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Abstract: The integration of renewable sources and energy storage in residential microgrids offers
energy efficiency and emission reduction potential. Effective energy management is vital for opti-
mizing resources and lowering costs. In this paper, we propose a novel approach, combining the
imperialist competitive algorithm (ICA) with particle swarm optimization (PSO) as ICA-PSO to
enhance energy management. The proposed energy management system operates in an offline mode,
anticipating data for the upcoming 24 h, including consumption predictions, tariff rates, and meteo-
rological data. This anticipatory approach facilitates optimal power distribution among the various
connected sources within the microgrid. The performance of the proposed hybrid ICA-PSO algorithm
is evaluated by comparing it with three selected benchmark algorithms, namely the genetic algorithm
(GA), ICA, and PSO. This comparison aims to assess the effectiveness of the ICA-PSO algorithm
in optimizing energy management in multi-source residential microgrids. The simulation results,
obtained using Matlab 2023a, provide clear evidence of the effectiveness of the hybrid ICA-PSO
algorithm in achieving optimal power flows and delivering substantial cost savings. The hybrid
algorithm outperforms the benchmark algorithms with cost reductions of 4.47%, 14.93%, and 26%
compared to ICA, PSO, and GA, respectively. Furthermore, it achieves a remarkable participation
rate of 50.6% for renewable resources in the energy mix, surpassing the participation levels of the ICA
(42.88%), PSO (40.51%), and GA (38.95%). This research contributes to the advancement of power
flow management techniques in the context of multi-source residential microgrids, paving the way
for further research and development in this field.

Keywords: imperialist competitive algorithm; particle swarm optimization; photovoltaic; wind
turbine; energy flow management; microgrids; residential applications; cost-effectiveness

1. Introduction
1.1. Problem Statement and Motivation

The increasing global demand for clean and sustainable energy solutions has led to
the rapid development of residential microgrids (MGs) [1]. These localized power systems
integrate renewable energy sources (RESs), energy storage systems (ESSs), and grid con-
nectivity to provide reliable and efficient electricity supply to residential communities [2].
The management of power flows in such MGs is critical to ensuring optimal utilization of
available resources, minimizing operating costs, and enhancing system reliability [3].

In recent years, optimization techniques have emerged as effective tools for power flow
management in MGs [4]. These techniques aim to find the best operating conditions that
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balance the generation, consumption, and storage of electricity within the MG [4]. Among
various optimization methods, both the ICA and PSO have shown great potential in effi-
ciently exploring the solution space and converging towards near-optimal solutions [4–6].
The ICA is known for its ability to effectively explore diverse solution spaces and find glob-
ally optimal solutions, while the PSO algorithm excels at exploiting local search capabilities
and converging towards near-optimal solutions.

Shaheen et al. [7] proposed the gorilla troops optimization technique (GTOT) for
multi-objective optimal power flow in electric power systems (EPSs). The GTOT emu-
lates gorilla group behaviors, achieving efficient solutions for cost, losses, and pollutants
optimization. Evaluation on standard and practical EPSs demonstrated the GTOT’s effec-
tiveness. Xu et al. [8] suggested a hierarchical energy management system for multi-source
multi-product microgrids, combining traditional scheduling with a hierarchical control
structure. This system efficiently manages thermal, gas, and electrical systems on differ-
ent time scales, enhancing microgrid operation and interactions among energy sources.
Roy et al. [9] introduced the RFCRO hybrid algorithm, combining random forest and coral
reefs optimization, to optimize energy flow management in grid-connected microgrids. The
algorithm targeted cost reductions by optimizing multiple fitness functions simultaneously,
showcasing the potential of hybrid techniques for efficient microgrid power flow manage-
ment. Moradi et al. [10] developed an optimization technique for photovoltaic–wind hybrid
systems with battery storage in microgrids. Their approach aimed to enhance energy effi-
ciency, minimize costs, and reduce environmental impact by employing predictive data and
multi-objective optimization, including a demand response program. Abdelkafi et al. [11]
proposed an assisted management strategy for a standalone multi-source power system,
including wind and photovoltaic generators, a super-capacitor, and a diesel generator. The
strategy aimed to optimize power flow, increase reliability, and protect the energy storage
system’s longevity. Simulation results confirmed its effectiveness in achieving efficient
energy production and consumption balance.

