of the BESS and its
C-rate. The complete expression implemented in the model was obtained in [58].

Cycledegrad.[%] = −[SOC(t)− SOC(t− 1)]× 3.57× 10−5 × e0.465×C-rate (1)

Equation (1) describes the system degradation due to cycling by evaluating the depth
of discharge between each time sample [SOC(t)− SOC(t− 1)] and the specific C-rate at
which the BESS is cycled. The proposed tool investigates the BESS operation with a 15-min
granularity, over a very long time window of up to several years; consequently, the equation
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computes the percentage of capacity reduction generated in 15 min by a specific constant
C-rate.

The second degradation mechanism has been modeled as a constant-capacity degra-
dation in the square root of time function. This trend has been widely adopted to describe
the chemical reaction inside the system that occurs due to calendar aging. The expression
adopted in this work is based on [59], assuming an average SOC of 50% for the system.

Calendardegrad. = −99.43× 103 × e
− 42577

RT ×
√

t (2)

Equation (2) reports the capacity calendar degradation depending on the age of
the storage system, considering the gas constant R and the temperature T at which the
system is kept by the auxiliaries. It has been assumed that the two effects superimpose
to continuously update the SOH of the system. Therefore, at each time sample the BESS’
nominal energy is reduced depending on the C-rate and the time that has elapsed.

The left side of Figure 1 reports the possible power plant setup evaluated by the tool.
The inputs for the analysis are time series that can be ascribed into three different categories:
energy, market, and ambient inputs. An additional block considering the optional presence
of RES plants was also included to investigate hybrid configurations. Energy input returns
the MW production of a given RES plant, if present. Market input contains fundamental
information about the structure of each service being addressed. Lastly, temperature inputs
are necessary for the auxiliary consumption of the BESS model. These parameters can be
easily changed thanks to the GUI, which allows for the selection of the Excel file that is
necessary for the analysis.

The evaluation of the nominal energy of the BESS depending on a given set of inputs
is evaluated by the tool with iterations of different sizes through the definition of two
distinct sets of parameters: nominal power and energy-to-power ratio (EPR). Moreover, if
the storage system is coupled with RES, the tool can evaluate variable power plant sizes.

The cost-effectiveness of BESS relies on the profits that the asset can generate by
participating in different services. Therefore, different algorithms were developed to
emulate the participation of the BESS in various energy markets. Each algorithm elaborates
the inputs and returns a power setpoint that simulates the dispatching of the BESS power
flows or the possibility of charging using the assets in the energy district.

The algorithms proposed in this paper are analytical adaptive algorithms. Every
day, the input data are fed to the algorithms that compute the operation of the BESS as
a combination of charge and discharge signals. The simulation calculates the cash flow
for twenty years for each size. The outcomes of each analysis are exploited to compute
the performance indicators fundamentals to determine the optimal size of the system.
The tool evaluates the internal rate of return (IRR) and the CAPEX that is covered to
quantify the cost-effectiveness of each investment. The IRR was computed with the financial
toolbox implemented in MATLABTM. Instead, the CAPEX covering 20 years was obtained
following Equation (3), using the constant interest rate r.

CAPEXcovered[%] =
100

CAPEX
×

20

∑
t=1

Revenues(t)−OPEX(t)−Marketpenalties
(1 + r)t (3)

CAPEX and OPEX are properly addressed in the analysis. Equation (4) describes the
capital cost as a product of the nominal energy and an exponential function of the duration.
This expression was obtained through an interpolation of the values reported in [60].

CAPEX[€] = Enom
(

220× duration−0.9795 + 287.1
)

(4)

This condition is justified by the fact that equipment cost is strictly correlated with the
power being handled and not only with the nominal energy. The hypothesis adopted for
this work is that yearly OPEX corresponds to 2.5% of the CAPEX [61].
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Lastly, due to the novelties of the application, a validation procedure based on previous
works has not been added. Nevertheless, the high-fidelity empirical model represents
an updated version of a previously developed structure. In [62], the adopted model has
been compared with state-of-the-art models: the accuracy of performance representation
increases when using a variable BESS efficiency and considering auxiliary system demand.

The algorithms implemented in the tools aim to emulate participation in different
services. The next paragraphs briefly describe the logic adopted for their implementation.
Four services typically present in EU markets have been modeled: energy arbitrage, capac-
ity market participation, the provision of manual Frequency Restoration Reserve (mFRR),
and the provision of fast frequency regulation within the Fast Reserve (FR) project. Each
algorithm generates a signal that simulates the charge and discharge requirement for the
BESS that participates in the specific service.

