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Abstract: The aim of this article is to propose methods for obtaining the aerodynamic characteristics
of a flying object in a turbulent atmosphere. This article presents static aerodynamic characteristics of
an unmanned aerial vehicle (UAV), which have been obtained during experimental examinations and
during numerical calculations. The results have been compared with each other in order to validate
the numerical model and methods. The method for modeling gusts using state-of-the-art CFD
software (i.e., ANSYS Fluent Release 16.2) has been proposed and applied to obtain the aerodynamic
characteristics of a UAV including during gusts. Two cases have been analyzed. In the first case, a
downburst was modeled. In the second case, a single oblique gust was modeled (i.e., changing the
angle of attack and the angle of sideslip), that had a complicated time course in regard to its velocity.
Although this article is focused on the assessment of the vulnerability of a UAV model to gusts, the
practical implications of the proposed methodology are applicable to a wide selection of objects,
including wind turbines.
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1. Introduction

Gusts are considered to be one of the most dangerous weather phenomena for aircraft.
There are plenty of publications characterizing wind gusts, in which data have been
obtained during experimental research using different techniques [1–5], as well as during
numerical calculations [6]. They show that some gusts have a velocity exceeding 20 m/s,
while the time to reach its maximum speed is less than 1 s. Such severe conditions could
even cause the crash of a large airliner [7], whereas small and slow flying objects like general
aviation aircraft, unmanned aerial vehicles (UAVs) or paragliders are incomparably more
sensitive to a turbulent atmosphere [8,9]. Thus, studies on UAVs flight control methods
in a gusty environment seem to be of great importance. Such research was conducted by
Chodnicki M. et al. [10].

It should be noted that gusts may also be hazardous for wind turbines. Therefore,
this subject area is also identified as particularly significant and present in numerous
studies [11–13].

The influence of gusts on the aerodynamic characteristics of a flying object is problematic
to examine experimentally. As presented by Yitao Z. et al. [14] and by Reiswich A. et al. [15], it
requires the installation of additional devices in a wind tunnel to change the airflow direction
in proximity to the tested object. Concurrently, numerical methods, i.e., computational
fluid dynamics (CFD), seem to be more convenient for the examination of transient flows,
including modelling gusts. Kotsiopoulou M. and Bouris D. conducted and described the
numerical simulation of a single gust on the flow past a two-dimensional body [16], while
Lakshmi S. et al., examined the effect of a macroscopic turbulent gust on the aerodynamic
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performance of a vertical axis wind turbine in a 3D space [17]. In this case, the time-dependent
velocity course was introduced on the boundaries of the computational domain to simulate the
gust. It should be noted that CFD software seems to be the most appropriate tool for obtaining
aerodynamic loads on wind turbine blades, which can be utilized for structural tests. Such
combined analysis has been conducted by Santo G. et al. [18], as well as by Cai X. et al. [19].

State-of-the-art CFD software (ANSYS Fluent Release 16.2, Canonsburg, PA, USA)
allows calculations to be conducted for transient cases, real size objects, as well as for
the full range of flight velocities. Moreover, because of easiness of modifying virtual
models, it seems to be an appropriate tool for aerodynamic shape optimization problems,
as indicated by Benaouali A. and Kachel S. [20]. However, the obtained results might
vary depending on the calculation domain geometry, boundary condition, finite volume
mesh, and physical and numerical models, etc. Therefore, the calculated results should be
compared with measurements conducted experimentally (for instance in a wind tunnel) to
validate the CFD models. Depending on the specific case, this comparison may be related
to the qualitative aspects of airflow (for example, the investigation of streamlines or particle
tracks around the physical and virtual model as presented by Kozakiewicz A. et al. [21]),
flow quantities like the aerodynamic coefficients or pressure field [22], or both aspects
mentioned above. Comprehensive experimental and numerical studies on the aerodynamic
characteristics of UAVs have been described by Frant M. [23]. It should be noted that
more strategic approaches to aerodynamic studies include uncertainty quantification (UQ)
analysis [24–26].

Let us notice that there is variety of publications on UAVs aerodynamics, which
includes numerical analysis [27], as well as combined experimental and CFD investiga-
tion [28,29]. The purposes of the identified works are mostly aerodynamic shape opti-
mization [30] or examination of the influence of flight conditions on the aerodynamic
characteristics of UAVs [31,32], which is also a topic of the presented work. However, in the
analyzed studies, the influence of gusts dynamically changing the flow velocity magnitude
and angles has not been assessed, which is considered as a novelty of the presented study.

