Bilinear Quadratic Feedback Control of Modular Multilevel Converters
Abstract
:1. Introduction
- a direct control strategy for all state variables of the converter (SM energies and currents);
- a Lyapunov-based stability analysis to demonstrate the suitability of the proposed scheme for asymptotically stabilizing the complex dynamics of the MMC using a single control law.
2. Model of a Modular Multilevel Converter
3. Bilinear Control Theory
3.1. Bilinear System Stability—A General Case
3.2. Bilinear System Stability—Studied Case
4. Validation of the Proposed Control Strategy
4.1. Step Changes on Active and Reactive Power References
4.2. Varying Total Converter Energy
4.3. Disturbance in Energy Balance
- The fourth and fifth graphics show circulating current and . Their behaviors are proportional to changes in , more pronounced in than in . Furthermore, to increase the upper arms’ energy (at s), circulating currents become negative (which means a change in the current direction), and to balance upper and lower energies, currents become positive (at s). They also become positive to balance lower arms at s. PI and bilinear have similar performance.
- Under the bilinear controller, state variables and show overshoot for each change in , while under PI, these changes do not produce overshoot.
- Lastly, the control response for an unbalanced condition of is shown in the eighth graphic. It shows that bilinear control reacts at around 100 ms to drive the state to a desired reference, while PI presents a faster response.
4.4. Robustness Analysis
4.5. SM Voltage Balancing
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Farsi, M.; Liu, J. Nonlinear Optimal Feedback Control and Stability Analysis of Solar Photovoltaic Systems. IEEE Trans. Control Syst. Technol. 2020, 28, 2104–2119. [Google Scholar] [CrossRef]
- Schmuck, C.; Woittennek, F.; Gensior, A.; Rudolph, J. Feed-Forward Control of an HVDC Power Transmission Network. IEEE Trans. Control Syst. Technol. 2014, 22, 597–606. [Google Scholar] [CrossRef]
- Arrillaga, J.; Liu, Y.; Watson, N. Flexible Power Transmission: The HVDC Options; Wiley: Hoboken, NJ, USA, 2007. [Google Scholar]
- Lesnicar, A.; Marquardt, R. An innovative modular multilevel converter topology suitable for a wide power range. In Proceedings of the 2003 IEEE Bologna Power Tech Conference Proceedings, Bologna, Italy, 23–26 June 2003; Volume 3, p. 6. [Google Scholar] [CrossRef]
- Jankovic, M.; Costabeber, A.; Watson, A.; Clare, J.C. Arm-Balancing Control and Experimental Validation of a Grid-Connected MMC With Pulsed DC Load. IEEE Trans. Ind. Electron. 2017, 64, 9180–9190. [Google Scholar] [CrossRef]
- Quester, M.; Loku, F.; El Azzati, O.; Noris, L.; Yang, Y.; Moser, A. Investigating the Converter-Driven Stability of an Offshore HVDC System. Energies 2021, 14, 2341. [Google Scholar] [CrossRef]
- Jovcic, D.; Ahmed, K. High Voltage Direct Current Transmission: Converters, Systems and DC Grids; Wiley: Hoboken, NJ, USA, 2015. [Google Scholar]
- Harnefors, L.; Antonopoulos, A.; Norrga, S.; Angquist, L.; Nee, H.P. Dynamic Analysis of Modular Multilevel Converters. IEEE Trans. Ind. Electron. 2013, 60, 2526–2537. [Google Scholar] [CrossRef]
- Zhang, H.; Belhaouane, M.M.; Colas, F.; Kadri, R.; Gruson, F.; Guillaud, X. On comprehensive description and analysis of MMC control design: Simulation and experimental study. IEEE Trans. Power Deliv. 2020, 36, 244–253. [Google Scholar] [CrossRef]
