Energetic Assessment of SCWG Experiments with Reed Canary Grass and Ethanol Solution on Laboratory and Pilot Scale
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Educts for Laboratory Experiments
2.2. Apparatus
2.3. Analysis
2.4. Methods of Scaling and Energetic Assessment Study
2.5. Data Interpretation
- , Mass flow of reactor effluent (g/h) [SI: 2.778 × 10−7 kg/s]
- , Mass flow of salt brine (g/h) [SI: 2.778 × 10−7 kg/s]
- , TOC content of reactor effluent (mgc/kgeffluent) [SI: 1 × 10−6 kgc/kgeffluent]
- , TOC content of salt brine (mgc/kgbrine) [SI: 1 × 10−6 kgc/kgbrine]
- , TOC concentration in the feed (wt.%) [in SI: 1 × 10−2 kgc/kgFeed]
- , Concentration of component ‘i’ in the gas product (vol.%) [SI: 1 × 10−2 mol/mol]
- , Number of carbon atoms of component ‘i’ in the gas product
- , Feed mass flow (g/h) [SI: 2.778 × 10−7 kg/s]
- , Atomic mass of carbon (g/mol) [SI: 1 × 10− 3 kg/mol]
- , Pressure (Pa)
- , Universal constant of gases (J/(K*mol))
- , Temperature (K)
- , Gas flow under ambient conditions (L/h) [SI: 2.778 × 10−7 m³/s]
- , Volumetric lower heating value of species ‘i’ (J/m³)
- , Mass flow (g/h) [SI: 2.778 × 10−7 kg/s]
3. Results
3.1. Lab-Scale Experiments
- -
- Product gas;
- -
- Reactor effluent;
- -
- Salt brine;
- -
- Solid residue in the reaction system.
3.2. Pilot-Scale Energy Calculation
3.3. Scale-Up Model Description
- -
- The product distribution (shown in Table 3) is independent of plant size.
- -
- The electricity for pumping liquids is proportional to the throughput. For a pump, the power consumption can be calculated according to Equation (6) (for conversion factors to basic SI units, see Section 2.5).
- , Rotations per minute (1/min)
- , Pressure (MPa)
- , Power consumption of pump (kW)
- , Volume of pump (m³)
- , Volume flow (m³/h)
- , Efficiency of pump (-)
- -
- Thermal losses decrease proportionally with increasing plant size, since the surface-to-volume ratio increases with a factor of 2/3. Thus, the thermal losses can be approximated using the following equation:
- , Gasification efficiency (%)
- , LHV of component ‘i’ (kW)
- , Specific LHV of component ‘i’ (kWh/kg)
3.4. VERENA Heat Exchanger
- , Heat stream (kW)
- , Mass stream (kg/h)
- , Mean heat capacity (kJ/(kg K))
- , Temperature difference (K)
- , Heat exchanging surface (m²)
- , Logarithmic temperature difference (K)
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kaltschmitt, M.; Hartmann, H.; Hofbauer, H. Energie aus Biomasse, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2009; ISBN 978-3-540-85094-6. [Google Scholar]
- Gadhe, J.B.; Gupta, R.B. Hydrogen Production by Methanol Reforming in Supercritical Water: Suppression of Methane Formation. Ind. Eng. Chem. Res. 2005, 44, 4577–4585. [Google Scholar] [CrossRef]
- Kruse, A. Supercritical water gasification. Biofuels Bioprod. Bioref. 2008, 2, 415–437. [Google Scholar] [CrossRef]
- Loppinet-Serani, A.; Aymonier, C.; Cansell, F. Current and Foreseeable Applications of Supercritical Water for Energy and the Environment. ChemSusChem: Chem. Sustain. Energy Mater. 2008, 1, 486–503. [Google Scholar] [CrossRef] [PubMed]
- Kruse, A.; Funke, A.; Titirici, M. Hydrothermal conversion of biomass to fuels and energetic materials. Curr. Opin. Biotechnol. 2013, 17, 515–521. [Google Scholar] [CrossRef] [PubMed]
- Boukis, N.; Stoll, I.K. Gasification of Biomass in Supercritical Water, Challenges for the Process Design—Lessons Learned from the Operation Experience of the First Dedicated Pilot Plant. Processes 2021, 9, 455. [Google Scholar] [CrossRef]
- Boukis, N.; Galla, U.; Müller, H.; Dinjus, E. Die VERENA-Anlage–Erzeugung von Wasserstoff aus Biomasse. Gülzower Fachgespräche Band 25 Wasserstoff aus Biomasse; Fachagentur Nachwachsende Rohstoffe e.V: Gülzow, Germany, 2006; pp. 115–127. [Google Scholar]