On the other hand, Chen et al. [12] proposed a hybrid ICA-PSO algorithm for solv-
ing the complex multi-area economic dispatch problem. This approach combines the
advantages of the ICA and PSO. The algorithm was effective in optimizing power system
economic load dispatch, especially in large-scale scenarios, surpassing recent methods.
Ghodrati et al. [13] combined the ICA and PSO for global optimization. The hybrid ap-
proach introduces an ‘Independent’ country type to enhance collaboration and uses swarm
intelligence from PSO. The method’s performance is evaluated against benchmark functions
and compared with standard PSO and ICA algorithms. Idoumghar et al. [14] proposed a
hybrid ICA–PSO algorithm for mono-objective and multi-objective problems. It combines
the ICA and PSO, enhancing exploration, maintaining diversity, and improving solutions.
The algorithm outperforms benchmark functions in optimizing different problems.

Moreover, several studies have focused on various aspects of energy flow manage-
ment in multi-source MGs [15–17]. One common approach is the use of metaheuristic
optimization techniques to achieve efficient power flow allocation and resource utilization.
These techniques include GAs [18–21], PSO [22–24], and the ICA [5,25–28]. They aim to
optimize the allocation of power generation, storage, and consumption within the MG,
considering factors such as demand fluctuations, RES availability, and storage capacity.

Furthermore, researchers have investigated the integration of RESs, such as photo-
voltaic (PV) and wind turbine systems (WTS) into residential MGs [29–31]. PV and WTS
have gained significant attention due to their environmentally friendly nature and potential
for reducing dependency on the main power grid. Studies have explored strategies for
maximizing PV and WTS energy utilization, minimizing grid dependency, and manag-
ing the intermittency of RESs through storage systems [32,33]. Recent studies on energy
management in MGs, employing a variety of metaheuristic methods, are summarized in
Table 1.
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Table 1. Recent research on metaheuristic methods for energy management in MGs.

Authors Reference Year Approach Objectives

Dong et al. [34] 2019 CHP Reduce the system operation costs and the CO2 emissions cost,
improve system flexibility

Noreña et al. [35] 2019 PSO-SA Reduce the cost of the energy purchased to the utility grid

Adel et al. [36] 2020 MOPSO Reliability, cost of energy, and GHG reduction

Kaveh et al. [5] 2020 ICHHO Improve efficiency, and robustness

Hemant et al. [37] 2020 GA Improve energy consumption

Singh et al. [38] 2020 ABC-PSO Minimize the levelized cost of electricity

Cristian et al. [39] 2021 PSO Meet the energy demand in a MG

Ming et al. [40] 2021 ICA Minimize makespan, total tardiness, and total energy
consumption

Abaeifar et al. [41] 2022 IWLS-TLBO Reduce the overall costs of the system

Güven et al. [42] 2022 HFGA Minimize the annual system costs and meet the energy demand
reliably

Dey et al. [43] 2022 WOA-SCA Minimize the generation cost

Vignesh et al. [44] 2023 GA Reduce the grid purchase cost and battery degradation cost

Our algorithm introduces a novel hybrid ICA-PSO approach for offline energy flow
management in multi-source microgrids, drawing inspiration from the latest developments
in the field. The novelty of our choice lies in its uncharted potential within this specific
context. Our distinctive formulation takes on the intricacies posed by diverse energy
sources, consumption patterns, and tariff rates. Concentrating on the offline mode, we
tackle real-world energy management complexities with a focus on predictive planning.
Notably, our algorithm delivers swift execution times, a benefit facilitated by the synergy
of hybridization.

1.2. Contributions

This paper presents a comprehensive study on the optimization of power flow man-
agement in residential MGs using the hybrid ICA-PSO algorithm.

The main contributions of this article can be summarized as follows:

• The proposal of a novel hybrid metaheuristic algorithm, named ICA-PSO, for optimiz-
ing microgrid energy management, which combines the exploration capabilities of the
ICA with the exploitation capabilities of PSO.

• Development of a comprehensive model that considers the balance between energy
demand and generation, as well as the constraints associated with power generation
and ESS units.

• A showcase of the system’s ability to effectively manage and maintain the ESS’s state
of charge (SOC).

• A comparison of the participation of renewable energies in the total energy generation
within the MG using benchmark algorithms.

• The investigation of the ICA-PSO algorithm’s performance in minimizing overall cost,
and its performance compared with benchmark algorithms.

