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Abstract: Accurate short-term power load forecasting is crucial to maintaining a balance between
energy supply and demand, thus minimizing operational costs. However, the intrinsic uncertainty
and non-linearity of load data substantially impact the accuracy of forecasting results. To mitigate
the influence of these uncertainties and non-linearity in electric load data on the forecasting results,
we propose a hybrid network that integrates variational mode decomposition with a temporal
convolutional network (TCN) and a bidirectional gated recurrent unit (BiGRU). This integrated
approach aims to enhance the accuracy of short-term power load forecasting. The method was
validated on load datasets from Singapore and Australia. The MAPE of this paper’s model on the
two datasets reached 0.42% and 1.79%, far less than other models, and the R2 reached 98.27% and
97.98, higher than other models. The experimental results show that the proposed network exhibits
a better performance compared to other methods, and could improve the accuracy of short-term
electricity load forecasting.

Keywords: short-term load forecasting; power systems; variational mode decomposition; TCN;
BiGRU

1. Introduction

Electricity resources are integral to the functioning of modern society, facilitating the
smooth operation of key sectors such as industry and commerce. As global economic devel-
opment accelerates and the population increases, the demand for electric power resources
correspondingly intensifies [1–3]. Considering the difficulties inherent in electricity storage
and the lagging response of electricity suppliers [4], power companies often increase gener-
ation capacity by an excess of 20% to accommodate a potential peak electricity consumption
of 5% [5]. This overcapacity can lead to significant economic waste. For instance, in a
medium-sized Chinese city with an annual electricity consumption of 29 billion kilowatts,
a 1% reduction in forecast error can result in savings of CNY 145 million [6]. Therefore, pre-
cise power load forecasting is critical to maintaining a balance between power supply and
demand, ensuring grid stability, and promoting carbon savings and emission reductions. It
is the basis for guaranteeing the safe operation of electrical power. At the same time, it can
formulate a reasonable plan for unit maintenance, scientifically manage and control the
cost of power supply, and maximize economic and social benefits [7].

However, the characteristics of uncertainty [8] and non-linearity [9] inherent in short-
term load data complicate the task of accurate prediction. The increasing incorporation
of renewable energy sources necessitates the consideration of various external factors,
such as weather, holidays, and electricity prices, in addition to the intrinsic time-series
characteristics of load forecasting. The uncertainty associated with these factors exacerbates
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the challenge of electric load forecasting. The current methodologies employed for short-
term electric load forecasting can be classified into three main categories: classical statistical
learning methods [10,11], traditional machine learning methods [12,13], and contemporary
deep learning methods [14–18].

Classical statistical models include autoregression, sliding average, autoregressive
moving average (ARMA), autoregressive integrated moving average (ARIMA) models,
etc. In 2022, Sun et al. proposed the threshold ARMA model considering the influence of
temperature, and the experimental results on a dataset of a prefecture-level city in south-
west Zhejiang Province, China, demonstrated that integrating temperature factors can
improve prediction accuracy [10]. The results showed that the mean absolute percentage
error (MAPE) was 4.167%. In 2023, Wang et al. proposed the hybrid ARIMA and convo-
lutional neural network (CNN) model employing wavelet transform, and conducted the
experiments tested on a dataset from Tai’an City in China, which demonstrated that prior
signal decomposition of load data and the use of a hybrid model could improve predic-
tion accuracy [11]. While classical statistical models offer simplicity, easy comprehension,
and rapid computation, they struggle to accommodate the influence of nonlinear factors
on load data. Additionally, they demonstrate limited robustness and a weak capacity to
consider complex factors. Given the rapid development of today’s electricity market and
the expanding utilization of various renewable energy types [19], the factors affecting load
data have grown increasingly complex, posing challenges to statistical models in terms of
accurately predicting load data.

As artificial intelligence evolves, machine learning and deep learning are increasingly
being applied to load data forecasting. Common traditional machine learning models
include support vector machines (SVMs), extreme gradient boosting (XGBoost), random
forests (RF), etc. In 2022, Su et al. proposed the cuckoo search (CS)-SVM model considering
demand price elasticity and conducted tests on the PJM power market datasets in the
United States. The experimental results showed that MAPE achieved 13.43%, and they
verified that integrating the price factor can improve the prediction performance [12]. In
the same year, Dudek employed the RF model and improved the prediction accuracy by
changing the methods of three input patterns and seven training patterns [13]. Although
this method achieved an average MAPE of 1.53% with four datasets, it required up to 21
attempts to choose the suitable input pattern for the model training. Traditional machine
learning models can process load data relatively quickly. However, in real-world load
forecasting, it is difficult for traditional machine learning to extract suitable features deeply
in non-linear time series data [20].