3.1. Energy Arbitrage

The term energy arbitrage refers to the possibility of storage systems exploiting day-
ahead market spread to generate profits. To achieve this control, the algorithm identifies the
minimum and maximum prices of the market each day to set up the proper control logic.
The algorithm was limited to a cycle per day to cope with the uncertainty of the prices that
are always present in a multi-year analysis. To grant an economic profit, the procedure has
a feedback control that checks whether the cycling cost of the system cancels the profits
per cycle. Namely, this cost can be described as the total lifetime cost of the investment
in electricity storage, divided by the cumulative delivered electricity. This parameter is
customizable from the GUI and impacts the arbitrage provision. Furthermore, in case of
BESS coupled with RES, if the RES power plant produces a power higher than the POD
limit (i.e., the contractual connection power), the algorithm directs the exceeding generation
toward the BESS if it is not fully charged. The latter charging process is considered free of
charge since that energy will be curtailed if not stored. To properly address this aspect, an
SOC control is implemented inside the algorithm to check the boundary condition of the
storage system. Lastly, it has been hypothesized that the BESS acts as a price-taker in the
day-ahead market. Algorithm 1 describes the structure of the energy arbitrage algorithm in
detail.

3.2. Capacity Market

The electricity capacity market is coupled with the energy market. The scope of this
service is to ensure power plant owners have sufficient capacity to meet the system demands
and reliability. Participation in the market is defined through a tender procedure. The
winners receive the capacity payment if they correctly provide power during the scarcity
hours defined by the authority. In Italy, the assets that won the tender are entitled to the
capacity payment if they participate in the day-ahead market in 1000 mandatory hours.
The capacity payment differs from each power plant and is based on the probability of
derating a given technology. Namely, the Italian authority associated a parameter with each
type of power plant, related to their reliability in producing the nominal power [63]. This
value reduces the capacity payment depending on the characteristics of each technology.
For instance, BESS derating is shown in Table 2 and is proportional to the duration of
the storage system, which means that a larger duration ensures better reliability in the
provision of the capacity. Thus, the remunerated power of a BESS is its qualified power
times (1—derating).
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Algorithm 1: Energy Arbitrage

Input: Pprod
i , Pnom, Enom, PODlimit, PDAM

i , SOCinitial
0

Output: Pcha, Pdis
CHARGE PHASE
for I in 96 (quarter of hours in a day) do

if Pprod
i > PODlimit

if Pprod
i − PODlimit < Pnom

Pcha
i = Pprod

i − PODlimit
Else

Pcha
i = Pnom

Echa = Echa + Pcha
i
4

If sum(E cha
i

)
< Enom

j = find
(

min
(

PMGP
i

))
for i in 96 (quarter of hours in a day) do

if i == j
if Pprod

i < Pnom

Pcha
i = Pprod

i
Else

Pcha
i = Pnom

Echa = Echa + Pcha
i
4

DISCHARGE PHASE
Edis = Echa

j = find
(

max
(

PMGP
i

))
for i in 96 (quarter of hours in a day) do

while Edis > 0
if i == j

if Pnom
i + Pprod

i > PODlimit

Pdis
i = PODlimit − Pprod

i
Else
Pdis

i = Pnom

Edis = Edis − Pdis
i
4

SOC CONTROL
for i in 96 (quarter of hours in a day) do

SOCi = SOCi−1 − Pdis
i
4 + Pcha

i
4

If SOCi > 100
SOCi = 100
Pcha

i = 100−SOCi−1
4*Enom

Else if SOCi < 0
SOCi = 0
Pcha

i = SOCi−1
4*Enom

PROFITS PER CYCLE CONTROL
for i in 96 (quarter of hours in a day) do

If Pprod
i > PODlimit

Pchargefree = min
(

Pnom, Pprod
i − PODlimit

)
Pchargepaid = Pcharge

i − Pchargefree

profit(i) =
(

0.9× Pdischarge
i − Pchargepaid

)
× DAMi

4

If sum
(

profit− ProfitsCycle/Enom
)
≤ 0

Pdischarge
1:96 = 0

Pcharge
1:96 = 0
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Table 2. Storage derating depending on the duration of the capacity payment in the capacity market
defined by the Italian authority.

Duration [h] Derating [%]

1 76
2 66
4 33
6 19
8 10

Furthermore, the non-programmable RES, due to their reliance on natural phenomena,
face difficulties in providing a constant power setpoint. Hereby, the Italian authority has
defined a derating factor for the capacity payment that these power plants can receive.
Table 3 details the derating factor for the capacity payment of wind and PV power plants.

Table 3. Power plant derating factor defined by the Italian authority for the capacity payment.

Technology Derating [%]

PV 84
Wind 88

In this work, when the capacity algorithm is enabled, it is assumed that the hybrid
power plant has won the tender for, and participates in, the capacity market. The capacity
payment can be extended to account for a hybrid system with multiple energy sources fol-
lowing Equation (5), where the overall remunerated capacity CP is equal to the summation
of the product between the peak power Ppeak

powerplant and the derating Deratingpowerplant of

each technology multiplied by the capacity payment CapacityMW
payment specified by the user.

Algorithm 2 describes the logic used to emulate the capacity market inside the model.