1.3. Article Organization

To support our research, we conduct a review of the existing literature on metaheuristic-
based optimization techniques for power flow management in MGs. The literature review
provides valuable insights into the current state of the art, identifies research gaps, and
establishes the significance of our proposed approach.
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The remaining sections of this paper are structured as follows: Section 2 provides a
comprehensive overview of the materials and methods utilized in this research, including a
detailed description of the MG components and the optimization methodology employed.
In Section 3, we present the simulation results and conduct a thorough performance
analysis, comparing the performance of the ICA-PSO hybrid algorithm with benchmark
methods and showcasing the achieved cost savings. Section 4 offers a concise discussion
of the simulation findings. Finally, Section 5 concludes the paper by summarizing the key
contributions of this study and underscoring the significance of our proposed approach.

2. Materials and Methods
2.1. Description of MG Components

In this section, we will delve into the various components of the microgrid (MG) that
collaboratively ensure a smooth and dependable power supply. The PV system harnesses
sunlight to generate electrical energy, serving as a RES. The MG also incorporates a WTS to
harness wind energy, and an ESS is employed to store excess energy and balance power
supply and demand within the MG. Loads represent the electrical devices and appliances
that consume power, such as residential appliances and lighting systems. The MG is
connected to the main power grid, enabling the import or export of electricity and ensuring
a dependable power supply. Power conversion and control devices, including AC/DC
converters, facilitate efficient power transfer and control between different components. A
control and monitoring system oversees the MG’s operation, optimizing power flow and
ensuring system performance. Together, these components enable the MG to effectively
generate, store, and distribute electrical energy, contributing to a sustainable and reliable
power infrastructure.

Figure 1 illustrates the configuration and interconnection of the MG components
mentioned above, showcasing how they work together to enable efficient and reliable
power supply.
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2.2. Formulation of the Energy Flow Optimization Problem
2.2.1. Objective Function

The objective function aims to minimize the operating costs while ensuring reliable
and efficient energy flow. It typically considers factors such as the cost of grid electricity
and the ESS State of health (SOH) variation. The objective function may also incorporate
environmental factors, such as carbon emissions, to promote sustainability. Equation (1)
represents the objective function, which captures the optimization criteria for the energy
flow management in a MG. Nomenclature provides the abbreviations used in this equation.

Min f (X) = ∑24h
0.33h CESS∆SOH + CGridPGrid + C CO2 (1)

2.2.2. Power Balance Equation

The power balance equation ensures that the total power generated is equal to the total
power consumed by the loads and stored in the ESS. Equation (2) represents the balance
equation, which ensures the equilibrium between power generation, power consumption,
and ESS within the MG. By satisfying this equation, the MG operates in a stable and self-
sustaining manner, ensuring that the power supply matches the power demand at all times.
The abbreviations used in the equation are defined in Nomenclature.

PPV(t) + PWTS(t) + PGrid(t) = PLoad(t) + PESS(t) (2)

2.2.3. Power Generation Limits

The power generation limits are addressed through several equations in this section.
Equation (3) outlines the restrictions for the main power grid, encompassing both its upper
and lower power output bounds. Additionally, Equation (4) imposes constraints on the PV
system, defining its maximum power generation capacity with consideration for factors
such as solar intensity and system efficiency. Equation (5) further establishes limitations for
the WTS, incorporating factors like wind speed and turbine specifications to determine the
maximum attainable power output from the wind resource. The abbreviations employed
in these equations are detailed in Nomenclature for reference.

PGrid_min(t) ≤ PGrid(t) ≤ PGrid_max(t) (3)

0 ≤ PPV ≤ PPVmax (4)

0 ≤ PWT ≤ PWTmax (5)

2.2.4. ESS Constraints

Given their role as storage entities, batteries are governed by specific constraints related
to charging, discharging, and ESS capacity. Equation (6) delineates the range within which
the SOC of the ESS must be maintained within the multi-source MG. Equation (7) further
enforces limitations on the rate of SOC change, preventing abrupt variations. Moreover,
Equation (8) safeguards the ESS’s overall well-being and operational effectiveness over time.
The abbreviations utilized in these equations are elaborated in Nomenclature for clarity.