Considering the above, the following tests were performed to obtain the aerodynamic
characteristics of a UAV in a turbulent atmosphere:

• First, the steady-state aerodynamic characteristics were determined experimentally
using a wind tunnel and numerically using ANSYS Fluent Release 16.2 software. The
experimental results allowed the numerical model to be validated;

• After obtaining a satisfactory convergence in the results, numerical calculations analyz-
ing the impact of gusts on the aerodynamic characteristics of a UAV were performed.
Time-dependent boundary conditions determined with the so-called user-defined
functions (UDFs) were proposed to simulate the gust.

The aim of this article was to discuss in detail the proposed research methodology
and the obtained results, as well as to demonstrate the potential for solving complex
non-stationary airflow problems using the ANSYS Fluent Release 16.2 package.

2. Materials and Methods
2.1. Model under Examination

The subject of the presented study was a 1:5 scale model of the reconnaissance UAV
Rybitwa, which was designed at the Military University of Technology (MUT). Figure 1
presents the geometry of the model in three views, with the main geometrical data superim-
posed. The aerodynamic configuration of the UAV under investigation includes a straight
wing (with wingtips directed upwards for increased lateral stability) and T-tail assembly.
The payload pod is hung under the fuselage, such arrangement allows to the UAV to be
easily equipped with proper reconnaissance instruments for a given mission.



Energies 2023, 16, 6847 3 of 19

Energies 2023, 16, 6847 3 of 20 
 

 

It should be noted that the gross wing area and mean aerodynamic chord of the UAV 

under examination (accordingly 0.0571 m2 and 0.09 m) were used as the reference area 

and length during the experimental and numerical investigations. 

 

Figure 1. UAV under examination. 

2.2. Measurement System for Experimental Investigation 

An experimental investigation was conducted in a low-speed wind tunnel at the 

Military University of Technology (MUT), Warsaw. The maximal velocity of the airflow 

in the measuring space is around 60 m/s and the diameter of the test section is equal to 1.1 

m. 

Figure 2 shows a schematic of the measurement system used during the experimental 

investigation. The main instrument in this system is a closed-return wind tunnel. It should 

be noted that the tunnel is equipped with an installation to simulate icy conditions. 

Although the installation was not used in the present study, let us notice that the 

experimental icy simulation capabilities at MUT are unique across Poland. 

Figure 3 presents the test section of the wind tunnel, as well as the attachment of the 

UAV model to an aerodynamic balance. As presented, the aerodynamic balance in the 

MUT low-speed wind tunnel has an annular shape. The models under investigation are 

attached to it with strings with known drag. 

The aerodynamic balance can be supported in order to rotate freely about the A-A, 

B-B or C-C axis. Aerodynamic forces and moments acting on the models under 

examination produce torques about the abovementioned axes. Thus, the measurement of 

the forces acting on a lever in the aerodynamic balance allows the aerodynamic forces and 

moments to be determined. 

Figure 1. UAV under examination.

It should be noted that the gross wing area and mean aerodynamic chord of the UAV
under examination (accordingly 0.0571 m2 and 0.09 m) were used as the reference area and
length during the experimental and numerical investigations.

2.2. Measurement System for Experimental Investigation

An experimental investigation was conducted in a low-speed wind tunnel at the
Military University of Technology (MUT), Warsaw. The maximal velocity of the airflow in
the measuring space is around 60 m/s and the diameter of the test section is equal to 1.1 m.

Figure 2 shows a schematic of the measurement system used during the experimental
investigation. The main instrument in this system is a closed-return wind tunnel. It should
be noted that the tunnel is equipped with an installation to simulate icy conditions. Al-
though the installation was not used in the present study, let us notice that the experimental
icy simulation capabilities at MUT are unique across Poland.

Figure 3 presents the test section of the wind tunnel, as well as the attachment of the
UAV model to an aerodynamic balance. As presented, the aerodynamic balance in the
MUT low-speed wind tunnel has an annular shape. The models under investigation are
attached to it with strings with known drag.

The aerodynamic balance can be supported in order to rotate freely about the A-A, B-B
or C-C axis. Aerodynamic forces and moments acting on the models under examination
produce torques about the abovementioned axes. Thus, the measurement of the forces
acting on a lever in the aerodynamic balance allows the aerodynamic forces and moments
to be determined.

It should be noted that depending on the applied support option (A-A, B-B or C-C),
there is the possibility to measure only one aerodynamic force (or moment of force) at once.
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Regardless of the applied support option, a ring in the aerodynamic balance (with 

the model attached) may be rotated about the C-C axis to obtain a different position for 

Figure 2. Schematic of the measurement system. 1: fan, 2: inverter, 3: model under examination,
4: strain gauges (0.01 N accuracy), 5: aerodynamic balance, 6: compressors in the cooling system,
7: cooler unit, 8: condenser, 9: control panel, 10: control cabinet for the compressors, 11: water com-
pressor, 12: data acquisition and measurement control subsystem, 13: water injectors, 14: humidity
sensor and 15: Prandtl tube (1 Pa accuracy).
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Figure 3. Attachment of the UAV model to the aerodynamic balance.