- de Oliveira, G.C.; Damm, G.; Monaro, R.M.; Lourenço, L.F.; Carrizosa, M.J.; Lamnabhi-Lagarrigue, F. Nonlinear control for modular multilevel converters with enhanced stability region and arbitrary closed loop dynamics. Int. J. Electr. Power Energy Syst. 2021, 126, 106590. [Google Scholar] [CrossRef]
- Carrizosa, M.J.J.; Bergna, G.; Arzande, A.; Damm, G.; Alou, P.; Benchaib, A.; Lamnabhi-Lagarrigue, F. Stability of DC/DC three terminals converter using Modular Multilevel Converters for HVDC systems. In Proceedings of the 17th European Conference on Power Electronics and Applications (EPE-ECCE Europe 2015), Genève, Switzerland, 8–10 September 2015. [Google Scholar] [CrossRef]
- Bergna-Diaz, G.; Freytes, J.; Guillaud, X.; D’Arco, S.; Suul, J.A. Generalized Voltage-Based State-Space Modeling of Modular Multilevel Converters With Constant Equilibrium in Steady State. IEEE J. Emerg. Sel. Top. Power Electron. 2018, 6, 707–725. [Google Scholar] [CrossRef]
- Bergna-Diaz, G.; Suul, J.A.; Berne, E.; Vannier, J.C.; Molinas, M. Optimal Shaping of the MMC Circulating Currents for Preventing AC-Side Power Oscillations From Propagating Into HVdc Grids. IEEE J. Emerg. Sel. Top. Power Electron. 2019, 7, 1015–1030. [Google Scholar] [CrossRef]
- Zhang, Z.; Jin, Y.; Xu, Z. Modeling and Control of Modular Multilevel Matrix Converter for Low-Frequency AC Transmission. Energies 2023, 16, 3474. [Google Scholar] [CrossRef]
- Bergna, G.; Vannier, J.; Lefranc, P.; Arzande, A.; Berne, E.; Egrot, P.; Molinas, M. Modular multilevel converter leg-energy controller in rotating reference frame for voltage oscillations reduction. In Proceedings of the 2012 3rd IEEE International Symposium on Power Electronics for Distributed Generation Systems (PEDG), IEEE, Aalborg, Denmark, 25–28 June 2012; pp. 698–703. [Google Scholar]
- Saad, H.; Guillaud, X.; Mahseredjian, J.; Dennetiere, S.; Nguefeu, S. MMC capacitor voltage decoupling and balancing controls. IEEE Trans. Power Deliv. 2014, 30, 704–712. [Google Scholar] [CrossRef]
- Münch, P.; Görges, D.; Izák, M.; Liu, S. Integrated current control, energy control and energy balancing of Modular Multilevel Converters. In Proceedings of the IECON 2010—36th Annual Conference on IEEE Industrial Electronics Society, Glendale, AZ, USA, 7–10 November 2010; pp. 150–155. [Google Scholar] [CrossRef]
- Vatani, M.; Hovd, M.; Saeedifard, M. Control of the Modular Multilevel Converter Based on a Discrete-Time Bilinear Model Using the Sum of Squares Decomposition Method. IEEE Trans. Power Deliv. 2015, 30, 2179–2188. [Google Scholar] [CrossRef]
- Shinoda, K.; Benchaib, A.; Dai, J.; Guillaud, X. Energy control of modular multilevel converter with a novel analytic filter. In Proceedings of the 2016 18th European Conference on Power Electronics and Applications (EPE’16 ECCE Europe), Karlsruhe, Germany, 5–9 September 2016; pp. 1–10. [Google Scholar] [CrossRef]
- Ma, Y.; Fan, L. Circulating current and DC current ripple control in MMC under unbalanced grid voltage. In Proceedings of the 2015 North American Power Symposium (NAPS), Charlotte, NC, USA, 4–6 October 2015; pp. 1–6. [Google Scholar] [CrossRef]
- Saad, H.; Dennetière, S.; Mahseredjian, J.; Delarue, P.; Guillaud, X.; Peralta, J.; Nguefeu, S. Modular Multilevel Converter Models for Electromagnetic Transients. IEEE Trans. Power Deliv. 2014, 29, 1481–1489. [Google Scholar] [CrossRef]
- Antonopoulos, A.; Angquist, L.; Nee, H. On dynamics and voltage control of the Modular Multilevel Converter. In Proceedings of the 2009 13th European Conference on Power Electronics and Applications, Barcelona, Spain, 8–10 September 2009; pp. 1–10. [Google Scholar]