CP[€] =
N

∑
powerplant=1

Ppeak
powerplant ×

(
1−Deratingpowerplant

)
×CapacityMW

payment (5)

Algorithm 2: Capacity Market Algorithm

Input: Pprod
i , Pnom, PODlimit, CDP, CMSinput

i , CMScharge
i

Output: Pcha, Pdis

If sum(MDCinput
i ) > 0
CHARGE PHASE
for i in 96 (quarter of hours in a day) do

if CMScharge
i == 1

if Pprod
i > 0 and Pprod

i < Pnom

Pcha
i = Pprod

i

Else if Pprod
i > 0 and Pprod

i > Pnom

Pcha
i = Pnom

DISCHARGE PHASE
for i in 96 (quarter of hours in a day) do

if CMSinput
i == 1

if Pprod
i < CDP

Pdis
i = CDP− Pprod

i
Else

Energy Arbitrage Algorithm (Algorithm 1)
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The derating parameters adopted in this work are those proposed by the Italian
authority and reported in Tables 2 and 3. Nevertheless, the tool allows for those values to
be adapted to a different regulatory scenario.

Lastly, the inadequacy of an asset to properly participate in the capacity market is
computed ex-post. This calculation is mandatory to verify if the system correctly provides
the requested capacity and is entitled to the capacity payment. The criteria established by
the Italian authority foresee a neglection of the payment when the power plant does not
provide more than 80% of the capacity for at least three months.

3.3. Manual Frequency Restoration Reserve (mFRR)

mFRR is the manual activation of frequency reserve that has the purpose of restoring
the power balance of the electric power system. In Italy, this service is traded in the ancillary
services market with a pay-as-bid approach. In [64], it has been pointed out that distrusted
energy sources such as hybrid RES plants have a very low share of acceptance in the market.
Despite the small liquidity of the ancillary services market, the participation of the asset in
these services could be profitable. Indeed, as an inherent structure of the process, the mFRR
prices tend to be less competitive than those in the day-ahead market and consequently
generate more profit. To properly model the opportunity generated by participation in
the mFRR, an acceptance criterion has been developed in [65]. The procedure, based on
historical results on mFRR, develops around two important pieces of information. Firstly,
among all the bids that were submitted, only 13% were accepted. Secondly, a correlation
between bid acceptance and the submission price is present. In light of these statements,
the tool was programmed to create a binary input vector that expresses the acceptance of
the bids in the mFRR. The acceptance array changes depending on the average price that
the user foresees being submitted in the market. Lastly, the accepted bids are remunerated
at a value that is equal to the constant price times a gain that is proportional to the hour
at which the bid is accepted. This solution was implemented to grasp the hourly price
fluctuations in the bids in the ancillary services market.

Algorithm 3 describes the logic behind the control of the system participating in the
mFRR. In particular, the approach evaluates whether the mFRR bids are more profitable
than those in the day-ahead market to ensure higher revenues.

Algorithm 3: mFRR Algorithm

Input: Pprod
i , Pnom, Enom, PODlimit, PMGP

i , PmFRR
i

Output: Pcha, Pdis
DISCHARGE PHASE
for I in 96 (quarter of hours in a day) do

if sum(P mFRR
i

)
> 0

if j = find
(

max
(

PmFRR
i

))
if PMSD

j > PMGP
j

if Pprod
j > PODlimit

Pdis
j = 0

Else if PODlimit − Pprod
j > Pnom

Pdis
j = Pnom

Else
Pdis

j = PODlimit − Pprod
j

Edis = Edis − Pdis
j
4

3.4. Fast Frequency Reserve

Fast frequency reserve is a service enabled by the Italian authority with the resolution
200/2020/R/eel [66]. It consists of the rapid provision of power from BESS to counteract
the more usual frequency swings in the electric power system. The service is exclusive to
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BESS selected through a tender procedure. In detail, the pilot project launched in 2021 in
Italy mandated the provision of a fast frequency reserve for 1000 specified hours for the
storage systems entitled to participate in this market. In those periods, the assets must
ensure the provision of the power submitted during the tender to the service and grant it in
all the hours specified by the authority. The correct interaction of the BESS with the grid is
remunerated with a capacity payment from the TSO that is proportional to the power made
available to the service. Fast frequency reserve requirements limit both the power and
energy of the storage system. Algorithm 4 describes the fast frequency reserve algorithm as
a limitation of the available power and energy during the hour mandated by the authority
for the service.