Recently, deep-learning-based methods have begun to gain traction in short-term
load forecasting. In 2022, Li et al. established the Complete Ensemble Empirical Mode
Decomposition with Adaptive Noise (CEEMDAN)-sample entropy (SE)-LSTM model for
forecasting ultra-short term (less than/within XX minutes or seconds) power load [14].
They first introduced SE and used CEEMDAN to reduce the complexity of information,
then utilized LSTM to predict each component. Experimental results on electric load data in
Changsha, China, showed that decomposing the electric load data first was more accurate
than using the LSTM model alone. Meanwhile, decomposition is used not only in the field
of electrical load forecasting, but also in other fields where it reduces the instability of the
raw data and enhances predictability. For example, Wang et al. used variational mode
decomposition (VMD) to reduce the instability of raw data in water quality prediction [21].
In 2023, Wang et al. proposed a long short-term memory (LSTM) informer model based
on ensemble learning [15]. This hybrid model used LSTM to capture the short-term time
correlation of power load and the informer model to solve the long-term dependence
problem of power load forecasting. The method was validated on a dataset from the city
of Tetouan in the north of Morocco. The results reached a mean square error (MSE) of
0.2085% and a mean absolute error (MAE) of 0.3963%, which shows that capturing the long
and short-term dependencies separately using the combined model could improve the
accuracy of the forecast. Despite the ability of LSTM to handle non-linear time series, the
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subsequent gated recursive unit (GRU) introduced a simpler gating structure [22], which
enhanced the computational performance of the overall structure and improved the speed
and accuracy of the iterations. In 2023, Abumohsen et al. compared the capabilities of
recurrent neural networks (RNNs), LSTM, and GRU to forecast electricity load data in the
Tubas area, Palestine [16]. The GRU performed best, achieving a 90.228% of goodness of fit
(R2) and a root mean square error (RMSE) of 0.04647. However, a single model is never
sufficient to achieve the optimal prediction results. In 2020, Sajjad et al. proposed a novel
CNN-GRU-based hybrid approach for short-term residential load forecasting [17]. This
approach first learns the spatial features using CNN, then feeds them into the GRU model,
which enhances the sequence learning. The proposed model was tested on the public
appliances energy prediction (AEP) and individual household electric power consumption
(IHEPC) datasets. The results showed that the CNN-GRU model performed better than
base models such as XGBoost and RNN. Although CNN can enhance the learning capability
of GRU, the temporal convolutional network (TCN) proposed in 2018 has a more flexible
sense field to adapt different sequence requirements [23]. In 2023, Hong et al. proposed
the CEEMDAN-TCN-GRU-Attention model [18]. They utilized CEEMDAN to reduce the
nonlinearity and complexity of the sequences, and the TCN and Attention modules to
enhance the ability of GRU to capture feature information. The validation was carried out
on power load data in Quanzhou City, Fujian Province, China, and the results show that
the CEEMDAN-TCN-GRU-Attention method is well-structured and has better accuracy
than a general combination model such as GRU-TCN.

In summary, decomposing the electric load data first can reduce the nonlinearity
and complexity of the data, which is conducive to improving the prediction performance.
Meanwhile, the use of combinatorial models can further improve the accuracy of the electric
load data prediction. From the review of relevant works, it has been determined that price,
climate, and other factors impact the prediction results, which is more applicable to the
current complex power consumption environment.

Building upon previous research, as shown in Table A1, this study proposes a method
that incorporates factors such as temperature, electricity prices, and holiday effects to
address the uncertainty inherent in load data. Further, VMD is employed to decompose the
original load data, reducing model training and computation complexity, enhancing model
stability and accuracy, and addressing the pronounced non-linearity of load data. In this
study, we formulate a hybrid regression model integrating a bidirectional GRU (BiGRU)
and a TCN. BiGRU, by merging forward and backward GRUs, allows for a more effective
capture of time-series information and facilitates deeper feature extraction and analysis.
The coupled TCN can discern spatiotemporal relationships in the sequence data, manage
long-term dependencies, and improve the model’s execution speed. In summary, this study
introduces a method for short-term electricity load forecasting, integrating VMD with a
TCN–BiGRU hybrid model. This proposed method was validated through experiments
using electricity market data from Singapore and Australia, and its performance was
compared with various standalone and integrated models. The experimental results
substantiate the feasibility and superiority of the proposed model for addressing short-term
electricity load forecasting challenges.