Regardless of the applied support option, a ring in the aerodynamic balance (with the
model attached) may be rotated about the C-C axis to obtain a different position for the
model under examination. The rotation is executed by a separate mechanism based a on
warm drive.
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Figure 4 shows the UAV model during the tests in the wind tunnel. The attachment
of the model was that its longitudinal axis coincided with the longitudinal axis of the
tunnel (when the angle of attack equaled zero), while its transverse axis coincided with the
tunnel’s vertical axis, as shown in Figure 3. The attachment allowed the values on the lift
force, drag force or pitching moment for different angles of attack to be obtained.
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Figure 4. UAV model during tests in the wind tunnel.

The aerodynamic forces and pitching moments obtained in the wind tunnel were
utilized to calculate the values of the aerodynamic coefficients, which were used for the
validation of the numerical model.

2.3. CFD Calculations

The calculations were conducted in ANSYS Fluent Release 16.2. The steady state, as
well as transient cases were analyzed. The aim of the steady-state calculations was the
evaluation of the mesh quality, as well as the choice of the most adequate turbulence model
for the considered case. The main focus of the study was transient simulations conducted
to assess the gust influence on the UAV’s aerodynamic characteristics.

2.3.1. Governing Equations

ANSYS Fluent Release 16.2 is based on a finite volume method. For a realizable k-ε
turbulence model, which showed the most adequate results, the solver utilizes Reynolds
Averaged Navier–Stokes (RANS) equations. They can be written in Cartesian tensor
form [33]:

∂ρ

∂t
+

∂

∂xi
(ρui) = 0

∂

∂t
(ρui) +

∂

∂xj

(
ρuiuj

)
= − ∂p

∂xi
+

∂

∂xj

[
µ

(
∂ui
∂xj

+
∂uj

∂xi
− 2

3
δij

∂ul
∂xl

)]
+

∂

∂xj

(
ρui′uj′

) (1)
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The term ρui′uj′ represents the so-called Reynolds stresses, which have to be modeled
to close the RANS equations. The family of k-ε turbulence models is based on transport
equations for the kinetic energy (k) and its dissipation rate (ε). The governing equations for
k and ε for a realizable k-ε model are as follows [33]:

∂

∂t
(ρk) +

∂

∂xj

(
ρkuj

)
=

∂

∂xj

[(
µ +

µT
σk

)
∂k
∂xj

]
+ Gk + Gb + ρε−YM + Sk

∂

∂t
(ρε) +

∂

∂xj

(
ρεuj

)
=

∂

∂xj

[(
µ +

µT
σε

)
∂ε

∂xj

]
+ ρC1Sε− ρC2

ε2

k +
√

νε
+ C1ε

ε

k
C3εGb + Sε

(2)

In the above equations, Gk and Gb represent the generation of turbulent kinetic
energy due to the mean velocity gradients and buoyancy, accordingly. YM represents
the contribution of the fluctuating dilatation in the compressible turbulence to the overall
dissipation rate, while Sk and Sε are user-defined source terms. The relationship between k,
ε and turbulent viscosity is presented below [33]:

πt = ρCµ
k2

ε
(3)

The default values for constants C1, C2, C1ε, C3ε, Cµ, σk and σε were left in accordance
with the ANSYS Fluent Release 16.2 selection.

2.3.2. Numerical Model

During the numerical calculations, the hybrid finite volume mesh was utilized, which
consisted of tetrahedral elements in the majority of the calculation domain, as well as
prisms in the boundary layer region (the boundary layer included 5 prismatic layers with
the wall y+ value below 1 on most of the UAV surfaces). The total element count was
2,069,466 cells. The obtained minimum and maximum cell volumes were 9.4 × 10−14 m3

and 0.43 m3, accordingly.
The calculation domain had the shape of a cuboid, which extended from −3.7 m to

8.6 m along the OX axis, and from −4.3 m to 4.3 m along the OY and OZ axes. The UAV
model under examination was subtracted from the cuboid. The types of applied boundary
conditions are shown in Table 1 below.

Table 1. Applied boundary conditions.

Location Name Type

outer surfaces outer pressure far-field
fuselage of UAV fuselage wall
wings of UAV wing wall

horizontal stabilizer of UAV horizontal_stab wall
vertical stabilizer of UAV vert_stab wall

The pressure-based solver with the SIMPLE calculation algorithm was utilized. The
second-order discretization schemes were set, which was a trade-off between accuracy and
stability during calculations for transient cases.