Algorithm 4: Fast Frequency Reserve

Input: Pprod
i , Pnom, Enom, PODlimit, PMGP

i , PmFRR
i , Pqualified, PFRU, FRUsignal

Output: Pcha, Pdis
SOC Control
for i in 96 (quarter of hours in a day) do

SOCmax
i = 100−

(
Pqualifified

4×Enom × 100
)
× FRUsignal

SOCmin
i =

(
Pqualifified

4×Enom × 100
)
× FRUsignal

If Pcha
i > Pnom − PFRU and FRUsignal = 1

Pcha
i = Pnom − PFRU

Else if Pdis
i > Pnom − PFRU

Pdis
i = Pnom − PFRU

If SOCi > SOCmax
i

SOCi = SOCmax
i

Pdis
i = SOCmax

i −SOCi−1
4×Enom

Else if SOCi < SOCmin
i

SOCi = SOCmin
i

Pcha
i = SOCi−1−SOCmin

i
4×Enom

SOCi = SOCi−1 − Pdis
i
4 + Pcha

i
4

4. Study Cases

The sizing procedure was divided into two different study cases, labeled as stand-
alone and RES-coupled. The purpose of this classification is to highlight the different
benefits and shortcomings of the two configurations and the tool’s ability to operate in
different configurations. The stand-alone case analyzes the performance of the sole BESS
interacting with the grid. The second one foresees a hybrid RES power plant coupled
with a BESS that is capable of exchanging energy with the grid and the RES. In each study
case, four different sets of simulations were carried out with different combinations of the
algorithms, as described in Section 3. Each set of simulations aims to properly allocate
different combinations of services to investigate the impact that a multi-use BESS has on
its economics. The first simulation exclusively addresses the provision of energy arbitrage
by the storage system. The second set couples the first service that was investigated with
the capacity market through sequential stacking. In detail, the capacity algorithm has the
dispatch priority due to the necessity of satisfying the energy provision mandated by the
service regulations. The third simulation package couples the mFRR with the arbitrage and
capacity algorithms. The ancillary service structure interacts with the arbitrage to identify
the most profitable trading strategy for each day. It follows that the most remunerative
dispatch is selected depending on the day-ahead market (DAM) prices and the acceptance
in the mFRR. Lastly, the fast frequency reserve is evaluated in the fourth set of simulations
stacked with the other services. The provision of this application is superimposed with
the previous markets that were modeled. As a consequence, the fast reserve and a further
service can be provided in parallel, and the latter is derated by the power and capacity
required for the frequency regulation. The list of simulations described has allowed for
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an investigation of the impact that service stacking has on the revenues of the BESS. The
tool iterates the power and EPR of the system and identifies the optimal size of different
configurations using the CAPEX being covered and IRR. Figure 2 summarizes the sets
selected for each study case. Furthermore, the figure specifies the stacking classification of
the investigated service. The number of services included in the stacking configuration is
incremental. The first one investigates sole arbitrage. Configuration 2 adds the capacity
market to the arbitrage. The third one involves the mFRR in the previous services. Finally,
configuration 4 investigates the stacking of all the services.
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Figure 2. Summary of the study case and the service stacking proposed for this study.

It is worth stating that the parameters reported in Figure 2 are completely customizable
through the GUI to cover different setups. The tool evaluates the economic performance of
the BESS, allowing for the charge from the grid or the power plants.

Moreover, a POD limit was established to limit the power injection into the grid.
Table 4 details the parameters adopted for the study cases. The capacity payment duration
complies with the current Italian framework [67]. Furthermore, the fast reserve being
implemented reflects the actual one in place in Italy [68]. Both capacity payments refer to
the outcomes of the auction for the Sardinia market zone. To correctly compare the latter
service with BESS of various sizes, the power enslaved to the fast reserve is defined as a
percentage of the nominal power of the system.

Table 4. Parameters adopted in the study case presented in this work.

Parameter Stand-Alone RES-Coupled

Power [MW] [10, 20, 30, 40, 50] [10, 20, 30, 40, 50]
Duration [h] [3, 4, 5, 6] [3, 4, 5, 6]

Wind peak power [MWp] none [20, 30, 40]
PV peak power [MWp] none [20, 30, 40]

POD limit [MW] none [40]
Temperature Sardinia Italy, 2021 Sardinia Italy, 2021
Prices [years] 2019–2022 2019–2022

Capacity market duration [years] 15 15
Fast reserve duration [years] 3 3

Capacity market payment [€ × year/MW] 51,012 51,012
Fast Reserve payment [€ × year/MW] 64,890 64,890

Fast Reserve Power [%] 20% Pnom 20% Pnom
Interest rate [%] 6 6

Profits per cycle [€/MWh] 25 25
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The input vectors describe a twenty-year time series with a time sample of 15 min.
The main input vectors are reported in Figure 3. The wind and PV profiles were generated
by the open-access software AtlanteEolico-RSE [69] and PVGIS, respectively, for Southern
Italy. The lack of seasonality of the wind was modeled by randomly sampling the weeks of
the three years wind profile used as input. The PV power profile was reduced every year
by a degradation equal to 1%/year. The historical temperatures were downloaded from
the ARPA website for Southern Italy and linearly increased up to 2 ◦C to account for global
warming [70]. Lastly, the day-ahead market prices of the year 2019 were exploited for the
study case [71]. The profile was chosen because it represents the last year of business as
usual before the pandemic and the gas shortages. Furthermore, due to the high prices
recorded in 2021 and 2022, the 2019 price profile can be adopted as a conservative solution
for the investment cash flow. A one-year simulation exclusively involving the arbitrage with
the 2019-2020-2021 prices profile was developed, resulting in different realized revenues, as
depicted in Table 5.
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Table 5. Revenues for one year of arbitrage made by a 20 MW/60 MWh BESS with three different
price scenarios.