After a broad review of previous work on electrical load forecasting, we propose a
combining VMD-TCN-BiGRU regression model for the uncertainty and non-linearity of
electric load data. The major contributions of the paper are as follows.

• First, we use VMD to decompose the original signal in order to obtain several simpler
signal components. This helps to reduce the complexity of the electrical load data and
solve the nonlinearities within the load data.

• We highlight the necessity of considering economic, social, and climatic multidimen-
sional characteristics in addition to considering the data’s own characteristics.

• Subsequently, we trained the combined neural network GRU-TCN by using the fused
data to obtain the long- and short-term dependencies of the data, as well as the
prediction results of the testing datasets.
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• We tested the new model on two open datasets from Singapore and Australia in
comparison with a variety of recent and significant models applied in this field. We
also demonstrate the rationality of the components in the combined model through
ablation experiments.

The rest of the paper is organized as follows. Section 2 describes the materials and
methods of the paper. Then, Section 3 describes the validation experiments conducted in
this paper and the related discussion of the results. Finally, the paper concludes with a
perspective on future work and open research challenges in Section 4.

2. Materials and Methods

The short-term load forecasting method proposed herein integrates VMD and TCN–BiGRU.
Initially, VMD decomposes the load data into several signal components. The decomposed
data are then combined with temperature, electricity prices, and calendar features to gener-
ate new data. These new data are segmented into datasets and normalized independently.
Subsequently, these normalized data are employed to train the integrated model after a
data window panning operation. Ultimately, the model is tested on a validation set, and
the real data are obtained after inverse normalization of the prediction results. This method
capitalizes on the inherent time-series characteristics of load data while considering external
influences such as temperature, electricity prices, and calendar effects. This dual approach
enhances the model’s accuracy and stability and diminishes the impacts of uncertainty and
non-linearity in load data. The specific process is depicted in Figure 1.

2.1. Variational Modal Decomposition (VMD)

VMD is a nonrecursive, fully adaptive variational method proposed by Dragomiret-
skiy et al. [24]. The primary objective of VMD is to decompose the actual input signal
into multiple discrete subsignals, termed intrinsic mode functions (IMFs). By regulating
bandwidth, VMD is capable of effectively suppressing the modal overlap phenomenon [25].

To determine the bandwidth of each mode, VMD involves the following key processes:

1 The correlation analysis signal of each mode is calculated by means of the Hilbert
transform to derive the one-sided frequency;

2 Each mode is combined with the exponential term and modulated to the base-band
frequency;

3 Based on Gaussian smoothness and the squared parametric of the gradient, the center
frequency of each mode is determined by demodulating the signal. The resulting
constrained variational problem is expressed as follows:

min
{uk}{ωk}

{
∑
k

∥∥∥∥∂t

[(
δ(t) +

j
πt

)
∗ uk(t)

]
e−jωkt

∥∥∥∥2
2

}
, (1)

s.t.∑
k

uk = f , (2)

where {uk} := {u1, ..., uK} represents the set of all modes, and {ωk} := {ω1, ..., ωK} denotes
the set of the center frequency of each mode. Equation (2) indicates that the sum of all
modes is equivalent to the actual input signal.

The VMD method chiefly uses quadratic penalty terms α and Lagrange multipliers λ
to render the problem unconstrained. Following the addition of α and λ, the sum of the
equation is as follows:

L({uk}, {ωk}, λ) = α∑
k

∥∥∥∥∂t

[(
δ(t) +

j
πt

)
∗ uk(t)

]
e−jωkt

∥∥∥∥2
2
+

∥∥∥∥∥ f (t)−∑
k

uk(t)

∥∥∥∥∥2
2
+

〈
λ(t), f (t)−∑

k
uk(t)

〉
(3)
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This constrained problem can be solved through the alternating direction multiplier
method, which involves fixing the other two variables and updating one of them, alternat-
ing updates for un+1

k , ωn+1
k , and λ̂n+1 as follows:

ûn+1
k (ω)←

f̂ (ω)−∑ i<kûn+1
i (ω)−∑ i>kûn

i (ω) +
λ̂n(ω)

2

1 + 2α
(
ω−ωn

k
)2 , (4)

ωn+1
k ←

∫ ∞
0 ω

∣∣∣ûn+1
k (ω)

∣∣∣2dω∫ ∞
0

∣∣∣ûn+1
k (ω)

∣∣∣2dω

, (5)

λ̂n+1(ω)← λ̂n(ω) + τ

(
f̂ (ω)−∑

k
ûn+1

k (ω)

)
, (6)

where f̂ (ω), ûn
i(ω), λ̂(ω) and un+1

k (ω) are the Fourier transforms of f (t), u(t), λ(t),
and ûn+1

k (t), respectively; ωn+1
k is the center frequency of the current mode; and ûn+1

k (ω)
represents the Wiener filtering of the current residuals.