- Susanti, R.F.; Veriansyah, B.; Kim, J.-D.; Kim, J.; Lee, Y.-W. Continuous supercritical water gasification of isooctane: A promising reactor design. Int. J. Hydrog. Energy 2010, 35, 1957–1970. [Google Scholar] [CrossRef]
- Möbius, A.; Boukis, N.; Sauer, J. Gasification of biomass in supercritical water (SCWG). In Materials and Processes for Energy: Communicating Current Research and Technological Developments; Formatex Research Center: Jody Road Norristown, PA, USA, 2013; ISBN 978-84-939843-7-3. [Google Scholar]
- Yakaboylu, O.; Harnick, J.; Smit, K.G.; Jong, W. Supercritical Water Gasification of Biomass: A Literature and Technology Overview. Energies 2015, 8, 859–894. [Google Scholar] [CrossRef]
- Boukis, N.; Galla, U.; Müller, H.; Dinjus, E. Behaviour of inorganic salts during hydrothermal gasification of biomass. In Proceedings of the 17th European Biomass Conference and Exhibition, Hamburg, Germany, 29 June–3 July 2009. [Google Scholar]
- Modell, M.; Reid, R.C.; Amin, S.I. Gasifiaction Process. Patent US05/742,712, 12 September 1978. [Google Scholar]
- Okolie, J.A.; Rana, R.; Nanda, S.; Dalai, A.K.; Kozinski, J.A. Supercritical water gasification of biomass: A state-of- the-art review of process parameters, reaction mechanisms and catalysis. Sustain. Energy Fuels 2019, 3, 578–598. [Google Scholar] [CrossRef]
- Boukis, N.; Galla, U.; Diem, V.; D’Jesús Montilva, P.; Dinjus, E. Hydrogen generation from wet biomass in supercritical water. In Proceedings of the 2nd World Conference on Biomass for Energy, Industry and Climate Protection, Rome, Italy, 10–14 May 2004. [Google Scholar]
- National Hydrothermal Gasification Working Group. Hydrothermal Gasification–White Paper; National Hydrothermal Gasification Working Group: Bois-Colombes, France, 2023. [Google Scholar]
- List, K.; Boukis, N.; Ackermann, R. Hydrothermal Gasification of biomass vs. anaerobic fermentation–technology assessment under ecological aspects. In Proceedings of the 15th European Biomass Conference & Exhibition, Berlin, Germany, 7–11 May 2007. [Google Scholar]
- Boukis, N.; Kruse, A.; Galla, U.; Diem, V.; Dinjus, E. Biomassevergasung in überkritischem Wasser. Nachrichten–Forschungszentrum Karlsr. 2003, 35, 99–104. [Google Scholar] [CrossRef]
- Macri, D.; Catizzone, E.; Molino, A.; Migliori, M. Supercritical water gasification of biomass and agro-food residues: Energy assessment from modelling approach. Renew. Energy 2020, 150, 624–636. [Google Scholar] [CrossRef]
- Chen, J.; Liang, J.; Xu, Z.; Jiaqiang, E. Assessment of supercritical water gasification process for combustible gas production from thermodynamic, environmental and techno-economic perspectives: A review. Energy Convers. Manag. 2020, 226, 113497. [Google Scholar] [CrossRef]
- Magdeldin, M.; Kohl, T.; de Blasio, C.; Järvinen, M. Heat Integration Assessment for the Conceptual Plant Design of Synthetic Natural Gas Production from Supercritical Water Gasification of Spirulina Algae. In Proceedings of the Ecos 2015–The 28th International Conference on Fficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems, Pau, France, 30 June–3 July 2015. [Google Scholar]
- Magdeldin, M.; Kohl, T.; Järvinen, M. Process modeling, synthesis and thermodynamic evaluation of hydrogen production from hydrothermal processing of lipid extracted algae integrated with a downstream reformer conceptual plant. Biofuels 2016, 7, 97–116. [Google Scholar] [CrossRef]
- CERESiS Consortium. CERESiS–ContaminatEd Land Remediation through Energy Crops for Soil Improvement to Liquid Biofuel Strategies. Available online: https://ceresis.eu/ (accessed on 28 January 2023).