Price Scenario Revenues [k€] CAPEX Covered in the First Year [%]

DAM 2019 388.77 1.82
DAM 2021 762.22 3.58
DAM 2022 2125.54 9.98

The scope of this brief estimation has been the identification of the price profile that
grants a lower economic return for the investment and can be used as input for the main
analysis. The considered trend was extended to the period under evaluation and coupled
with two different yearly gains. The scope of the gains is to create two distinct price
scenarios to cope with the possible evolution of the prices in the future and provide a wider
economic analysis of the investment. The yearly gains, defined as low- and high-price
scenarios, were extrapolated from the results reported in [72]. The profits per cycle were
kept low to understand the main differences that arise in the BESS cycling due to this
parameter.
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5. Results

This section presents the results obtained from the different algorithms implemented
in the sizing tool. The results focus strictly on the economic indexes that are fundamental
for evaluating the profitability of an investment. For the sake of completeness, both the
covered CAPEX and IRR are reported. Furthermore, technical pieces of information are
provided through the full equivalent cycle (FEC) and the capacity fades of the storage
system under analysis.

Firstly, it is worth stating that the tool takes from 4.3 to 12.1 min (Intel i7 1260 CPU—
16 GB) to simulate 20 years of service of a sole BESS with the lightest and heaviest algorithm;
such a limited computational effort validates the approach’s viability in tecno-economical
studies. In the specified period, the procedure evaluates the power flow, degradation, and
revenues of the BESS to provide valuable information on the investment.

The first reported outcomes concern the identification of a price profile that can
act as a conservative solution. Table 5 details the revenues generated in one year by
a 20 MW/60 MWh BESS, which performs energy arbitrage with three different price
scenarios: the day-ahead market prices of 2019, 2021, and 2022.

It is possible to note that the larger volatility of the prices during the gas shortages
returns better economics for the storage system. In particular, almost 10% of the 21.3 M€ of
BESS CAPEX is covered in a single year in the most profitable price scenario. Nevertheless,
these profits were generated by the abnormal market conditions of 2022 that, thanks to the
more widespread adoption of RES, will not recur in the coming years. It follows that DAM
prices for 2019 were exploited as a base to develop high and low price scenarios for the
next 20 years.

The algorithms have different impacts on the economics of the system. The aim of
the following paragraphs is to detail the benefits of each approach and their limitations in
both stand-alone and RES coupled configurations to understand the outcomes of the tool
in more depth.

5.1. Study Case 1: Stand-Alone BESS
5.1.1. Stacking Configuration 1: Energy Arbitrage

The arbitrage algorithm investigated in stacking configuration 1 is by far the less
remunerative scheme for a stand-alone system. Firstly, the profit is strictly related to the
spot market outcomes and, generally, a certain degree of uncertainty characterizes these
variables. Furthermore, the operation of the BESS is connected to the market price spread.
The high-price scenario has a larger spread than the low-price profile; consequently, it
represents the most remunerative profile. The IRR difference between the same BESS
with the two price trends corresponds to 4.5% on average. This value corresponds to a
difference in revenues between the two scenario prices equal to 12.0% of the CAPEX for the
whole investment lifespan. Furthermore, it is important to correctly estimate the profits
per cycle to seize the correct trade-off between the operation of the system and the covered
CAPEX. A reduction in the capital cost will directly impact the cycling cost of the system
and increase the possibility of profits for arbitrage. The degradation is strictly related to
these parameters, since a larger cycling will correspond to a higher cycle aging. The final
capacity after 20 years for the arbitrage service is, on average, equal to 81.3%, considering
a periodic capacity augmentation. Revenues are linearly impacted by the degradation.
The phenomenon leads to a reduction in the profit at the end of the investment equal to
12.2%. A possible solution to increase the revenues from the arbitrage algorithm consists of
increasing the cycling limits of the BESS set to one cycle per day. This condition may seem
quite conservative for a system with a small EPR. Indeed, it is possible to increase profits if
the market price spread allows for multiple cycles. However, profits larger than the profits
per cycle must be always granted to perform the arbitrage. This condition is difficult to
ensure with a higher number of cycles because the spread between the charge and discharge
must be higher than the cycling cost. Furthermore, for a large EPR (>5 h), the benefits of
multiple cycles are null due to the inherent structure of the market outcomes, which, in
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general, has two peaks lasting 2–3 h each [73]. It follows that BESS with durations over
5 h are less-suited to the daily energy arbitrage. As a consequence, the best configuration
for the sole arbitrage is a 3 h BESS that correctly grasps the variation in the day-ahead
market. Lastly, the revenues for BESS with the same EPR are linear with power because
the efficiency of the service is exclusively related to the duration of the storage system.
Therefore, BESS with the same duration, which mostly provide the arbitrage at the nominal
power, have a similar IRR.