The flowchart in Figure 1 illustrates the process of load sequence decomposition using
the VMD algorithm. Initially, the load data are the input, and uk, ωk, λ are initialized.
Next, uk, ωk, λ are updated alternately until the accuracy is lower than the set threshold,
as described in the aforementioned method. Subsequently, K components are derived.

2.2. TCN

In the present study, TCN is utilized for short-term load data modeling. Its fundamen-
tal architecture comprises causal convolution, dilated convolution, and a residual module.

2.2.1. Causal Convolution

Each node’s data within the hidden layer of the causal convolution correlates only
with the data at the same moment and those before it in the subsequent layer. This concept
is illustrated in Figure 2. The primary goal of this approach is to mitigate the issue of
information leakage that is prevalent in traditional convolutional structures, ensuring that
no information from the future leaks into the past.
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2.2.2. Dilated Convolution

To address the problem of information loss associated with historical data, the TCN
model merges dilated convolution with causal convolution. This combination expands
the field of view, capturing long-range dependencies within the input sequence. For a
one-dimensional sequence x0(t), the filter f is f 0 to fk−1. The convolution operation F for
the sequence element s is as follows:

F(s) = (X ∗d f )(s) =
k−1

∑
i=0

f (i) · xs−d·i, (7)

where d is the dilation factor, k is the filter size, and s−d·i denotes the past direction.
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Figure 3 presents the structure of the dilated convolution module. The inputs to the
upper layer of the hidden layer neurons are discontinuous, allowing for an expanded field
of view for the convolution kernel without the need for additional weights. As the dilation
factor increases, the convolution kernel can capture increasingly distant dependencies.
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2.2.3. Residual Module

The TCN model introduces the residual block to avoid the problems of information
loss and instability caused by excessive network depth. The connection of the residual
block is represented by the arc in Figure 3. As depicted in Figure 4, the residual module
comprises two layers of dilated causal convolutional layers and their accompanying mod-
ules. To rectify the discrepancy of input and output widths, an additional one-dimensional
convolution is implemented, ensuring that the two tensors involved in the summation
operation (⊕) maintain consistent shapes.
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2.3. BiGRU

The BiGRU consists of two distinct GRU modules, namely, the forward and backward
modules. This architecture improves upon the original LSTM by replacing the input gate,
output gate, and forget gate with a reset gate and an update gate. This adjustment results
in fewer parameters and accelerated training.
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The calculations of the GRU update gate (zt) and reset gate (rt) are as follows:

zt = σ(Wz · [ht−1, xt]), (8)

rt = σ(Wr · [ht−1, xt]), (9)

where ht−1 represents the hidden layer output at time t−1, while xt denotes the current
input. Wz and Wr are the weights in the update and reset gates, respectively, and σ is the
Sigmoid function. The GRU output is the hidden layer at time t, i.e., ht, and it is calculated
as follows:

h̃t = tanh
(
Wh̃ · [rt × ht−1, xt]

)
, (10)

ht = (1− zt)× ht−1 + zt × h̃t, (11)

where h̃t represents the candidate hidden layer; tanh signifies the hyperbolic tangent
function; and Wh̃ indicates the weight of the candidate hidden layer. The structure of the
GRU is depicted in Figure 5.
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The BiGRU utilizes two distinct GRUs for sequence modeling, capturing time series
information features from two separate data transmission directions. This bidirectional
modeling enhances prediction accuracy and robustness. The structure of the BiGRU is
shown in Figure 6.
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2.4. Data Collection and Pre-Processing

The accuracy and generalizability of the proposed model were verified using two
distinct datasets for training and model validation. The first data set (referred to here-
after as Dataset 1) was sourced from the Singapore National Electricity Market “https:
//www.nems.emcsg.com/nems-prices (accessed on 25 March 2023)”, encompassing data

https://www.nems.emcsg.com/nems-prices
https://www.nems.emcsg.com/nems-prices
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from 8 January 2018 to 28 December 2019. The second dataset (henceforth referred to
as Dataset 2) was derived from the Australian Energy Market Operator’s Australian
database “https://www.aemo.com.au/energy-systems/electricity/national-electricity-
market-nem/data-nem/aggregated-data (accessed on 20 June 2023)”, including data from
1 January 2006 to 1 January 2011. Both datasets had a data collection interval of 0.5 h, with
48 data points collected throughout each day. Meteorological data were acquired from the
National Oceanic and Atmospheric Administration “https://www.noaa.gov/ (accessed on
25 March 2023)”.