It should be noted that the mesh sensitivity tests were performed during another
study [23]. Six hybrid meshes with different element counts (from 1,895,971 to 5,163,438),
heights of the first prismatic layer (from 1.3 × 10−5 m to 5 × 10−4 m) and number of prism
layers (from 5 to 10) were tested. The mesh used in the present study proved to have good
accuracy, stability and efficiency. Figure 5 presents the final refinement of the cells on the
surfaces of the UAV model, as well as the mesh edges on OXZ plane.
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2.3.3. Gust Modeling Method

A gust acting on a flying object in the atmosphere causes rapid and temporary changes
in the airflow velocity vector. Consequently, the speed, angle of attack (α) and angle of
sideslip (β) vary in time. In numerical calculations, these parameters are determined
on the outer surfaces of the calculation domain. For the pressure far-field boundary
condition (which was applied in the analyzed case), the flow velocity vector is defined by
the following:

• Mach number;
• X-component of the flow direction;
• Y-component of flow direction;
• Z-component of flow direction.

It should be noted that during numerical calculations relevant to flying objects the
axes are usually assumed as follows:

• The OX axis coincides with the longitudinal axis of the studied object and is directed
towards its rear;

• The OY axis coincides with the transverse axis and is directed towards the right wing;
• The OZ axis is perpendicular to the OXY plane and directed upwards;
• In the case under analysis, the coordinate system origin was assumed to be at the

UAV’s center of gravity.

In other words, the axes described above coincide with the body frame axes OxByBzB,
but the X and Z axes have opposite directions in comparison to xB and zB, which is
convenient when considering the effect of the airflow around a stationary object.

Accordingly, the xA and zA axes of the aerodynamic frame are frequently inverted in
CFD studies. Such an approach allows the reading of the numerical results to be simplified
and clarified. It was also implemented in the present study:

• The OxA axis was directed correspondingly in the direction of the air streams and
parallel to them;

• The OzA axis was directed upwards, perpendicular to the axis OxA and lay in the
symmetry plane of the model;

• The OyA axis was directed to the right and perpendicular to the OxA andOzA axes.

Modeling a gust in ANSYS Fluent Release 16.2 requires an appropriate determination
of the Mach number, as well as the X-, Y-, and Z-components of the flow direction (variable
in time) and their assignment to the outer boundary surfaces. Figure 6 shows and describes
the gust modeling algorithm used in the calculations.
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The initial flow conditions (before gust occurrence) were assumed as follows: flow
velocity V0, angle of attack α0 and angle of sideslip β0. The initial air temperature and
pressure were T∞ and p∞, accordingly.

During the numerical calculations, the gust vector
→
VG was defined by the gust velocity

magnitude, as well as by two angles, presented in Figure 7. It was proposed to mark them
as the gust lifting angle ΘG and the gust slipping angle ΨG. The gust lifting angle ΘG
was assumed to be the angle between the OxA axis and the projection of the gust velocity

vector
→
VG onto the OxAzA plane. Angle ΘG was assumed to be positive when the angle of

attack increased. The gust slipping angle ΨG was the angle between the OxA axis and the
projection of the gust velocity vector onto the OxAyA plane. As the positive angle ΨG, it
was considered to be the one increasing the angle of the sideslip.

An exemplary course of the gust velocity magnitude is shown in Figure 8. In this
course, the velocity increases sinusoidally to the maximum value, then remains at a constant
level for some time, and finally decreases sinusoidally to zero. In this case, the function
VG = f(t) is in the form:

VG = 0, for t < T0

VG = 0.5×VG,MAX ×
[
1− cos

(
π× t−T0

T1

)]
, for T0 ≤ t < T0 + T1

VG = VG,MAX, for T0 + T1 ≤ t < T0 + T1 + T2

VG = 0.5×VG,MAX ×
[
1 + cos

(
π× t−T0−T1−T2

T3

)]
, for T0 + T1 + T2 ≤ t < T0 + T1 + T2 + T3

VG = 0, for t ≥ T0 + T1 + T2 + T3

(4)
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In the considered case, in order to characterize the gust, values should be assigned to
the maximum gust velocity VG,MAX and the time intervals T0, T1, T2 and T3.

The calculation of the flow velocity components, with the gust consideration, was
conducted in three stages, described below.

First, the
→
VG vector was projected into the components acting along the axis of the

OxAyAzA (t = 0) system. The following transformations were applied:

VG,xA0 = VG × cos ΘG × cos ΨG

VG,yA0 = VG × cos ΘG × sin ΨG

VG,zA0 = VG × sin ΘG

(5)
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The next step was to determine the total flow velocity
→
Vtotal, which was composed of

the initial flow velocity
→
V0 and the gust velocity

→
VG. The components of the

→
Vtotal in the

OxAyAzA (t = 0) system were described by the following formulas:

Vtotal,xA0 = V0 + VG,xA0

Vtotal,yA0 = −VG,yA0

Vtotal,zA0 = VG,zA0

(6)

The minus sign in the expression for Vtotal,yA0 resulted from the assumption that the
positive gust slipping angle increased the angle of the sideslip. Thus, a gust with a positive
ΨG had a velocity component directed from the right wing towards the left wing. This was
in the direction of -OyA in the adopted coordinate system.