5.1.2. Stacking Configuration 2: Energy Arbitrage + Capacity Market

The capacity market represents an important source of income for the storage system
as evaluated in configuration 2. The fixed revenues ensured by the provision of the services
increase the economic return of the asset. However, in the best scenario, the profits cover
only 55.8% of the CAPEX. Nevertheless, a stand-alone system must participate in this
service to cover the missing money due to the excessive capital cost. Moreover, the service
does not increase the degradation compared to the sole arbitrage strategy: indeed, in Italy,
capacity remuneration is due if the obligation of bidding the remunerated capacity on the
market is respected, as BESS would do in the case of energy arbitrage. However, capacity
fade is slightly lower since the algorithms limit the BESS cycling to ensure the provision
of the energy required by the regulation. Furthermore, due to the structure of the Italian
capacity market, a longer duration of BESS benefits more from the capacity market. Indeed,
as reported in Table 2 a lower derating factor is mandated by the authority of storage
systems with a longer duration. This condition coupled with the economy of scale granted
by a larger system EPR, which identifies BESS with a 5 h duration as the best candidate for
the provision of arbitrage and capacity services.

5.1.3. Stacking Configuration 3: Energy Arbitrage + Capacity Market + mFRR

The addition of the mFRR to the services provided in stacking configuration 3 grants
slightly better revenues thanks to the higher profits generated by the bids in the ancillary
services market. On average, the increase in profits attests to around 1–2% of the CAPEX
for the whole investment lifespan. In this case, the limits are mainly driven by the low
award rate of assets on the Italian ancillary services market. However, with the increased
penetration of RES, the liquidity of these assets inside the ancillary services market could
increase. Therefore, future updates based on new market analysis may lead to an important
increase in the cash flows. In the upper part of Figure 4, it is possible to observe how the
BESS is dispatched by Algorithm 3, which selects the most profitable solution between
mFRR and DAM. Furthermore, an SOC control, as depicted in the bottom part of the image,
ensures that the BESS can efficiently participate in multiple services.
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5.1.4. Stacking Configuration 4: Energy Arbitrage + Capacity Market + mFRR + FR

Lastly, the fast frequency reserve algorithm has been coupled with the other three in
the stacking configuration 4. It has been noted that the impact of these initiatives on the
economics of the system is inversely proportional to the nominal energy of the asset. Indeed,
the regulation foresees a capacity payment based on the percentage of the nominal power
enslaved to the service. However, the CAPEX of the asset increases with the duration
of the BESS. Therefore, the service leads to a higher improvement in the economics of
systems with a low duration. The covered CAPEX, thanks to three years of fast reserve
service, goes from 2.0% of the 6 h BESS to 3.5% of the 3 h system. It is worth stating that the
revenues generated by the capacity market maintain the 5 h duration system as the best
investment for the stand-alone configuration. Nevertheless, the hypothesis adopted for
the fast reserve is conservative. Indeed, after the three years mandated by the authority,
no further service is foreseen for fast reserve provision inside the tool. However, the
fast reserve provided by BESS may be standardized in the future and remunerated with
regulations that are not yet specified. Table 6 lists the best results for the stand-alone study
case for each stacking configuration. It is possible to observe that, despite being negative in
all stacking configurations under our assumptions, the best IRR is granted by configuration
4, which is the solution that couples the higher number of services. Nevertheless, it is
worth noting that the adopted price scenarios are conservative and return the minimum
profit that BESS can generate. Furthermore, better economics are not strictly related to the
asset cycling if capacity payments are granted to the storage system. Indeed, the same
number of cycles allows for the revenues of the storage system to be tripled thanks to its
participation in the capacity market and fast reserve provision. The general outcome of the
stand-alone configuration is that, for a one-cycle-per-day system, the 20-year investment
is not remunerative, no matter the adopted revenue stacking strategy: this unprofitable
result is mainly due to the conservative assumption of using the 2019 DAM price scenario.
However, the coupling of various services boosts the CAPEX covered by the profits from
49% to 60%. Therefore, the asset operator must carefully evaluate which services the system
can provide to increase profit and ensure capacity payment. This is fundamental, especially
for those services where participation is granted through an auction mechanism. Indeed,
thanks to the capacity payment, the best investment is represented by 10 MW/50 MWh
BESS. In general, systems with a duration of 5 h have better economics because they
represent the optimal trade-off between capacity payment and CAPEX.

Table 6. Main results for the stand-alone study case (study case 1).