As demonstrated in Figure 7, which represents the distribution of Dataset 1 and
Dataset 2, a valley value occurs every 336 sampling points, i.e., roughly one week. This
indicates that the load data exhibit weekly cyclical variation. And the electrical load is
higher from Monday to Friday and lower on weekends. Thus, we labeled the work week
as 0, and weekends as 1.
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The initial feature set was composed of 13 dimensions of data, including wind speed,
wind direction, visibility, and precipitation. However, considering significant missing data
for some features, we selected the features most relevant to the electric load data after a
Pearson correlation analysis and a literature review [26].

The formula for calculating the Pearson correlation coefficient is as follows:

ρX,Y =
cov(X, Y)√

DX
√

DY
, (12)

where ρX,Y is the correlation coefficient between variables X, Y; cov(X, Y) s the covariance
between variables X, Y; and DX and DY are the variance of X and Y.

According to Equation (12), the absolute values of correlation coefficients between
electricity price, temperature, and load for the first five days of the two datasets were
obtained as shown in Table 1. As shown in Table 1, the absolute values of the correlation
coefficients between electricity price, temperature, and load were all greater than 0.5.
Thus, electricity price and temperature can be considered as features to be introduced into
the model.

For the calendar features, we labeled holidays as 0 and non-holidays as 1. The final
feature set was narrowed down to the following dimensions: electricity price, temperature,
and calendar features.

https://www.aemo.com.au/energy-systems/electricity/national-electricity-market-nem/data-nem/aggregated-data
https://www.aemo.com.au/energy-systems/electricity/national-electricity-market-nem/data-nem/aggregated-data
https://www.noaa.gov/
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Table 1. Absolute values of correlation coefficients between electricity loads and each of the influenc-
ing factors for the first five days of both datasets.

Dataset Date Temperature Price

Dataset 1

8 January 2018 0.87 0.73
9 January 2018 0.14 0.96

10 January 2018 0.93 0.99
11 January 2018 0.51 0.91
12 January 2018 0.58 0.89

Dataset 2

1 January 2006 0.66 0.75
2 January 2006 0.60 0.92
3 January 2006 0.85 0.62
4 January 2006 0.86 0.52
5 January 2006 0.80 0.61

The ratio of the training set, validation set, and test set was established as 8:1:1, and
the time window was set to 7, applying super step load prediction [27,28]. Furthermore, the
data were normalized to the maximum–minimum value and mapped to the [0, 1] interval.

3. Results and Discussion
3.1. Evaluation Indicators

This study employed the MAPE, RMSE, and R2 as evaluation indicators. The smaller
the MAPE value, the higher the accuracy of the prediction model; the smaller the RMSE,
the smaller the prediction error of the model. The closer the R2 is to 1, the better the fit of
the model. These were calculated as follows:

MAPE =
1
m

m

∑
k=1

|ŷk − yk|
yk

× 100%, (13)

RMSE =

√
1
m

m

∑
k=1

(ŷk − yk)
2, (14)

R2 = 1−

m
∑

k=1
(ŷk − yk)

2

m
∑

k=1
(yk − yk)

2 , (15)

where ŷk represents the forecasted electrical load data; yk is the real electrical load data;
y is the average of all electrical load data; and m is the total number of electrical load
data samples.

3.2. VMD Processing

Appropriate application of VMD can assist the combined model in mitigating the
effects of noise and other interfering factors during model training. In this study, we
applied VMD using a penalty factor α with a value of 2000 and a chosen threshold ε. We
then conducted a comparative selection of K values. Table 2 presents the decomposition
results of Dataset 1 for different K values. When the value of K equals or exceeds 6, the
central frequencies of IMF3 and IMF4 are in close proximity, suggesting the occurrence of
modal mixing in the system when K equals or exceeds 6. As a result, we selected K = 5 for
the study of Dataset 1.

We subsequently subjected Dataset 2 to VMD. The decomposition results for Dataset 2
under varying K values are presented in Table 3. Consistent with the findings from Dataset
1, K = 5 was optimal for the study of Dataset 2.
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Table 2. Process of VMD for Dataset 1.

K IMF1 IMF2 IMF3 IMF4 IMF5 IMF6 IMF7

3 0.09 725.36 1472.03
4 0.09 725.14 1462.79 2874.54
5 0.09 725.14 1462.69 2873.75 6502.09
6 0.09 725.11 1461.81 1463.60 2893.02 6509.06
7 0.09 725.15 1455.00 1450.39 2147.45 2919.46 6518.35

Table 3. Process of VMD for Dataset 2.

