Photovoltaic Spectral Responsivity and Efficiency under Different Aerosol Conditions
Abstract
:1. Introduction
2. Data and Methodology
2.1. Standard Test Conditions (STC)
Spectral Responses
2.2. Ground-Based Measurements
2.2.1. Location
2.2.2. Instruments
Precision Solar Spectroradiometer (PSR)
CE-318 CIMEL Sun Photometer
2.2.3. Methodology
- MM > 1: spectral gain compared to STC, which indicates the better performance of the considered material under the actual spectrum than under the standard AM1.5 spectrum;
- MM < 1: spectral loss compared to STC, indicating power loss.
2.3. Model Simulations—Library for Radiative Transfer (libRadtran)
3. Results and Discussion
3.1. Ground Based Measured SSI—Reference Spectrum
3.2. Radiative Transfer (libRadtran) Simulations—Reference Spectrum
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AE | Ångström exponent |
AERONET | Aerosol Robotic Network |
AM | air mass |
AOD | aerosol optical depth |
a-Si | amorphous silicon |
ASNOA | Actinometric Station of the National Observatory of Athens |
ASPIRE | Atmospheric parameters affecting SPectral solar IRradiance and solar Energy |
ASTM (-G) | American Society of Testing and Materials (Global) |
AZ | solar azimuth angle |
CdTe | cadmium telluride |
CIS | copper indium selenide |
DNI | direct normal irradiance |
DSSI | downward spectral solar irradiance |
FWHM | full width at half maximum |
GaAs | Gallium arsenide |
GAW | Global Atmospheric Watch |
GHI | global horizontal irradiance |
GTI | Global Tilted Irradiance |
IEA | International Energy Agency |
IEC | International Electrotechnical Commission |
MM | spectral mismatch factor |
mono c-Si | monocrystalline silicon |
PFR | Precision Filter Radiometer |
poly c-Si | polycrystalline silicon |
PSR | Precision solar Spectroradiometer |
PTB | Physikalisch-Technische Bundesanstalt |
PV | photovoltaic(s) |
pvpmc | PV Performance Modeling Collaborative |
PWC | precipitable water vapor column |
RTM | radiative transfer model |
SI | spectral irradiance |
SMARTS | Simple Model of the Atmospheric Radiative Transfer of Sunshine |
SR | spectral response |
SSA | single scattering albedo |
SSI | solar spectral irradiance |
STC | Standard Test Conditions |
SZA | solar zenith angle |
TOC | total ozone column |
UV | ultraviolet |
WRC | World Radiation Center |
References
- IEA. IEA Renewables 2022, Paris 2022. pp. 25–26. Available online: https://www.iea.org/reports/renewables-2022 (accessed on 16 August 2023).
- IEA. World Energy Investment 2023, Paris. 2023. Available online: https://www.iea.org/reports/world-energy-investment-2023 (accessed on 24 August 2023).
- International Renewable Energy Agency (IRENA). Future of Solar Photovoltaic: Deployment, Investment, Technology, Grid Integration and Socio-Economic Aspects (A Global Energy Transformation: Paper); International Renewable Energy Agency: Abu Dhabi, United Arab Emirates, 2019; pp. 17–18. [Google Scholar]
- U.S. Department of Energy. Photovoltaic Cell Conversion Efficiency Basics. 2013. Available online: https://www.energy.gov/eere/solar/solar-performance-and-efficiency (accessed on 12 July 2023).