The last step was to transform the components of the vector
→
Vtotal into the system

OXYZ associated with the computational mesh. A suitable transformation matrix was
utilized [34], which was modified accordingly because of the assumed axis directions:

Vtotal,X = cosα0 × cosβ0 ×Vtotal,xA0 + cosα0 × sinβ0 ×Vtotal,yA0 − sinα0 ×Vtotal,zA0

Vtotal,Y = −sinβ0 ×Vtotal,xA0 + cosβ0 ×Vtotal,yA0

Vtotal,Z = sinα0 × cosβ0 ×Vtotal,xA0 + sinα0 × sinβ0 ×Vtotal,yA0 + cosα0 ×Vtotal,zA0

(7)

Based on the values of Vtotal,X, Vtotal,Y and Vtotal,Z, the following expression could be
used to determine the Mach number and the X-, Y- and Z-components of flow direction:

Mach Number =

√
Vtotal,X

2 + Vtotal,Y
2 + Vtotal,Z

2

√
γ× R× T∞

X−Component of Flow Direction =
Vtotal,X√

Vtotal,X
2 + Vtotal,Y

2 + Vtotal,Z
2

Y−Component of Flow Direction =
VcY√

Vtotal,X
2 + Vtotal,Y

2 + Vtotal,Z
2

Z−Component of Flow Direction =
Vc,Z√

Vtotal,X
2 + Vtotal,Y

2 + Vtotal,Z
2

(8)

In the formulas above, γ describes the adiabatic index, and R describes the individual
gas constant of air.

The flow parameters, calculated according to the formulas above, could be inserted
on the outer surfaces of the calculation area. However, it was not possible to define the
boundary conditions that change over time using the standard menu in ANSYS Fluent
Release 16.2. This could be accomplished by utilizing the so-called UDFs (user-defined
functions). The UDFs are functions written in the C programming language by the Fluent
user, which allows the standard features of this software to be enhanced. In the present
study, UDFs were utilized to determine the time-varying flow parameters on the boundary
surfaces of the calculation area.

Let us notice that the manual [35] contains descriptions of the functions and commands
used in UDFs and examples of their use.

3. Results and Discussion
3.1. Numerical Models Validation

Experimental studies were carried out for the Mach and Reynolds numbers, where
Ma = 0.12, Re = 2.74 × 105 (which corresponds to the speed of the air equal to 42 m/s). The
applied angles of attack were in the range of α = −12◦ ÷ +12◦, with a 1◦ step.
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A comparison of the characteristics obtained during the experimental and numerical
analysis is presented in Figure 9 below.

Energies 2023, 16, 6847 11 of 20 
 

 

Let us notice that the manual [35] contains descriptions of the functions and 

commands used in UDFs and examples of their use. 

3. Results and Discussion 

3.1. Numerical Models Validation 

Experimental studies were carried out for the Mach and Reynolds numbers, where 

Ma = 0.12, Re = 2.74 × 105 (which corresponds to the speed of the air equal to 42 m/s). The 

applied angles of attack were in the range of α = −12° ÷ +12°, with a 1° step. 

A comparison of the characteristics obtained during the experimental and numerical 

analysis is presented in Figure 9 below. 

  

Figure 9. Drag and lift coef. for different angles of attack obtained through experimental and 

numerical analysis. 

As may be read from the above figures, the most approximate to the experimental 

results were the characteristics obtained with the realizable k-ε turbulence model (when 

α > 6°). However, when the angle of attack was in the range of 0° ÷ 6°, the most appropriate 

was laminar model. It should be noted that for moderate angle of attack values, the UAV 

model may be considered as a streamlined body, whereas for higher values it performs 

more like bulk geometry. The values of the critical Reynolds number depend on the 

specific case, for example they may differ significantly when external or internal flows are 

under examination. Some estimations of the critical Re value for external airflow over a 

streamlined body may be for a flow over a smooth flat plate, for which Recritical = 5 × 105 is 

a well-established value [36]. Thus, the assumption of laminar flow for α ≤ 6°, as well as 

the presented results, are justified. 

Let us note that the impact of gusts on a flying object in the atmosphere may cause 

short-term fluctuations between large positive and large negative angles of attack. In such 

conditions, the assumption of flow laminarity is not justified. The aim of this study was 

to analyze the UAV’s aerodynamic characteristics under the influence of gusts. Therefore, 

the realizable k-ε turbulence model was applied in further steps during this research. 