K IMF1 IMF2 IMF3 IMF4 IMF5 IMF6 IMF7

3 0.46 1822.48 3739.96
4 0.45 1819.47 3651.89 5657.73
5 0.44 1819.21 3647.96 5466.88 7414.18
6 0.43 1819.02 3650.71 3592.43 7405.81 5470.70
7 0.42 1819.10 3647.69 3626.22 5473.00 3631.91 7398.07

3.3. Analysis of Results

This section describes a comparative analysis conducted to highlight the strengths of
the model proposed in this study. We compared our model with several others, including
the artificial neural network (ANN), CNN, support vector regression (SVR), LSTM, and
GRU models, as well as a few common combination models. This comparison verified
the superior accuracy of our model. The models were trained with consistent param-
eters and then applied to predictions on Dataset 1 and Dataset 2 to demonstrate their
generalization capabilities.

Table 4 details the specific parameters of our model and the comparison models. These
parameters were obtained through several tuning experiments, and here, we show the
tuning process of the model proposed in this paper under dataset 1, as shown in Table 5.
The other models were similar and will not be listed in detail. With the current parameter
configuration, optimal results were achieved for both our model and the comparison models.

Table 4. List of model parameters.

Model Parameters * Common Parameters

BiGRU Units = 64

Dropout: 0.2
Loss: MSE

Optimizer: Adam

TCN
Nb_filters = 64; Kernel_size = 3

Nb_stacks = 1; Dilations = (1, 2, 4, 8, 16)
Activation = ‘relu’; Padding = ‘causal’

GRU Units = 64
CNN Filters = 128; Kernel_size = 1; Pool_size = 1
ANN Units = 64; Units = 32; Units = 1
LSTM Units = 64
SVR Kernel = ‘rbf’; C = 100; Gamma = 0.001

* Units represent the dimension of the output space; Nb_filters represents the number of filters to use in the convo-
lutional layers; Kernel_size represents the size of the kernel to use in each convolutional layer; Dilations represents
the list of dilations; Nb_stacks represents the number of stacks of residual blocks to use; Activation represents the
activation used in the residual blocks; Padding represents the padding to use in the convolutional layers; Filters
represents the dimensionality of the output space (i.e., the number of output filters in the convolution); Kernel
specifies the kernel type to be used in the algorithm; C represents the penalty parameter C of the error term; and
Gamma represents the kernel coefficient.

Table 5. The tuning process of the TCN-BiGRU model.

TCN BiGRU MAPE/%↓ RMSE/MW↓ R2/%↑
Nb_filters = 32 Units = 32 1.73 131.40 85.38
Nb_filters = 64 Units = 32 1.64 128.95 85.92



Energies 2023, 16, 6625 12 of 17

Table 5. Cont.

TCN BiGRU MAPE/%↓ RMSE/MW↓ R2/%↑
Nb_filters = 128 Units = 32 2.15 141.02 83.16
Nb_filters = 32 Units = 64 1.28 96.18 92.16
Nb_filters = 64 Units = 64 0.42 29.35 98.27

Nb_filters = 128 Units = 64 1.17 80.34 94.53
Nb_filters = 32 Units = 128 1.57 110.04 89.74
Nb_filters = 64 Units = 128 1.55 108.03 90.12

Nb_filters = 128 Units = 128 1.91 149.17 81.16

Figure 8 presents the prediction results for each model under Datasets 1 and 2 as parts
a and b, respectively, and Table 6 provides the corresponding evaluation metrics.
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Figure 8 illustrates that the ANN model’s overall prediction performance was unsat-
isfactory, with it only capturing the overall trend of the actual data and its error notably
increasing over time. Furthermore, it struggled to handle large load fluctuations. The
CNN model handled trough data better, but it encountered more significant errors when
faced with frequent fluctuations. The SVR model roughly predicted the data direction, but
initially exhibited a large error. Both the LSTM and GRU models failed to accurately predict
long-term trough and peak fluctuations, but were sensitive to short- and medium-term
changes. General combinations of CNN with the LSTM or GRU models did not yield
appropriate results due to the CNN’s inherent limitations. In contrast, the model proposed
in this study fit the actual data appropriately; adeptly handled long-term fluctuations;
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and provided accurate predictions for peaks, troughs, and short-term fluctuations. It can
also precisely anticipate frequent short-term fluctuations, resulting in an adequate overall
curve fit.