SoCmin ≤ SoC(k) ≤ SoCmax (6)

∆SoCmin ≤ ∆SoC(k) ≤ ∆SoCmax (7)

SoH(k) ≥ SoHmin (8)
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2.3. A Hybrid ICA-PSO Optimization Algorithm
2.3.1. Hybrid ICA-PSO Approach: Formulation

The optimization algorithm employed in this study is a hybrid approach combining
the ICA and the PSO, referred to as ICA-PSO. The hybrid ICA-PSO algorithm is utilized
to optimize the power flows in residential MGs, aiming to minimize operating costs and
enhance system performance.

Figure 2a presents a flowchart illustrating the classic ICA algorithm, depicting the se-
quential steps involved in the algorithm. Figure 2b shows a flowchart specifically designed
for the proposed hybrid ICA-PSO algorithm. This flowchart represents the modified steps
and the integration of the PSO technique within the ICA framework.
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The main steps of the proposed hybrid algorithm include:
Step 1: Initialization step, where random solutions are generated within the search

space. These solutions represent the initial empires in the algorithm.
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Step 2: Assimilation phase, where colonies move towards imperialist states in different
directions. This step allows for the exploration of the solution space and the identification
of potential optimal solutions. Figure 3a visually illustrates the formation of initial empires
in the hybrid ICA-PSO algorithm. It showcases the distribution of colonies around the
respective imperialists, highlighting the initial configuration of the algorithm.
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Step 3: The revolution phase takes place, introducing random changes in the character-
istics of some countries within the empires. This step adds diversity to the search process
and helps in escaping local optima. Figure 3b demonstrates the exchange of positions
between colonies and imperialists. It illustrates the process where a colony with a superior
position replaces the existing imperialist, aiming to improve the overall solution quality.

Step 4: The algorithm incorporates imperialistic competition, where all imperialists
compete to possess colonies from each other. This competition enhances the exploration
and exploitation of the solution space, leading to improved optimization results. Figure 3c
showcases the positions of empires and colonies after the exchange, demonstrating the
impact of competition on the distribution of solutions.

Step 5: To refine the solutions and enhance their accuracy, the hybrid ICA-PSO
algorithm incorporates a local search technique using PSO. This technique allows for
the fine-tuning of solutions within each empire, improving the convergence towards
optimal solutions.

Step 6: The hybrid ICA-PSO algorithm iteratively repeats these steps until a stopping
condition is met, such as reaching a maximum number of iterations or achieving a desired
level of convergence. At the end of the algorithm, the optimal power flows that minimize
operating costs and enhance system performance are obtained.

The rationale for adopting the hybrid ICA-PSO algorithm in microgrid optimization
lies in its ability to navigate the intricacies of multi-source energy systems. By capitalizing
on the global exploration strengths of the ICA and the local optimization proficiency of
PSO, the algorithm tackles challenges associated with efficient power distribution, resource
utilization, and cost-effectiveness within microgrids.

2.3.2. Hybrid ICA-PSO Approach: Advantages

In our study, we have chosen a hybrid ICA-PSO approach to solve the power flow
optimization problem. Unlike existing methods, the ICA-PSO algorithm has a special
advantage: it can handle various types of objective functions and constraints, whether they
are linear or not, differential or not, convex or concave, and so on. Additionally, it does not
require a specific math solver from the start.

How well this approach works depends on how we choose the “discretization step”.
Smaller steps lead to higher-quality optimal solutions, but they also need more computing
power and memory. It is like finding the balance between obtaining the best results and
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using more resources. Even though choosing the right step can be tricky sometimes,
the ICA-PSO method remains superior here because we are not trying to perform the
optimization in real time; we are planning the best solution for day N based on what
happened on the previous day, N − 1.

3. Simulation Results
3.1. Simulation Setup

The performance evaluation of the proposed hybrid ICA-PSO-based power flow
optimization approach was conducted through simulations using a Dell OptiPlex 7070
Workstation. The workstation was equipped with 16 GB of RAM memory and an Intel(R)
Core (TM) i7-9700 CPU, operating at 3 GHz. The simulations were carried out in MATLAB
2023a, utilizing a time step of 20 min, which corresponds to 72 samples per day. This
rigorous evaluation aimed to assess the algorithm’s effectiveness in optimizing energy
utilization and load management in residential MGs. It is important to note that the PV
and WTS cost was considered as zero or free of charge.