- Su, W.; Liu, P.; Cai, C.; Ma, H.; Jiang, B.; Xing, Y.; Liang, Y.; Cai, L.; Xia, C.; Le, Q.V.; et al. Hydrogen production and heavy metal immobilization using hyperaccumulators in supercritical water gasification. J. Hazard 2021, 402, 123541. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Chen, J.; Chen, S. Supercritical water treatment of heavy metal and arsenic metalloid-bioaccumulating-biomass. Ecotoxicol. Environ. Saf. 2018, 157, 102–110. [Google Scholar] [CrossRef]
- Dutzi, J.; Boukis, N.; Sauer, J. Process Effluent Recycling in the Supercritical Water Gasification of Dry Biomass. Processes 2023, 11, 797. [Google Scholar] [CrossRef]
- Lord, R.A. Reed canarygrass (Phalaris arundinacea) outperforms Miscanthus or willow on marginal soils, brownfield and non-agricultural sites for local, sustainable energy crop production. Biomass Bioenergy 2015, 78, 110–125. [Google Scholar] [CrossRef]
- Sinag, A.; Kruse, A.; Schwarzkopf, V. Key Compounds of the Hydropyrolysis of Glucose in Supercritical Water in the Presence of K2CO3. Ind. Eng. Chem. Res. 2003, 42, 3516–3521. [Google Scholar] [CrossRef]
- Zhu, Z.; Toor, S.S.; Rosendahl, L.A.; Yu, D.; Chen, G. Influence of alkali catalyst on product yield and properties via hydrothermal liquefaction of barley straw. Energy 2015, 80, 284–292. [Google Scholar] [CrossRef]
- Yoshida, T.; Oshima, Y.; Matsumura, Y. Gasification of biomass model compounds and real biomass in supercritical water. Biomass Bioenergy 2004, 26, 71–78. [Google Scholar] [CrossRef]
- Schubert, M.; Regler, J.W.; Vogel, F. Continuous salt precipitation and separation from supercritical water. Part 1: Type 1 salts. J. Supercrit. Fluids 2010, 52, 99–112. [Google Scholar] [CrossRef]
- Dutzi, J.; Vadarlis, A.A.; Boukis, N.; Sauer, J. Comparison of Experimental Results with Thermodynamic Equilibrium Simulations of Supercritical Water Gasification of Concentrated Ethanol Solutions with Focus on Water Splitting. Ind. Eng. Chem. Res. 2023, 62, 12501–12512. [Google Scholar] [CrossRef]
- Yakaboylu, O.; Albrecht, I.; Harnick, J.; Smit, K.G.; Tsalidis, G.-A.; Marcello, M.D.; Anastasakis, K.; de Jong, W. Supercritical water gasification of biomass in fluidized bed: First results and experiences obtained from TU Delft/Gensos semi-pilot scale setup. Biomass Bioenergy 2018, 111, 330–342. [Google Scholar] [CrossRef]
- Promdej, C.; Matsumura, Y. Temperature Effect on Hydrothermal Decomposition of Glucose in Sub–And Supercritical Water. Ind. Eng. Chem. Res. 2011, 50, 8492–8497. [Google Scholar] [CrossRef]
- D’Jesus, P. Die Vergasung von Realer Biomasse in Überkritischem Wasser: Untersuchung des Einflusses von Prozessvariablen und Edukteigenschaften. Ph.D. Thesis, Universität Karlsruhe, Karlsruhe, Germany, 2007. [Google Scholar]