- Bogenrieder, J.; Hüttner, M.; Luchscheider, P.; Hauch, J.; Camus, C.; Brabec, C. Technology-specific yield analysis of various photovoltaic module technologies under specific real weather conditions. Prog. Photovolt. Res. Appl. 2017, 26, 74–85. [Google Scholar] [CrossRef]
- Finsterle, W.; Montillet, J.P.; Schmutz, W.; Šikonja, R.; Kolar, L.; Treven, L. The total solar irradiance during the recent solar minimum period measured by SOHO/VIRGO. Sci. Rep. 2021, 11, 7835. [Google Scholar] [CrossRef] [PubMed]
- Kazadzis, S.; Founda, D.; Psiloglou, B.E.; Kambezidis, H.; Mihalopoulos, N.; Sanchez-Lorenzo, A.; Meleti, C.; Raptis, P.I.; Pierros, F.; Nabat, P. Long-term series and trends in surface solar radiation in Athens, Greece. Atmos. Chem. Phys. 2018, 18, 2395–2411. [Google Scholar] [CrossRef]
- Dudok de Wit, T.; Ermolli, I.; Haberreiter, M.; Kambezidis, H.; Lam, M.; Lilensten, J.; Matthes, K.; Mironova, I.; Schmidt, H.; Seppäla, A.; et al. Earth’s Climate Response to a Changing Sun; EDP Science: Les Ulis, France, 2015. [Google Scholar] [CrossRef]
- Haywood, J.; Boucher, O. Estimates of the direct and indirect radiative forcing due to tropospheric aerosols: A review. Rev. Geophys. 2000, 38, 513–543. [Google Scholar] [CrossRef]
- Papachristopoulou, K.; Fountoulakis, I.; Gkikas, A.; Kosmopoulos, P.G.; Nastos, P.T.; Hatzaki, M.; Kazadzis, S. 15-Year Analysis of Direct Effects of Total and Dust Aerosols in Solar Radiation/Energy over the Mediterranean Basin. Remote Sens. 2022, 14, 1535. [Google Scholar] [CrossRef]
- Badarinath, K.V.S.; Kumar Kharol, S.; Kaskaoutis, D.G.; Kambezidis, H.D. Influence of atmospheric aerosols on solar spectral irradiance in an urban area. J. Atmos. Sol. Terr. Phys. 2007, 69, 589–599. [Google Scholar] [CrossRef]
- Masoom, A.; Fountoulakis, I.; Kazadzis, S.; Raptis, I.-P.; Kampouri, A.; Psiloglou, B.; Kouklaki, D.; Papachristopoulou, K.; Marinou, E.; Solomos, S.; et al. Investigation of the effects of the Greek extreme wildfires of August 2021 on air quality and spectral solar irradiance. EGUsphere 2023, preprint. [Google Scholar] [CrossRef]
- Amiridis, V.; Zerefos, C.; Kazadzis, S.; Gerasopoulos, E.; Eleftheratos, K.; Vrekoussis, M.; Stohl, A.; Mamouri, R.; Kokkalis, P.; Papayannis, A. Impact of the 2009 Attica wildfires on the air quality in urban Athens. Atmos. Environ. 2012, 46, 536–544. [Google Scholar] [CrossRef]
- Raptis, I.P.; Kazadzis, S.; Amiridis, V.; Gkikas, A.; Gerasopoulos, E.; Mihalopoulos, N. A decade of aerosol optical properties measurements over Athens, Greece. Atmosphere 2020, 11, 154. [Google Scholar] [CrossRef]
- Ångström, A. On the atmospheric transmission of sun radiation and on dust in the air. Geogr. Ann. 1929, 11, 156–166. [Google Scholar] [CrossRef]
- Pace, G.; di Sarra, A.; Meloni, D.; Piacentino, S.; Chamard, P. Aerosol optical properties at Lampedusa (Central Mediterranean). Influence of transport and identification of different aerosol types. Atmos. Chem. Phys. 2006, 6, 697–713. [Google Scholar] [CrossRef]
- Shin, S.K.; Tesche, M.; Noh, Y.; Müller, D. Aerosol-type classification based on AERONET version 3 inversion products. Atmos.Meas. Tech. 2019, 12, 3789–3803. [Google Scholar] [CrossRef]
- Lelieveld, J.; Berresheim, H.; Borrmann, S.; Crutzen, P.; Dentener, F.; Fischer, H.; Feichter, J.; Flatau, P.J.; Heland, J.; Holzinger, R.; et al. Global air pollution crossroads over the Mediterranean. Science 2002, 298, 794–799. [Google Scholar] [CrossRef] [PubMed]