Regarding the assumption of zero cost for PV and WTS sources, it is important to
note that this simplification was initially made to streamline the analysis and prioritize
the optimization process itself. However, the assumption’s potential impact on the results
should be acknowledged. While this assumption facilitates the focus on optimization of out-
comes, we recognize that in real-world scenarios, actual costs associated with PV and WTS
sources significantly influence the economic feasibility of the proposed solutions. Therefore,
in future research, the consideration of realistic costs for these sources will be crucial to
provide a more accurate depiction of the cost-effectiveness of the optimization results.

The results obtained from the simulations are thoroughly discussed, providing valuable
insights into the performance and practical applicability of the hybrid ICA-PSO-based system.

Table 2 provides an overview of the control parameters employed in the simulation
for the hybrid ICA-PSO and benchmark optimization algorithms.

Table 2. Control parameters used in different algorithms.

Parameters PSO GA ICA ICA-PSO

Population size 100 100 100 100

Imperialist number - - 10 -

Dimension of the problem 6 6 6 6

Maximum number of iterations 2000 2000 2000 2000

Inertia weight 0.5 - - 0.5

Cognitive coefficient 1 - - 1

Weighting factor 2 - - -

Social coefficient 1 - - 1

Revolution rate - - 0.1 0.1

Assimilation coefficient - - 0.5 0.5

Crossover rate - 0.5 - -

3.2. Simulation Results and Analysis
3.2.1. Simulation Results

In the simulation, the load profile considered is representative of a residence with
100 apartments in France [46]. Figure 4 presents the load profile of the considered neighbor-
hood, showcasing the daily variation in electricity consumption. The load profile represents
the pattern of electricity demand throughout a typical day, capturing the peak and off-peak
periods of usage.
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Figure 4. Daily active demand load.

The simulation results presented in this study provide valuable insights into the
performance of our hybrid ICA-PSO algorithm in a multi-source MG system. Figure 5
illustrates the active power balance of the MG, showcasing the effectiveness of our ICA-
PSO-based algorithm in ensuring a stable and optimized power distribution among the
various sources. To evaluate the overall performance of our algorithm, Figure 6 compares
the daily SOC of the MG system using our hybrid ICA-PSO algorithm and comparing with
benchmark algorithms. The results demonstrate the superior performance of our algorithm,
as it achieves higher and more consistent SOC levels throughout the day. Figure 7 provides a
comprehensive comparison of the daily cost evolution between our hybrid ICA-PSO-based
algorithm and benchmark algorithms. The results clearly indicate the cost-saving potential
of our algorithm, as it consistently outperforms the benchmark algorithms in achieving
cost reductions. Table 3 presents the daily energy participation of each MG element using
our hybrid ICA-PSO algorithm. It showcases the contributions of different elements to the
overall energy mix and highlights the efficient utilization of available resources facilitated by
our algorithm. For a broader perspective on the energy mix, Figure 8 compares the energy
source contributions of different algorithms. Our hybrid ICA-PSO algorithm demonstrates
its capability to significantly increase the participation of renewable resources in the energy
mix, surpassing the performance of benchmark algorithms.
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Table 3. The daily energy (kWh) participation of each MG element using hybrid ICA-PSO algorithm.

Hour
RES

ESS Grid Hour
RES

ESS GridPV WTS PV WTS

1 0 32.1 13.2 37.7 13 87.2 10.2 26.4 −31.98
2 0 33.6 0 44.38 14 91.2 29.4 13.2 −44.5
3 0 11.1 26.4 39.22 15 88 35.7 −0.14 −35.51
4 0 13.2 −8.62 68.37 16 82.4 24.9 −0.06 −21.08
5 0 14.1 −8.62 65.59 17 33.6 10.5 0 40.8
6 0 52.8 −0.24 17.88 18 24 0 0 61.53
7 0 51.3 −2.12 31.32 19 12 0 13.2 70.4
8 0 41.4 −10.15 59.32 20 0 12.3 23.5 64.18
9 12.8 13.2 24 44.34 21 0 11.4 10.97 69.46

10 28.8 21.3 13.2 32.93 22 0 36.3 0 51.12
11 42.4 24.6 −13.2 39.91 23 0 56.7 −8.62 36.2
12 54.4 8.7 −13.2 43.18 24 0 52.5 −8.62 42.91
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Figure 8. Comparison of energy source contributions in the energy mix for different algorithms.

These simulation results provide empirical evidence of the effectiveness and superior-
ity of our hybrid ICA-PSO algorithm in achieving optimal power balance, cost reductions,
and enhanced utilization of renewable resources within the MG system.