3.2. Influence of Gusts on Aerodynamic Characteristics of UAV 

In the presented study on the impact of gusts on the aerodynamic characteristics of a 

UAV, two isolated gusts were modeled. These gusts differed in direction (i.e., gust lifting 

angle and gust slipping angle), as well as in the time course of the velocity magnitude. 

The first case involved a simple down draft. In the second case, the impact of an oblique 

gust (simultaneously changing the angle of attack and the angle of sideslip) on the UAV 

was studied. 

0

0.05

0.1

0.15

0.2

0.25

–4 –2 0 2 4 6 8 10 12 14 16 18

D
ra

g
 c

o
ef

. 
[-

]

α [deg]

Wind tunnel

Realizable k-ε

Laminar

–0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

–4 –2 0 2 4 6 8 10 12 14 16 18

L
if

t 
co

ef
. [

-]
α [deg]

Wind tunnel

Realizable k-ε

Laminar

Figure 9. Drag and lift coef. for different angles of attack obtained through experimental and
numerical analysis.

As may be read from the above figures, the most approximate to the experimental
results were the characteristics obtained with the realizable k-ε turbulence model (when
α > 6◦). However, when the angle of attack was in the range of 0◦ ÷ 6◦, the most appropriate
was laminar model. It should be noted that for moderate angle of attack values, the UAV
model may be considered as a streamlined body, whereas for higher values it performs
more like bulk geometry. The values of the critical Reynolds number depend on the
specific case, for example they may differ significantly when external or internal flows are
under examination. Some estimations of the critical Re value for external airflow over a
streamlined body may be for a flow over a smooth flat plate, for which Recritical = 5 × 105 is
a well-established value [36]. Thus, the assumption of laminar flow for α ≤ 6◦, as well as
the presented results, are justified.

Let us note that the impact of gusts on a flying object in the atmosphere may cause
short-term fluctuations between large positive and large negative angles of attack. In such
conditions, the assumption of flow laminarity is not justified. The aim of this study was to
analyze the UAV’s aerodynamic characteristics under the influence of gusts. Therefore, the
realizable k-ε turbulence model was applied in further steps during this research.

3.2. Influence of Gusts on Aerodynamic Characteristics of UAV

In the presented study on the impact of gusts on the aerodynamic characteristics of a
UAV, two isolated gusts were modeled. These gusts differed in direction (i.e., gust lifting
angle and gust slipping angle), as well as in the time course of the velocity magnitude.
The first case involved a simple down draft. In the second case, the impact of an oblique
gust (simultaneously changing the angle of attack and the angle of sideslip) on the UAV
was studied.

In both cases, the initial velocity equaled V0 = 20.84 m/s, the initial angle of attack and
angle of sideslip were assumed to be α0 = 2◦ and β0 = 0◦. The temperature and pressure of
the undisturbed stream were T∞ = 300 K and p∞ = 101,325 Pa.

The time step was set at ∆t = 0.001 s. Because the residuals obtained for the steady-
state flow were slightly below 0.001 for continuity and below 1 × 10−4 for the remaining
equations, the convergence criterion for transient cases was set to 0.001 for all of the
residuals. For each time step, the following data were recorded:

• Forces in the OXYZ coordinate system;
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• Rolling, pitching and yawing moments (aerodynamic moments were determined rela-
tive to the point lying on the leading edge of the wing, in the UAV’s symmetry plane);

• Contours of static pressure on the UAV’s surfaces.

Based on the forces and moments listed above, the aerodynamic coefficients were
calculated (instantaneous values on the velocity, angle of attack and angle of sideslip were
utilized). The wing area, which equaled 0.05709 m2, was considered to be the reference
area and the reference length was identified with the mean aerodynamic chord (0.09 m).

3.2.1. Down Draft

The first gust under study was the down draft (i.e., the gust lifting angle was ΘG = −90◦

and the gust sliding angle was equal to zero). The general form of the velocity course in
time corresponded exactly to that given in the system in Equation (1) and presented in
Figure 8.

The following values were assigned to the individual parameters: VG,MAX = 10 m/s,
T0 = T1 = T3 = 0.4 s and T2 = 0.8 s. A gust with such parameters caused a significant
decrease in the angle of attack, which totaled αMIN = −23.6◦ (for a period of time of 0.8 s).

Figure 10 shows the obtained time courses of the drag, lift and pitching moment coefficients.
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Figure 10. Time courses of UAV drag, lift and pitching moment coefficients under down draft.

Additionally, obtained values of the aerodynamic coefficients with the corresponding
time and angle of attack values are collected in Table 2 below.

It should be noted that the aerodynamic forces and pitching moment stabilized about
0.8 s after the gust ceased.

Figure 11 shows the contours of the pressure on the UAV surfaces corresponding to
the conditions of the undisturbed flow (before the gust appeared), as well as corresponding
to the maximal values of aerodynamic coefficients during the gust acting on the UAV.
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Table 2. Aerodynamic coefficients for specific instants of time (downburst).