Stacking
Configuration

Best BESS
Sizing IRR [%] CAPEX

Covered [%] FEC Energy
Fade [%]

1 10 MW/30 MWh −1.72 49 3183.3 18.68
2 10 MW/50 MWh −1.03 55 3104.7 18.05
3 10 MW/50 MWh −1.00 57 3141.1 18.40
4 10 MW/50 MWh −0.95 60 3141.1 18.51

5.2. Study Case 2: RES-Coupled BESS
5.2.1. Stacking Configuration 1: Energy Arbitrage

The second study case exploits the presence of RES to increase profits. Indeed, the
energy curtailment mandated by the POD limit is equivalent to free energy that will be lost
without the storage system. This parameter, together with the PV and wind size, show a
large sensitivity regarding the free charging energy for the BESS and the energy lost by the
power plant. Although the overproduction of RES provides advantages to the BESS, it is
fundamental to highlight that the configurations with the lowest peak power production
barely improve the economics of the BESS. In the worst case, namely, a covered CAPEX of
50 MW/300 MWh BESS this increases by only 3% following the addition of 20 MWp of
both PV and wind compared to the stand-alone case. A further observation related to the
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coupling of the asset to the RES is the higher number of cycles. The availability of cheap
energy for charging the system due to the presence of RES increases the use of the BESS and
its degradation, which reaches over 30% for the system with a smaller duration. However,
increased use of the storage system corresponds to better economics; as augmentation of
the asset is usually included in the OPEX, it is always better to cycle the system and boost
the profits.

The presence of a power plant allows for the BESS to be charged for free and save
energy that, without the storage system, will be curtailed. This condition leads to benefits
proportional to the energy being stored. In the best scenarios, namely high prices and high-
power plant peak power, the investment of a BESS generates value with the sole arbitrage.
The revenues from the sole arbitrage are almost doubled in the best-case scenario. The most
cost-effective BESS size with the provision of the sole arbitrage is 10 MW/30 MWh. This
system represents an optimal trade-off between the CAPEX and the ability to collect the
byproducts caused by RES plant overproduction. Higher powers reduce the curtailment
but not linearly. Therefore, the expenditure increase is higher than the revenue generated
for the increment in energy savings. Instead, the EPR increases only the expenditures
without further energy savings, leading to a higher cost and similar profit.

5.2.2. Stacking Configuration 2: Energy Arbitrage + Capacity Market

Stacking configuration 2, which couples the capacity market with the arbitrage, im-
proves the economic results. Following Equation (5), coupling with RES led to a higher-
capacity payment compared to the stand-alone case. This condition drastically improves
the economics of the system. However, this increase in capacity may lead to a mandatory
power provision value that is larger than the nominal power of the BESS. Therefore, if the
unpredictable production of RES goes to zero, in some cases, the BESS does not have the
necessary characteristics to fulfill the constraints of the capacity market. It follows that,
for a small BESS and large RES-size capacity, payment is not received due to the power
limits of the storage system. However, larger BESS benefit from this condition, with an
improvement of up to 30% in the CAPEX covered compared to the sole arbitrage provision.
This aspect is fundamental to justify the presence of a storage system in a hybrid energy
district. Indeed, for small-scale BESS, the capacity payment is not granted and the same
will occur if no BESS is present in the energy district. Therefore, for an RES owner that is
willing to participate in the capacity market, it is mandatory to purchase a BESS to fulfill
the requirements of the Italian authorities. Lastly, as in the previous study, participation in
this new service has a very low impact on cycling and degradation. Figure 5 depicts the
covered CAPEX for the RES-coupled study case with Algorithm 2. The heatmap produced
by the GUI can identify the most cost-effective BESS for the scenario under analysis, namely
the 20 MW/60 MWh system.

5.2.3. Stacking Configuration 3 and 4: Energy Arbitrage + Capacity Market + mFRR + FR

Lastly, mFRR and fast reserve provision has a similar influence on the RES-coupled
study case to the stand-alone. Indeed, the two services are strictly related to the operation
of the BESS rather than the presence of RES power plants.

The best results for the RES-coupled study case are listed in Table 7. The outcomes of
the second study case are more impacted by service stacking than the first analysis. Indeed,
the capacity prize is larger due to the necessity of coupling RES with a BESS to provide
a constant power setpoint. The service stacking improves the covered CAPEX by up to
30% compared to the sole arbitrage provision. Furthermore, as stated in [74], BESS have an
important economic advantage in supporting RES systems compared to the stand-alone
case. The coupling with power sources reduces the expenditures on the energy sale on the
day-ahead market and stabilizes the unpredictability of RES granting the capacity payment.
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Table 7. Main results for RES-coupled study case 2 with 40 MWp for both wind and PV.