- Iovine, A.; Siad, S.B.; Damm, G.; De Santis, E.; Di Benedetto, M.D. Nonlinear Control of a DC MicroGrid for the Integration of Photovoltaic Panels. IEEE Trans. Autom. Sci. Eng. 2017, 14, 524–535. [Google Scholar] [CrossRef]
- Bacha, S.; Munteanu, I.; Bratcu, A. Power Electronic Converters Modeling and Control: With Case Studies; Advanced Textbooks in Control and Signal Processing; Springer: London, UK, 2013. [Google Scholar]
- Mohler, R.R. Bilinear Control Processes: With Applications to Engineering, Ecology, and Medicine; Mathematics in Science and Engineering; Elsevier Science: Amsterdam, The Netherlands, 1974. [Google Scholar]
- Pardalos, P.M.; Yatsenko, V. Optimization and Control of Bilinear Systems; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Carrizosa, M.J.; Damm, G.; Benchaib, A.; Alou, P.; Netto, M.; Lamnabhi-Lagarrigue, F. Bilinear and nonlinear control algorithms for a DC/DC converter for Multi-Terminal HVDC networks. IFAC Proc. Vol. 2014, 47, 523–528. [Google Scholar] [CrossRef]
- Pardalos, P.; Yatsenko, V. Optimization and Control of Bilinear Systems: Theory, Algorithms, and Applications; Springer Optimization and Its Applications; Springer: Berlin/Heidelberg, Germany, 2008. [Google Scholar]
- Landau, I. On the Optimal Regulator Problem and Stabilization of Bilinear Systems; Laboratoire d’Automatique (CNRS): Grenoble, France, 1979. [Google Scholar]
- Panteley, E.; Loría, A. Synchronization and Dynamic Consensus of Heterogeneous Networked Systems. IEEE Trans. Autom. Control 2017, 62, 3758–3773. [Google Scholar] [CrossRef]
- Yazdani, A.; Iravani, R. Voltage-Sourced Converters in Power Systems; Wiley Online Library: Hoboken, NJ, USA, 2010; Volume 34. [Google Scholar]
Parameter | Value | Parameter | Value |
---|---|---|---|
0.5 | |||
0.5 | |||
0.5 | |||
0.5 | |||
L | 0.5 | ||
1 | |||
1 | |||
Freq | 1 | ||
R | N | 20 |
PI | Bilinear | Comments | |
---|---|---|---|
Larger overshoots and oscillations | Smaller overshoots | Similar settling time for both | |
Good reference tracking (nonzero reference) | Steady state errors, but closer to zero | Similar oscillation | |
Very good track of reference | Larger oscillations | Different references for each controller | |
Very good track of reference | Steady state errors | Bilinear with oscillating dynamics | |
Larger overshoots | Smaller overshoots | Both present steady state errors |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Costa de Oliveira, G.; Machado Monaro, R.; Damm, G.; Perez, F.; Jimenez Carrizosa, M. Bilinear Quadratic Feedback Control of Modular Multilevel Converters. Energies 2023, 16, 6713. https://doi.org/10.3390/en16186713
Costa de Oliveira G, Machado Monaro R, Damm G, Perez F, Jimenez Carrizosa M. Bilinear Quadratic Feedback Control of Modular Multilevel Converters. Energies. 2023; 16(18):6713. https://doi.org/10.3390/en16186713
Chicago/Turabian StyleCosta de Oliveira, Guacira, Renato Machado Monaro, Gilney Damm, Filipe Perez, and Miguel Jimenez Carrizosa. 2023. "Bilinear Quadratic Feedback Control of Modular Multilevel Converters" Energies 16, no. 18: 6713. https://doi.org/10.3390/en16186713
APA StyleCosta de Oliveira, G., Machado Monaro, R., Damm, G., Perez, F., & Jimenez Carrizosa, M. (2023). Bilinear Quadratic Feedback Control of Modular Multilevel Converters. Energies, 16(18), 6713. https://doi.org/10.3390/en16186713