Time [s] α [deg] Drag Coef. [-] Lift Coef. [-] Pitching Moment
Coef. [-]

0.4 2 0.039 0.344 −0.165
0.49 0 0.037 (local minimum)
0.67 −16.4 −0.978 (minimum)
0.7 −18.9 −0.887 (local maximum)

0.87 −23.6 0.501 (maximum) −0.927 (local minimum)
0.89 −23.6 0.902 (maximum)

1.25 ÷ 1.6 23.6 0.483 ÷ 0.485 −0.892 ÷ 0.889 0.866 ÷ 0.87
2.11 2 0.433 (maximum)
2.12 2 0.0035 (minimum)
2.13 2 −0.22 (minimum)
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As it may be read from Figure 10 (as well as from Table 2), the extremal value of
the lift coefficient occurred at t = 0.67 s (for α = −16.4◦) and was equal to CL,MIN = 0.978.
The corresponding contour chart in Figure 11 shows that for t = 0.67 s there were regions
of very low pressure (around 100,500 Pa) on the lower surface of the wings near the
leading edges. Further increasing of the α value caused the airflow separation, which
involved the whole lower surface of the wings. This separation is evident in Figure 11
(contours obtained for t = 0.87 s) and resulted in maximum value of the drag coefficient,
which totaled CD,MAX = 0.501. The airflow separation also caused the center of pressure
displacement towards the wings trailing edge. Thus, the maximal value of the pitching
moment coefficient was recorded at t = 0.89 s.

The transient aerodynamic characteristics described above are comparable to the
steady-state stall analysis of airfoils [37]. However, for the downburst, the course of the lift
coefficient vs. the angle of attack was prepared, as shown in Figure 12. The hysteresis loop
in the presented chart is evident. Therefore, it is clear that the aerodynamic coefficients
obtained during the stationary tests may differ significantly from actual ones under gust
influence. As a consequence, gust occurrence during the flight of a UAV must be considered
as a dynamic phenomenon.
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Figure 12. Lift coefficient as a function of the angle of attack during gust occurrence.

3.2.2. Oblique Gust

The second gust was characterized by the lifting and sliding angles, which equaled
ΘG = 45◦ and ΨG = 45◦, respectively. The time course of the velocity is presented in
Figure 13 and the corresponding function had following form:

VG = 0, for t < T0

VG = 0.5×VG,MAX ×
[
1− cos

(
π× t−T0

T1

)]
, for T0 ≤ t < T0 + T1

VG = VG,MAX ×
[
0.9 + 0.1× cos

(
π× t−T0−T1

T2

)]
, for T0 + T1 ≤ t < T0 + T1 + T2

VG = 0.5×VG,MAX ×
[
1 + cos

(
π× t−T0−T1−T2

T3

)]
, for T0 + T1 + T2 ≤ t < T0 + T1 + T2 + T3

VG = 0, for t ≥ T0 + T1 + T2 + T3

(9)

The following values from the function VG = f(t) were assumed: VG,MAX = 11.11 m/s,
T0 = T1 = T3 = 0.5 s and T2 = 0.6 s. A gust that presented such parameters caused the
instantaneous angle of attack to reach values equal to αMAX = 18.6◦, and the angle of
sideslip was βMAX = −11.4◦.

Figure 14 presents the obtained courses of the aerodynamic force coefficients as a
function of time, whereas the courses of the moment coefficients are shown in Figure 15.
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Figure 13. Time course of the oblique gust velocity magnitude.
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Figure 14. Time courses of UAV aerodynamic forces coefficients under an oblique gust.
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Figure 15. Time courses of UAV aerodynamic moment coefficients under an oblique gust.

The obtained values of the extremal aerodynamic coefficients with the corresponding
time, angle of attack and angle of sideslip values are collected in Table 3 below.

Table 3. Extremal aerodynamic coefficients obtained for an oblique gust.

Time
[s] α [deg] β [deg] Drag Coef.

[-]
Side Force

Coef. [-]
Lift Coef.

[-]

Rolling
Moment Coef.

[-]

Pitching
Moment Coef.

[-]

Yawing
Moment Coef.

[-]

0 ÷ 0.5 2 0 0.039 ca. 0 0.344 ca. 0 −0.165 ca. 0
0.94 17.8 10.9 1.35 max
1.01 18.6 11.4 0.268 max 0.155 max −0.833 min
1.02 18.6 11.4 0.119 max −0.133 min
2.11 2.02 0.02 −0.018 min
2.18 2 0 0.283 min
2.19 2 0 −0.13 max
2.22 2 0 −0.003 min
2.3 2 0 0.004 max
3.05 2 0 0.0388 min

The aerodynamic coefficients returned to their state before the gust appeared (and
stabilized) at the time of t = 3 s, i.e., after 0.9 s from the cessation of the gust, which is
comparable to a downburst case.