- D’Jesus, P.; Boukis, N.; Kraushaar-Czarnetski, B.; Dinjus, E. Gasification of corn and clover grass in supercritical water. Fuel 2006, 85, 1032–1038. [Google Scholar] [CrossRef]
- D’Jesus, P.; Boukis, N.; Kraushaar-Czarnetski, B.; Dinjus, E. Influence of Process Variables on Gasification of Corn Silage in Supercritical Water. Ind. Eng. Chem. Res. 2006, 45, 1622–1630. [Google Scholar] [CrossRef]
- Boukis, N.; Galla, U. Verfahren zur Hydrothermalen Vergasung von Biomasse in Überkritischem Wasser. Patent DE102006044116B3, 28 February 2008. [Google Scholar]
- Guo, L.; Cao, C.; Lu, Y. Supercritical Water Gasification of Biomass and Organic Wastes. In Biomass; IntechOpen: London, UK, 2010; ISBN 978-953-307-113-8. [Google Scholar]
- Tushar, M.; Dutta, A.; Xu, C. Effects of Reactor Wall Properties, Operating Conditions and Challenges for SCWG of Real Wet Biomass. In Near-Critical and Supercritical Water and Their Applications: Biofuels and Biorefineries 2; Fang, Z., Xu, C., Eds.; Springer Science + Business Media: Dordrecht, The Netherlands, 2014; pp. 207–229. ISBN 978-94-017-8922-6. [Google Scholar]
- Kruse, A.; Henningsen, T.; Sinag, A.; Pfeiffer, J. Biomass Gasification in Supercritical Water: Influence of the Dry Matter Content and the Formation of Phenols. Ind. Eng. Chem. Res. 2003, 42, 3711–3717. [Google Scholar] [CrossRef]
- Nanda, S.; Reddy, S.N.; Hunter, H.N.; Dalai, A.K.; Kozinski, J.A. Supercritical water gasification of fructose as a model compound for waste fruits and vegetables. J. Supercrit. Fluids 2015, 104, 112–121. [Google Scholar] [CrossRef]
- Arita, T.; Nakahara, K.; Nagami, K.; Kajimoto, O. Hydrogen generation from ethanol in supercritical water without catalyst. Tetrahedron Lett. 2003, 44, 1083–1086. [Google Scholar] [CrossRef]
- Therdthianwong, S.; Srisiriwat, N.; Therdthianwong, A.; Croiset, E. Hydrogen production from bioethanol reforming in supercritical water. J. Supercrit. Fluids 2011, 57, 58–65. [Google Scholar] [CrossRef]
- Waldner, M.H.; Vogel, F. Renewable Production of Methane from Woody Biomass by Catalytic Hydrothermal Gasification. Ind. Eng. Chem. Res. 2005, 44, 4543–4551. [Google Scholar] [CrossRef]
- Cerbe, G. Grundlagen der Gastechnik, 6th ed.; vollständig neu bearbeitete Auflage; Carl Hanser Verlag: Munchen, Germany, 2004; ISBN 3-446-22803-9. [Google Scholar]
- Reimert, R.; Marschner, F.; Renner, H.-J.; Boll, W.; Supp, E.; Brejc, M.; Liebner, W.; Schaub, G. Gas Production, 2. Processes. In Ullmann’s Encyclopedia of Industrial Chemistry; Wiley-VCH: Weinheim, Germany, 2011; ISBN 9783527303854. [Google Scholar]
- Jamin, N.A.; Saleh, S.; Samad, N.A. Influences of Gasification Temperature and Equivalence Ratio on Fluidized Bed Gasification of Raw and Torrefied Wood Wastes. Chem. Eng. Trans. 2020, 80, 127–132. [Google Scholar] [CrossRef]