- Bergstrom, R.W.; Pilewskie, P.; Russell, P.B.; Redemann, J.; Bond, T.C.; Quinn, P.K.; Sierau, B. Spectral absorption properties of atmospheric aerosols. Atmos. Chem. Phys. 2007, 7, 5937–5943. [Google Scholar] [CrossRef]
- Nikitidou, E.; Kazantzidis, A.; Salamalikis, V. The aerosol effect on direct normal irradiance in Europe under clear skies. Renew. Energy 2014, 68, 475–484. [Google Scholar] [CrossRef]
- Kazadzis, S.; Raptis, P.; Kouremeti, N.; Amiridis, V.; Arola, A.; Gerasopoulos, E.; Schuster, G.L. Aerosol absorption retrieval at ultraviolet wavelengths in a complex environment. Atmos. Meas. Tech. 2016, 9, 5997–6011. [Google Scholar] [CrossRef]
- Holben, B.N.; Eck, T.F.; Slutsker, I.; Tanre, D.; Buis, J.P.; Setzer, A.; Vermote, E.; Reagan, J.A.; Kaufman, Y.; Nakajima, T.; et al. AERONET—A federated instrument network and data archive for aerosol characterization. Remote Sens. Environ. 1998, 66, 1–16. [Google Scholar] [CrossRef]
- Nakajima, T.; Campanelli, M.; Che, H.; Estellés, V.; Irie, H.; Kim, S.-W.; Kim, J.; Liu, D.; Nishizawa, T.; Pandithurai, G.; et al. An overview of and issues with sky radiometer technology and SKYNET. Atmos. Meas. Tech. 2020, 13, 4195–4218. [Google Scholar] [CrossRef]
- Kazadzis, S.; Kouremeti, N.; Nyeki, S.; Gröbner, J.; Wehrli, C. The World Optical Depth Research and Calibration Center (WORCC) quality assurance and quality control of GAW-PFR AOD measurements. Geosci. Instrum. Method. Data Syst. 2018, 7, 39–53. [Google Scholar] [CrossRef]
- Sengupta, M.; Habte, A.; Wilbert, S.; Gueymard, C.; Remund, J. Best Practices Handbook for the Collection and Use of Solar Resource Data for Solar Energy Applications, 3rd ed.; U.S. Department of Energy, Office of Scientific and Technical Information: Oak Ridge, TN, USA, 2021. [Google Scholar] [CrossRef]
- Theristis, M.; Venizelou, V.; Makrides, G.; Georghiou, G. Energy Yield in Photovoltaic Systems. In McEvoy’s Handbook of Photovoltaics: Fundamentals and Applications, 3rd ed.; Kalogirou, S.-A., Ed.; Elsevier: Amsterdam, The Netherlands, 2018. [Google Scholar] [CrossRef]
- International Electrotechnical Commission. IEC 60904-3; Photovoltaic devices: Part 3: Measurement principles for terrestrial photovoltaic (PV) solar devices with reference spectral irradiance data. International Electro Technical Commission: Geneva, Switzerland, 2019. Available online: https://www.iec.ch/homepage (accessed on 16 August 2023).
- Myers, D.R.; Emery, K.; Gueymard, C. Revising and Validating Spectral Irradiance Reference Standards for Photovoltaic Performance Evaluation. ASME J. Sol. Energy 2004, 126, 567–574. [Google Scholar] [CrossRef]
- ASTM G 173-03; Standard Tables for Reference Solar Spectral Irradiance: Direct Normal and Hemispherical on 37 Tilted Surface. ASTM International: West Conshohocken, PA, USA, 2012.
- Gueymard, C.A. SMARTS, a Simple Model of the Atmospheric Radiative Transfer of Sunshine: Algorithms and Performance Assessment SMARTS; Florida Solar Energy Center: Cocoa, FL, USA, 1995. [Google Scholar]
- Gueymard, C.A. The SMARTS spectral irradiance model after 25 years: New developments and validation of reference spectra. Sol. Energy 2019, 187, 233–253. [Google Scholar] [CrossRef]
- ASTM G173-06; Standard Tables for Reference Solar Spectral Irradiances: Direct Normal and Hemispherical on 37° Tilted Surface. American Society for Testing and Materials: West Conshohocken, PA, USA, 2016.