Table 6. Prediction results of different models.

Dataset Model MAPE/%↓ RMSE/MW↓ R2/%↑

Dataset 1

TCN–BiGRU 0.42 29.35 98.27
ANN 2.40 149.52 81.08
CNN 1.63 108.94 89.30
SVR 1.67 115.01 88.80

LSTM 1.76 139.76 83.46
GRU 2.26 164.68 77.04

CNN–LSTM 1.61 105.23 90.62
CNN–BiLSTM 1.23 86.45 93.67

CNN–GRU 1.51 101.62 91.25

Dataset 2

TCN–BiGRU 1.79 217.17 97.98
ANN 6.89 701.17 78.94
CNN 3.54 379.43 70.53
SVR 4.42 573.92 85.89

LSTM 4.17 485.24 89.91
GRU 4.84 528.07 88.05

CNN–LSTM 3.17 361.75 94.39
CNN–BiLSTM 2.75 316.47 95.71

CNN–GRU 3.47 380.71 93.79

Table 5 demonstrates that, regarding the experimental results from Dataset 1, the
proposed model surpassed the comparative models in all evaluation metrics. Specifically,
compared to the ANN, CNN, SVR, LSTM, and GRU models, the MAPE decreased by
1.98, 1.21, 1.25, 1.34, and 1.84 percentage points, respectively. This indicates a higher
prediction accuracy of the model developed in this study. The RMSE also decreased,
suggesting a lower prediction error for our model. Additionally, the R2 of our model
reached 98.27%, indicating well-fitted prediction results and excellent performance in
completing the prediction task. Even when comparing the combined models, our model
excelled over CNN–LSTM, CNN–BiLSTM, and CNN–GRU in terms of MAPE, RMSE, and
R2. The symbols of “↓” or “↑” beside these indicators represent the expected trend of each
evaluation indicator.

The analysis of Dataset 2 also yielded similar results. By observing and comparing
the results according to metrics of MAPE, RMSE and R2, we found that our model, trained
with the same parameters, outperformed both the individual and combined models.

3.4. Ablation Experiments

To further ascertain the viability and effectiveness of the method employed in this
study, we conducted ablation experiments on both datasets. The ablation experiment
results are presented in Table 7 and Figure 9. Groups A, B, C, D, and E in Table 7 represent
the models after the deletion or alteration of modules, with consistent model parameters
across all groups. By examining Figure 9 and comparing the experimental results from
Groups A and B in Table 7, predictions with the BiGRU model are more accurate, and
training performance markedly improved for both Datasets 1 and 2. Comparing Groups A
and C, the results reveal that not decomposing data for Dataset 1 decreased the accuracy,
and for Dataset 2, when VMD was not performed, the prediction results were adversely
impacted, demonstrating the significance of VMD in the model. Moreover, omitting the
BiGRU module also led to a decline in model prediction performance, thus emphasizing
the critical role of BiGRU in the model. The ablation experiments allowed us to conclude
that our combined model as well-constructed, with each structural element positively
contributing to its prediction accuracy and efficiency.



Energies 2023, 16, 6625 14 of 17

Table 7. Results of ablation experiments.

Dataset Group VMD TCN GRU module MAPE/%↓ RMSE/MW↓ R2/%↑ t/s↓

Dataset 1

A
√ √

BiGRU 0.42 29.35 98.27 501.25
B

√ √
GRU 1.71 123.18 87.16 1194.94

C /
√

BiGRU 1.63 118.62 88.01 260.02
D

√
/ BiGRU 2.24 153.18 80.14 362.78

E
√ √

/ 1.33 90.93 93.00 444.26

Dataset 2

A
√ √

BiGRU 1.79 217.17 97.98 3666.43
B

√ √
GRU 3.95 456.98 91.06 5501.26

C /
√

BiGRU / / / /
D

√
/ BiGRU 3.37 392.79 93.39 1133.13

E
√ √

/ 2.28 304.89 96.01 5305.01
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4. Conclusions

This study addresses the challenges of uncertainty and non-linearity inherent in short-
term electrical load series. Traditional prediction methods, often marked by low accuracy
due to the inadequate consideration of influencing factors, are contrasted with a short-term
electrical load forecasting approach based on the VMD–TCN–BiGRU model. This proposed
method considers a broad range of factors, including electricity price, temperature, and
calendar variables. Using Singapore load data for experimentation, the proposed method
achieved a MAPE of 0.42% and an RMSE of 29.35 MW, suggesting high prediction accuracy
with minimal errors. When the same set of parameters was applied to Australian load
data, the model demonstrated 1.79% in MAPE and 217.17 in RMSE, thus confirming the
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superior generalization of the proposed method. In summary, the following conclusions
can be drawn:

1 By integrating a wide array of factors—natural, human, economic, and sequence
characteristics—the predictive accuracy of the model can be significantly enhanced.