- Roetzel, W.; Spang, B. Wärmedurchgang. In VDI-Wärmeatlas: Berechnungsblätter für den Wärmeübergang; Springer: Berlin/Heidelberg, Germany, 2013; ISBN 978-3-642-19980-6. [Google Scholar]
- Huang, X.; Wang, Q.; Song, Z.; Yin, Y.; Wang, H. Heat transfer characteristics of supercritical water in horizontal double-pipe. Appl. Therm. Eng. 2020, 173, 115191. [Google Scholar] [CrossRef]
- Bazargan, M.; Fraser, D. Heat Transfer to Supercritical Water in a Horizontal Pipe: Modeling, New Empirical Correlation, and Comparison Against Experimental Data. J. Heat Transf. 2009, 131, 61702. [Google Scholar] [CrossRef]
- Swenson, H.S.; Carver, J.R.; Kakarala, C.R. Heat Transfer to Supercritical Water in Smooth-Bore Tiles. J. Heat Transf. 1965, 87, 477–483. [Google Scholar] [CrossRef]
Preheater | Reactor 1 | Reactor 2 | |
---|---|---|---|
Material | SS316 with SS316 liner | Inconel 625 | Inconel 625 |
Length/mm | 1200 | 1100 | 1800 |
Inner diameter/mm | 3.2 | 8.0 | 8.0 |
Electric heating | 5 spiral heaters | 3 rod heaters + 1 spiral heater | 6 rod heaters + 1 spiral heater |
Experiment Number | Biomass | Tmax,Preheater | CE | TOC-Conversion |
---|---|---|---|---|
°C | % | % | ||
1 | RCG | 500 | 65.8 | 86.0 |
2 | RCG | 570 | 66.7 | 85.4 |
3 | RCG | 400 | 63.4 | 86.0 |
Mean values | 65.3 | 85.8 | ||
4 | Ethanol | 500 | 99.3 | 99.8 |
Reed Canary Grass | Ethanol | ||||
---|---|---|---|---|---|
Mass Flow Rate | g/h | g/h C | g/h K+ | g/h | g/h C |
Feed | 700.0 | 26.2 | 3.51 | 250.0 | 7.80 |
Organics | 56.0 | 25.1 + | - | 15.0 | 7.80 |
Water | 644.0 | 1.08 * | 3.51 | 235.0 | - |
Sum of products | 700.0 | 26.2 | 3.51 | 250.0 | 7.80 |
Gas | 45.3 | 16.5 | - | 15.9 | 7.78 |
Reactor effluent | 562.9 | 2.14 | 0.13 | 234.1 | 0.02 |
Solid residue | 8.77 | 5.95 | 2.82 | - | - |
Salt concentrate | 83.0 | 1.59 | 0.56 | - | - |
LHV [45] | Reed Canary Grass | Ethanol | |||
---|---|---|---|---|---|
Composition | LHV | Composition | LHV | ||
MJ/m3 | vol.% | kW | vol.% | kW | |
H2 | 10.782 | 32.97 | 4.08 × 10−2 | 37.92 | 2.32 × 10−2 |
CO | 12.634 | 0.340 | 4.93 × 10−4 | 12.19 | 8.72 × 10−3 |
CO2 | 45.38 | 15.21 | |||
CH4 | 35.894 | 16.53 | 6.82 × 10−2 | 27.27 | 5.54 × 10−2 |
C2H4 | 59.478 | 0.299 | 2.05 × 10−3 | 0.057 | 2.02 × 10−4 |
C2H6 | 64.382 | 3.310 | 2.45 × 10−2 | 7.351 | 2.68 × 10−2 |
C3H6 | 87.591 | 0.349 | 3.52 × 10−3 | 0.000 | |
C3H8 | 93.118 | 0.830 | 8.88 × 10−3 | 0.006 | 5.28 × 10−5 |
1.48 × 10−1 | 1.14 × 10−1 |
Reed Canary Grass | Ethanol | |
---|---|---|
kW | kW | |
Electricity | 3.72 | 2.03 |
Feed | 0.28 | 0.11 |
Gas | 0.15 | 0.11 |
Reactor effluent | 0.02 | 0.00 |
Solid residue | 0.07 | 0.00 |
Losses | 3.76 | 2.03 |
Reed Canary Grass | Ethanol | ||||
---|---|---|---|---|---|
Mass Flow Rate | kg/h | kg/h C | kg/h K+ | kg/h | kg/h C |
Feed | 100.0 | 3.7 | 0.5 | 100.0 | 3.1 |
Organics | 8.0 | 3.6 | - | 6.0 | 3.1 |
Water | 92.0 | 0.2 | 0.5 | 94.0 | - |
Sum of products | 100.0 | 3.7 | 0.5 | 100.0 | 3.1 |