- Gueymard, C.A.; Myers, D.; Emery, K. Proposed Reference Irradiance Spectra for Solar Energy Systems Testing. Sol. Energy 2002, 73, 443–467. [Google Scholar] [CrossRef]
- Bird, R.E.; Hulstrom, R.L.; Lewis, L.J. Terrestrial Solar Spectral Data Sets. Sol. Energy 1983, 30, 563–573. [Google Scholar] [CrossRef]
- Goetzberger, A.; Hoffmann, V.U. Photovoltaic Solar Energy Generation; Springer: Berlin/Heidelberg, Germany, 2005; pp. 57–89. [Google Scholar]
- Rodrigo, P.M.; Fernández, E.F.; Almonacid, F.M.; Pérez-Higueras, P.J. Quantification of the spectral coupling of atmosphere and photovoltaic system performance: Indexes, methods and impact on energy harvesting. Sol. Energy Mater. Sol. Cells 2017, 163, 73–90. [Google Scholar] [CrossRef]
- Fernández, E.F.; Almonacid, F.; Ruiz-Arias, J.A.; Soria-Moya, A. Analysis of the spectral variations on the performance of high concentrator photovoltaic modules operating under different real climate conditions. Sol. Energy Mater. Sol. Cells 2014, 127, 179–187. [Google Scholar] [CrossRef]
- Herman-Czezuch, A.; Mekeng, A.Z.; Meilinger, S.; Barry, J.; Kimiaie, N. Impact of aerosols on photovoltaic energy production using a spectrally resolved model chain: Case study of southern West Africa. Renew. Energy 2022, 194, 321–333. [Google Scholar] [CrossRef]
- Gutierrez, C.; Somot, S.; Nabat, P.; Mallet, M.; Gaertner, M.A.; Perpiñán, O. Impact of aerosols on the spatiotemporal variability of photovoltaic energy production in the Euro-Mediterranean area. Sol. Energy 2018, 174, 1142–1152. [Google Scholar] [CrossRef]
- Alonso-Abella, M.; Chenlo, F.; Nofuentes, G.; Torres-Ramirez, M. Analysis of spectral effects on the energy yield of different PV (photovoltaic) technologies: The case of four specific sites. Energy 2014, 67, 435–443. [Google Scholar] [CrossRef]
- Pavanello, D.; Galleano, R.; Zaaiman, W.; Ankit, M.; Kouremeti, N.; Gröbner, J.; Hoogendijk, K.; Po, M.; Lisbona, E.F.; Fucci, R.; et al. Results of the IX International Spectroradiometer Intercomparison and impact on precise measurements of new photovoltaic technologies. Prog. Photovolt. Res. Appl. 2021, 29, 109–123. [Google Scholar] [CrossRef]
- Polo, J.; Alonso-Abella, M.; Martín-Chivelet, N.; Alonso-Montesinos, J.; López, G.; Marzo, A.; Nofuentes, G.; Vela-Barrionuevo, N. Typical Meteorological Year methodologies applied to solar spectral irradiance for PV applications. Energy 2020, 190, 116453. [Google Scholar] [CrossRef]
- Senthilarasu, S.; Fernandez, E.F.; Almonacid, F.; Mallick, T.K. Solar energy materials & solar cells effects of spectral coupling on perovskite solar cells under diverse climatic conditions. Sol. Energy Mater. Sol. Cells 2015, 133, 92–98. [Google Scholar] [CrossRef]
- Feng, S.-P.; Cheng, Y.; Yip, H.-L.; Zhong, Y.; Fong, W.K.; Li, G.; Ng, A.; Chen, C.; Castriotta, L.; Matteocci, F.; et al. Roadmap on Commercialization of Metal Halide Perovskite Photovoltaics. J. Phys. Mater. 2023, 6, 032501. [Google Scholar] [CrossRef]
- Luque, A.; Hegedus, S. Handbook of PV Science and Engineering; Wiley: Chichester, UK, 2003; pp. 905–967. [Google Scholar]
- Gerasopoulos, E.; Amiridis, V.; Kazadzis, S.; Kokkalis, P.; Eleftheratos, K.; Andreae, M.O.; Andreae, T.W.; El-Askary, H.; Zerefos, C.S. Three-year ground based measurements of aerosol optical depth over the Eastern Mediterranean: The urban environment of Athens. Atmos. Chem. Phys. 2011, 11, 2145–2159. [Google Scholar] [CrossRef]
- Gröbner, J.; Kouremeti, N. The Precision Solar Spectroradiometer (PSR) for direct solar irradiance measurements. Sol. Energy 2019, 185, 199–210. [Google Scholar] [CrossRef]
- Raptis, I.-P.; Kazadzis, S.; Fountoulakis, I.; Papachristopoulou, K.; Kouklaki, D.; Psiloglou, B.E.; Kazantzidis, A.; Benetatos, C.; Papadimitriou, N.; Eleftheratos, K. Evaluation of the Solar Energy Nowcasting System (SENSE) during a 12-Months Intensive Measurement Campaign in Athens, Greece. Energies 2023, 16, 5361. [Google Scholar] [CrossRef]
- Giles, D.M.; Sinyuk, A.; Sorokin, M.G.; Schafer, J.S.; Smirnov, A.; Slutsker, I.; Eck, T.F.; Holben, B.N.; Lewis, J.R. Advancements in the Aerosol Robotic Network (AERONET) Version 3 database—Automated near-real-time quality control algorithm with improved cloud screening for Sun photometer aerosol optical depth (AOD) measurements. Atmos. Meas. Tech. 2019, 12, 169–209. [Google Scholar] [CrossRef]
- Dubovik, O.; King, M.D. A flexible inversion algorithm for retrieval of aerosol optical properties from Sun and sky radiance measurements. J. Geophys. Res. 2000, 105, 20673–20696. [Google Scholar] [CrossRef]
- IEC 60904-7 (Ed. 3.0); Photovoltaic Devices e Part 7: Computation of the Spectral Mismatch Correction for Measurements of Photovoltaic Devices. International Electrotechnical Commission: Geneva, Switzerland, 2008.