2 VMD can mitigate the impact of uncertainty and non-linearity in load series on
prediction accuracy and stability.

3 The hybrid model employing TCN and BiGRU effectively captures the long- and short-
distance dependencies in load data. This approach not only improves the model’s
performance and stability, but also exhibits robust adaptability to different datasets.

Future research will consider the incorporation of a broader range of meteorological
factors to further improve the forecasting performance. Meanwhile, power load forecasting
is a very sensitive application and is susceptible to many security issues. Therefore, in
addition to pursuing high accuracy, we also need to consider the security of the model to
ensure its ability to cope with various attacks. Therefore, it is also necessary to consider
combining it with specific defense methods, such as [29], in future practical applications of
the model.
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Abbreviations
The following abbreviations are used in this manuscript:

Notation Description
CNY Chinese unit of currency
ARMA Autoregressive moving average
ARIMA Autoregressive integrated moving average
CNN Convolutional neural network
CS Cuckoo search
SVM Support vector machine
XGBoost Extreme gradient boosting
RF Random forests
LSTM Long short-term memory
MSE Mean square error
MAE Mean absolute error
CEEMDAN Complete Ensemble Empirical Mode Decomposition with Adaptive Noise
SE Sample entropy
RNN Recurrent neural network
TCN Temporal convolutional network
GRU Gated recurrent unit
VMD Variational modal decomposition
BiGRU Bidirectional recurrent neural network
IMFs Termed intrinsic mode functions
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MAPE Mean absolute percentage error
RMSE Root mean square error
R2 Goodness of fit
ANN Artificial neural network
SVR Support vector regression

Appendix A

Table A1. Summary of the literature review.

Reference Method Dataset (Period) Location/County Metics Pros Cons

[10] Threshold ARMA

Average daily
residential

electricity load
data (from 1 May

2017 to 31
March 2020)

A prefecture-level
city in the

south-west of
Zhejiang Province,

China

MAPE: 4.167%
Considering the

influence of
temperature

Difficulty in
adapting to the

effects of
non-linear factors

on load data
[11] ARIMA-CNN

Daily electricity
consumption data
(from 2016 to 2018)

Tai’an, Shandong
Province, China MAPE: 4.89% Based on

wavelet transform

[12] CS-SVM PJM power market
(from 1995 to 1998) United States MAPE: 13.43%

Considered
demand

price elasticity
It is difficult for

traditional
machine learning

to extract its
features deeply in

non-linear time
series data

[13] RF
ENTSO-E

repository (from
2012 to 2015)

Poland (PL), Great
Britain (GB),

France (FR) and
Germany (DE).

MAPE:
PL: 1.05%
GB: 2.36%
FR: 1.67%
DE: 1.06%

RF has a low
number of tuning
hyperparameters;
fast training and

optimization

[14] CEEMDAN-SE-
LSTM

Electric load data
(from 13 May 2014,

to 13 May 2017)
Changsha, China MAPE: 1.649%

Decomposing the
electric load

data first

LSTM is not as fast
as GRU

[15] LSTM-Informer

The power
consumption data
of the power grid
(52,416 pieces of
data in a 10 min

window
from 2017)

Tetouan, Morocco. MSE: 0.2085%
MAE: 0.3963%

Using the
combined model

[16] LSTM, GRU
and RNN

Electricity load
data (from 1

September 2021 to
31 August 2022)

Tubas Electricity
Company,
Palestine

GRU:
MSE: 0.215%
MAE: 3.266%

The GRU model
obtained the
best results.

Only a single factor
was used and the

considerations
were not compre-
hensive enough

[17]
A novel

CNN-GRU-Based
hybrid approach

AEP and IHEPC
datasets available

(ten-minute
resolution for

about 4.5 months)

Public
MSE: 0.22

RMSE: 0.47
MAE: 0.33

The CNN-GRU
model is better

than base models
such as XGBoost

and RNN.

CNN is not as
flexible as TCN

[18]
CEEMDAN-
TCN-GRU-
Attention

Power load data
(f 5400 data points)

Quanzhou City,
Fujian Province,

China

MAE: 95.851 MW
R2: 98.2%

RMSE: 125.23 MW
MAPE: 1.099%

The data were first
decomposed and a

combined TCN
and GRU model

was applied.

Not combined with
the holiday factor
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