Product gas | 6.5 | 2.4 | - | 6.4 | 3.0 |
Reactor effluent | 80.4 | 0.3 | 0.0 | 93.7 | 0.1 |
Solid residue | 1.3 | 0.9 | 0.4 | - | - |
Salt concentrate | 11.9 | 0.2 | 0.1 | - | - |
Reed Canary Grass | Ethanol | |
---|---|---|
kW | kW | |
Electricity | 8.0 | 8.0 |
Heating (electric) | 35.0 | 35.0 |
Feed | 39.8 | 44.5 |
Gas | 21.2 | 45.6 |
Reactor effluent | 3.4 | - |
Solid residue | 9.4 | - |
Hot water | 11.0 | 11.0 |
Losses | 37.8 | 30.9 |
Plant throughput/kg h−1 | 100 | 200 | 500 | 1000 |
Biomass input/kW | 39.8 | 79.6 | 198.9 | 397.8 |
Electricity input/kW | 43.0 * | 70.4 | 135.6 | 227.6 |
Product gas/kW | 21.2 | 42.4 | 106.0 | 212.0 |
Thermal losses/kW | 37.8 | 60.0 | 110.4 | 175.3 |
Feed Stream (Inner Stream) | Product Stream (Outer Stream) | |||||||
---|---|---|---|---|---|---|---|---|
Tin °C | Tout °C | kJ (kg K)−1 | kW | Tin °C | Tout °C | kJ (kg K)−1 | kW | |
Level 9 | 392.4 | 427.8 | 18.06 | 14.2 | 584.5 | 436.3 | 4.27 | −14.1 |
Level 8 | 388.3 | 392.4 | 23.45 | 2.14 | 436.3 | 396.8 | 14.15 | −12.4 |
Level 7 | 374.7 | 388.3 | 12.89 | 3.89 | 396.8 | 382.3 | 23.47 | −7.56 |
Level 6 | 374.3 | 374.7 | 9.64 | 0.09 | 382.3 | 373.9 | 10.89 | −2.03 |
Level 5 | 362.9 | 374.3 | 8.40 | 2.13 | 373.9 | 370.6 | 9.16 | −0.67 |
Level 4 | 362.4 | 362.9 | 7.60 | 0.08 | 370.6 | 364.6 | 8.34 | −1.11 |
Level 3 | 338.5 | 362.4 | 6.65 | 3.53 | 364.6 | 355.8 | 7.41 | −1.45 |
Level 2 | 231.2 | 338.5 | 5.02 | 12.0 | 355.8 | 313.0 | 5.99 | −5.69 |
Level 1 | 13.6 | 231.2 | 4.22 | 20.4 | 313.0 | 127.9 | 4.54 | −18.7 |
Sum | 58.5 | −63.7 |
kEthanol-Operation W (m²K)−1 | kWater-Operation W (m²K)−1 | |
---|---|---|
Level 9 | 1175.4 | 671.4 |
Level 8 | 899.3 | 1206.9 |
Level 7 | 1823.7 | 3412.7 |
Level 6 | 214.5 | 1143.7 |
Level 5 | 2140.9 | 3011.1 |
Level 4 | 250.8 | 987.7 |
Level 3 | 1537.9 | 695.9 |
Level 2 | 1122.3 | 629.4 |
Level 1 | 668.2 | 608.8 |
Mean | 1092.5 | 1374.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dutzi, J.; Boukis, N.; Sauer, J. Energetic Assessment of SCWG Experiments with Reed Canary Grass and Ethanol Solution on Laboratory and Pilot Scale. Energies 2023, 16, 6848. https://doi.org/10.3390/en16196848
Dutzi J, Boukis N, Sauer J. Energetic Assessment of SCWG Experiments with Reed Canary Grass and Ethanol Solution on Laboratory and Pilot Scale. Energies. 2023; 16(19):6848. https://doi.org/10.3390/en16196848
Chicago/Turabian StyleDutzi, Julian, Nikolaos Boukis, and Jörg Sauer. 2023. "Energetic Assessment of SCWG Experiments with Reed Canary Grass and Ethanol Solution on Laboratory and Pilot Scale" Energies 16, no. 19: 6848. https://doi.org/10.3390/en16196848
APA StyleDutzi, J., Boukis, N., & Sauer, J. (2023). Energetic Assessment of SCWG Experiments with Reed Canary Grass and Ethanol Solution on Laboratory and Pilot Scale. Energies, 16(19), 6848. https://doi.org/10.3390/en16196848