- Dirnberger, D.; Blackburn, G.; Müller, B.; Reise, C. On the impact of solar spectral irradiance on the yield of different PV technologies. Sol. Energy Mater. Sol. Cells 2015, 132, 431–442. [Google Scholar] [CrossRef]
- Hohl-Ebinger, J.; Warta, W. Uncertainty of the spectral mismatch correction factor in STC measurements on photovoltaic devices. Prog. Photovolt. Res. Appl. 2011, 19, 573–579. [Google Scholar] [CrossRef]
- Nofuentes, G.; García-Domingo, B.; Muñoz, J.V.; Chenlo, F. Analysis of the dependence of the spectral factor of some PV technologies on the solar spectrum distribution. Appl. Energy 2014, 113, 302–309. [Google Scholar] [CrossRef]
- Nann, S.; Emery, K. Spectral effects on PV-device rating. Sol. Energy Mater. Sol. Cells 1992, 27, 189–216. [Google Scholar] [CrossRef]
- Emde, C.; Buras-Schnell, R.; Kylling, A.; Mayer, B.; Gasteiger, J.; Hamann, U.; Kylling, J.; Richter, B.; Pause, C.; Dowling, T.; et al. The libRadtran software package for radiative transfer calculations (version 2.0.1). Geosci. Model Dev. 2016, 9, 1647–1672. [Google Scholar] [CrossRef]
- Mayer, B.; Kylling, A. Technical note: The libRadtran software package for radiative transfer calculations—Description and examples of use. Atmos. Chem. Phys. 2005, 5, 1855–1877. [Google Scholar] [CrossRef]
- Stamnes, K.; Tsay, S.-C.; Wiscombe, W.; Jayaweera, K. Numerically stable algorithm for discrete–ordinate–method radiative transfer in multiple scattering and emitting layered media. Appl. Opt. 1988, 27, 2502–2509. [Google Scholar] [CrossRef] [PubMed]
- Buras, R.; Dowling, T.; Emde, C. New secondary-scattering correction in DISORT with increased efficiency for forward scattering. J. Quant. Spectrosc. Radiat. Transf. 2011, 112, 2028–2034. [Google Scholar] [CrossRef]
- Gasteiger, J.; Emde, C.; Mayer, B.; Buras, R.; Buehler, S.A.; Lemke, O. Representative Wavelengths Absorption Parameterization Applied to Satellite Channels and Spectral Bands. J. Quant. Spectrosc. Radiat. Transf. 2014, 148, 99–115. [Google Scholar] [CrossRef]
- Kurucz, R.L. Synthetic Infrared Spectra. Symp. Int. Astron. Union 1994, 154, 523–531. [Google Scholar] [CrossRef]
- Anderson, G.; Clough, S.; Kneizys, F.; Chetwynd, J.; Shettle, E. AFGL Atmospheric Constituent Profiles (0.120 km); Air Force Geophysics Lab.: Bedford, MA, USA, 1986; p. 46. [Google Scholar]
- Stark, C.; Theristis, M. The impact of atmospheric parameters on the spectral performance of multiple photovoltaic technologies. In Proceedings of the 2015 IEEE 42nd Photovoltaic Specialist Conference (PVSC), New Orleans, LA, USA, 14–19 June 2015; pp. 1–5. [Google Scholar] [CrossRef]
- Theristis, M.; Fernández, E.-F.; Almonacid, F.; Pérez-Higueras, P. Spectral Corrections Based on Air Mass, Aerosol Optical Depth, and Precipitable Water for CPV Performance Modeling. IEEE J. Photovolt. 2016, 6, 1598–1604. [Google Scholar] [CrossRef]