Figure 16 shows the pressure contours on the UAV surfaces corresponding to the
conditions of the undisturbed flow (before the gust appeared), as well as corresponding to
the maximal values of the aerodynamic coefficients during the gust acting on the UAV.
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Figure 16. Contours of static pressure on UAV surfaces before gust occurrence and for extremal
values of aerodynamic forces and moment coefficients.

As observed previously for the downburst case, the extremal value of the lift coefficient
appeared prior to the extremal values of all the other aerodynamic coefficients. Figure 14
and Table 3 shows that it totaled CL,MAX = 1.35 and occurred at t = 0.94 for α = 17.8◦.
Although the steady-state solution was performed for a symmetrical airflow, it should be
highlighted that the maximum CL obtained during the stationary numerical calculations
was equal to 1.06 and was registered for α = 14◦ (refer to Figure 9). The difference is
significant. A possible explanation is that for the transient case, the full airflow separation
occurred later (i.e., for a higher value of α), which was caused by the rapid increase of the α
value under the gust influence. Figure 16 shows that at t = 0.94 s the region of low pressure
(below 100,000 Pa) near the wing leading edge was widespread and quite uniform.

It was also observed that during the fluctuation in the gust velocity magnitude (which
occurred in the time interval t = [1 s; 1.6 s]), repeated changes in the aerodynamic coefficients
were noticed. It can be read from Figures 14 and 15 that the most irregular time course was
that of the rolling moment coefficient. This can be explained by the nonhomogeneous flow
separation from the wings’ surface. The separation occurred together with unsymmetrical
vortices. The total aerodynamic load on the wings changed over time in a repetitive manner
(hence, the repetitive fluctuations in the aerodynamic forces coefficients). However, the
variability of the load distribution resulted in an irregular character in the rolling moment
time course. In Figure 16, the most unsymmetrical pressure contours may be observed for
t = 1.01 s, which corresponded with the maximum value of the rolling moment coefficient.

It should be noted that the abovementioned rolling moment oscillations at high angles
of attack are consistent with real-life experience, as airplanes that have stalled often tend to
roll towards one of their wings.

4. Conclusions

This article presents the method of gust simulation using state-of-the-art CFD software
(i.e., ANSYS Fluent Release 16.2), as well as the results from the research on the impact of
gusts on UAV aerodynamic characteristics. Considering the universality of the presented
method, surely it could be adopted to assess the vulnerability to gusts in wide selection of
objects, including wind turbines.

An algorithm for determining the time-varying flow parameters on the boundary
surfaces of the calculation domain was proposed. This algorithm involves the ANSYS
Fluent UDF formulation for obtaining the variable in time–flow parameters, i.e., the velocity
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magnitude and direction. The introduced method allows gusts of any speed course in time
and in any direction to be modelled. Although it was not investigated in this study, the use
of UDFs incorporating the presented flight mechanics formulas may be employed to model
the gust with a time-varying direction.

Two gusts with maximal velocity magnitudes of 10 m/s and 11.1 m/s were simulated.
Such events resulted in severe changes in the aerodynamic forces and moments of a UAV.
For example, a downburst resulted in a negative lift (the value of CL changed from 0.344
to minimal −0.978), whereas an oblique gust caused a change in the CL from 0.344 to a
maximal 1.35 (which was a 3.92-fold increase).

For each gust it was proved that the aerodynamic coefficients obtained during the sta-
tionary tests may differ substantially from the actual ones under gust influence. Moreover,
based on the rolling moment time course, as well as on the contours of pressure on the
UAV surfaces, it was observed that a rapid and significant angle of attack increase created
a variable in time and nonhomogeneous separation on the wings.

As gust-induced changes in the aerodynamic coefficients may differ substantially from
the ones obtained during stationary tests, the study is of great significance. For instance,
the presented method can be utilized to obtain real gust-induced aerodynamic loads. Such
research may also be exploited to modify autopilot algorithms used in this type of aircraft.

It should be noted that UAVs are increasingly used to perform autonomous flights
and they can be highly exposed to gusts. Therefore, attempts to increase a UAV’s resistance
to gusts should be made. A lack of sufficient resistance may result in the falling of an object
from the sky, causing threat to people on the ground, as well as loss of expensive payload
or onboard equipment.

As mentioned, although the method of gust simulation was demonstrated on the
basis of a UAV flight, it could also be utilized to assess the influence of gusts on a variety
of objects. The impact of a turbulent atmosphere on wind turbine operation safety and
performance seem to be important problems, as shown in numerous publications. Some
of the presented methods could be implemented in subsequent studies focused on this
subject area.
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