Stacking
Configuration

Best
Configuration IRR [%] CAPEX

Covered [%] FEC Capacity
Fade [%]

1 10 MW/30 MWh 5.97 99 6410.3 32.45
2 20 MW/60 MWh 10.46 138 6233.3 30.23
3 20 MW/60 MWh 10.55 139 6180.5 30.17
4 20 MW/60 MWh 10.84 144 6124.2 29.87

6. Conclusions

This article proposes a model-aware analysis to resolve the BESS sizing issue con-
sidering different applications that implement service stacking. The economic analysis
evaluated the investment throughout a 20-year scenario, exploiting a high-fidelity empirical
BESS model equipped with equations that are able to describe both (i) the performance of
BESS in different operating and ambient conditions and (ii) the capacity degradation of
the asset. Novel algorithms were developed to properly emulate the BESS control strategy
participating in the capacity and energy markets. Flexibility and reduced computational
effort make the tool valid for the rapid assessment of different system configurations (e.g.,
stand-alone or RES-integrated), the sizing (e.g., the varying power and duration of the
BESS), and the services (i.e., a control strategy block can implement complex algorithms to
emulate service provision under different regulatory frameworks).

In this work, two systems were simulated, featuring a stand-alone and RES-coupled
BESS, which served as case studies. The provided services are implemented to fit Italian
regulation and market conditions. The outcomes highlighted the wide difference between
the stand-alone and RES-coupled BESS’ return of the investment. A stand-alone system
that is cycled once per day could not cover more than 60% of the CAPEX in 20 years.
Although the inclusion of capacity payments led to an improvement in terms of economics,
the current Italian regulations do not provide sufficient revenue to return on the investment,
as per the assumptions made in the study. However, in the future, reductions in the system
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inertia will require more BESS use for frequency regulation. As a consequence, a new
market or an extension of the existing mechanisms (e.g., fast reserve, limited to 1000 h per
year as of 2023) could enter the pitch and provide new remuneration schemes for BESS.
Conversely, the configuration presenting a BESS coupled with RES shows a positive IRR
thanks to the optimal synergy between the storage and the intermittent power production.
A comparison between the two study cases highlighted the advantage that BESS has in
supporting the RES system.

This can be used to obtain the best result from the energy sale on the day-ahead market
and allows for a better integration of the RES + BESS system in the grid. This is testified
by the decreased connection power required for the hybrid RES + BESS plant and the
exploitation of a larger capacity payment.

Optimal sizing is fundamental to obtaining a positive economic outcome, as high-
lighted by the results. Moreover, the system configuration play a key role in the economics
of the asset. Indeed, the same services and the same power rating with RES can provide a
2.3 times higher return on the investment compared to the stand-alone case.

Additionally, the outcomes highlighted the necessity of service stacking to fully cover
the investment costs. In particular, it has been pointed out that the sole energy service
(i.e., arbitrage) cannot cover the capital costs of the assets, increasing the interest for
BESS participation in capacity remuneration mechanisms or long-term contracts to ensure
flexibility. The most efficient service stacking led to an increase in the covered CAPEX
that was equal to 11% in the stand-alone study case and an astonishing 45% in the hybrid
configuration. This improvement was achieved without increasing the number of cycles
performed by the BESS.

The limitations of the study include the fact that the iterative procedure is not an
optimization; thus, the optimal solution can be hidden between two tested configurations.
Given the possibility of increasing the granularity of the simulations thanks to the low
computational effort required, this is not considered a major issue. Additionally, the study
was performed using a BESS model from the literature, featuring a Li-NMC battery. It is
well-known that, as of 2023, LFP chemistry has overcome Li-NMC, especially in utility-scale
applications. The generalization of the procedure to include an LFP battery model is of
great interest.

Future works could focus on improving the algorithms proposed in this article. These
include the possibility of cycling the BESS more than once per day (to better test the trade-
off between BESS life and NPV), the inclusion of an aging-aware algorithm to identify an
efficient trade-off between profit and degradation, and the testing of innovative ancillary
services that can fulfil the new needs of power systems. Furthermore, the possibility of
easily evaluating different BESS technologies will drive the comparison and identification
of efficient services for a specific cell chemistry.
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Nomenclature

Parameters Pqualified: Power qualified to provide FRU
Pprod

i : Power produced by RES at instant i PFRU: Power enslaved to FRU provision
Pnom: BESS nominal power FRUsignal: FRU participation signal
Enom: BESS nominal energy Decision Variables
PODlimit: Point of Delivery maximum power Pcha: BESS charging power
PDAM

i : Day-ahead market price at instant i Pdis: BESS discharging power
SOCinitial

0 : SOC at the beginning of the day Echa: Energy associated with the daily charge
CDP: Awarded capacity Edis: Energy associated with the daily discharge
CMSinput

i : Capacity Market Signal Pchargefree: Power without charge from the hybrid energy district
CMScharge

i : Capacity Market charge Signal Pchargepaid : Power bought from the DAM
PmFRR

i : mFRR price profit: Profits daily generated by the BESS
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