- Rodrigo, P.-M.; Fernández, E.-F.; Theristis, M.; Almonacid Cruz, F. Characterization of the Spectral Matching Ratio and the Z-Parameter from Atmospheric Variables for CPV Spectral Evaluation. IEEE J. Photovolt. 2017, 7, 1802–1809. [Google Scholar] [CrossRef]
- Caballero, J.-A.; Fernández, E.-F.; Theristis, M.; Almonacid, F.; Nofuentes, G. Spectral Corrections Based on Air Mass, Aerosol Optical Depth, and Precipitable Water for PV Performance Modeling. IEEE J. Photovolt. 2018, 8, 552–558. [Google Scholar] [CrossRef]
Contribution of PV Materials to Total Irradiance according to the Wavelength Range (%) | ||||
---|---|---|---|---|
PV Techn. | 300–400 nm | 400–700 nm | 700–900 nm | 900–1200 nm |
a-Si | 4.6 | 88.7 | 6.7 | 0 |
GaAs | 1.6 | 61.5 | 36.8 | 0.1 |
CdTe | 0.7 | 62.1 | 37.2 | 0 |
mono c-Si | 1.8 | 45.8 | 32.9 | 19.6 |
poly c-Si | 1.6 | 47.3 | 33.6 | 17.5 |
Instrument | Measurements | Parameters Retrieved | Resolution |
---|---|---|---|
PSR | GHI and DNI spectral 300–1020 nm (step 0.7 nm) | Spectral GHI, DNI | 1 min |
CIMEL440 * | Direct sun 8 bands 340–1024 nm | Columnar aerosol optical properties | 15 min |
Variable Input Parameters in RTM | |||
---|---|---|---|
Scenarios | AOD | AE | SSA |
i. | 0 | 1.30 | 0.85 |
ii. | 1 | 1.30 | 0.85 |
iii. | 1 | 1.30 | 0.90 |
iv. | 1 | 0.50 | 0.85 |
v. | 1 | 0.50 | 0.99 |
vi. | 1 | 2 | 0.85 |
vii. | 1 | 2 | 0.99 |
AODmean 500 nm | Relative Difference (%) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
a-Si | GaAs | CdTe | mono c-Si | poly c-Si | |||||||
Clean | 0.08 | −5 | −5 | −5 | −6 | −5 | −6 | −5 | −5 | −5 | −5 |
Dust | 0.75 | −20 | −23 | −21 | −18 | −18 | −21 | −17 | −20 | −17 | −20 |
Smoke | 0.85 | −22 | −44 | −20 | −39 | −20 | −38 | −18 | −36 | −18 | −36 |
AOD = 1 | AE Effect | SSA Effect | |||
---|---|---|---|---|---|
Difference AE0.5–AE2 (%) | Difference SSA0.85–SSA0.99 (%) | ||||
SSA | min | max | AE | min | max |
SSA0.85 | −3.8 | −11.7 | AE0.5 | −12.9 | −15 |
SSA0.99 | −2.9 | −8.6 | AE2 | −9.8 | −14 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kouklaki, D.; Kazadzis, S.; Raptis, I.-P.; Papachristopoulou, K.; Fountoulakis, I.; Eleftheratos, K. Photovoltaic Spectral Responsivity and Efficiency under Different Aerosol Conditions. Energies 2023, 16, 6644. https://doi.org/10.3390/en16186644
Kouklaki D, Kazadzis S, Raptis I-P, Papachristopoulou K, Fountoulakis I, Eleftheratos K. Photovoltaic Spectral Responsivity and Efficiency under Different Aerosol Conditions. Energies. 2023; 16(18):6644. https://doi.org/10.3390/en16186644
Chicago/Turabian StyleKouklaki, Dimitra, Stelios Kazadzis, Ioannis-Panagiotis Raptis, Kyriakoula Papachristopoulou, Ilias Fountoulakis, and Kostas Eleftheratos. 2023. "Photovoltaic Spectral Responsivity and Efficiency under Different Aerosol Conditions" Energies 16, no. 18: 6644. https://doi.org/10.3390/en16186644
APA StyleKouklaki, D., Kazadzis, S., Raptis, I. -P., Papachristopoulou, K., Fountoulakis, I., & Eleftheratos, K. (2023). Photovoltaic Spectral Responsivity and Efficiency under Different Aerosol Conditions. Energies, 16(18), 6644. https://doi.org/10.3390/en16186644