3.2.2. Statistical Analysis of Numerical Results

We assess the performance of our hybrid algorithm through the utilization of four
widely recognized benchmark functions. Subsequently, we conduct a comparative analysis
between the outcomes generated by our algorithm and those derived from the benchmark
methods (PSO, ICA, and GA).

An examination of the numerical results presented in Table 4 reveals the following findings:

Table 4. Statistical analysis to compare different algorithms.

Test Function GA PSO ICA ICA-PSO

f1 : Sphere [47] 1.5167 × 10−19 0.81904 × 10−8 7.87423 × 10−3 2.1556 × 10−27

f2 :Michalewicz [48] −7.0378 −7.0377 −7.03778 −7.03756

f3 :Ackley [47] 3.8703 1.9476 2.164 × 10−2 8.9834 × 10−14

f4 : Rastrigin [47] 5.772 3.324 0.905 1.5069 × 10−7

• All three algorithms effectively address the f1 problem, with our algorithm achieving
the most optimal solutions.

• The f2 problem is accurately solved by all algorithms, although the ICA-PSO hybrid
algorithm exhibits a slightly superior performance compared to the other algorithms.

• In the case of highly multimodal functions such as Ackley’s and Rastrigin’s, the
ICA-PSO hybrid algorithm demonstrates a clear superiority over the other algorithms.

4. Discussion
4.1. Power Balance

Figure 5 depicts the balance of active power within the residential MG, showcasing the
close alignment between power generation and demand. The plot clearly demonstrates that
the generated power effectively meets the system’s active power requirements, ensuring a
balanced and reliable operation. This observation underscores the successful management
and control of power flow within the MG, where power generation is carefully coordinated
to meet consumption needs. The results presented in Figure 5 validate the efficient regula-
tion of active power supply, thereby maintaining a stable and sustainable energy supply
within the MG.
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4.2. Improved SOC

Figure 6 illustrates a comparison of the SOC of the ESS between the hybrid ICA-PSO
algorithm and the benchmark algorithms. The results clearly demonstrate that the hybrid
ICA-PSO algorithm outperforms the other algorithms in terms of adaptability and efficiency
in maintaining the SOC of the ESS. By effectively utilizing a wider range of the storage
system’s capacity, the hybrid ICA-PSO algorithm ensures optimal energy management and
facilitates the efficient integration of RESs into the overall power system. These findings
highlight the superior performance of the hybrid ICA-PSO algorithm in effectively utilizing
and managing the ESS, leading to enhanced system performance and reliability.

The adaptability of the hybrid ICA-PSO algorithm enables it to dynamically adjust the
charging and discharging rates of the ESS based on the fluctuating energy generation and
consumption patterns. This adaptability allows for efficient balancing of power supply and
demand, minimizing energy wastage and maximizing the utilization of available resources.

Moreover, the hybrid ICA-PSO algorithm’s efficient management of the ESS’s SOC
contributes to the overall stability and reliability of the MG. By maintaining the SOC within
an optimal range, the algorithm ensures a steady power supply to meet the energy demands
of the residential community.

4.3. Participation of RESs in the MG Energy Mix

The simulation results presented in Table 3 provide hourly energy contributions of
each component in the MG over a day. The results show that when using our hybrid
ICA-PSO algorithm, the participation of RESs in the energy mix reaches a significant level
of 50.6%. This demonstrates the effectiveness of our algorithm in maximizing the utilization
of available RESs within the MG.

To further evaluate the performance of our algorithm, Figure 8 provides a comparison
between our approach and benchmark algorithms. The results clearly indicate the superi-
ority of our algorithm, as the participation levels achieved with the ICA, PSO, and GA are
only 42.88%, 40.51%, and 38.95%, respectively.

These findings emphasize the efficiency and positive impact of our hybrid ICA-PSO
algorithm on integrating renewable resources into the MG’s energy mix. They underscore
the importance of algorithm selection in ensuring optimal participation of RESs, thereby
promoting the sustainability and resilience of the MG.

These results reinforce the importance of leveraging RESs, such as PV and WTSs, in
meeting the energy needs of residential communities. By maximizing the utilization of
renewables and optimizing their integration into the MG, a more sustainable and cost-
effective energy system can be achieved.

4.4. Cost Savings and Financial Benefits

The cost evolution demonstrated in Figure 7 illustrates the superior cost efficiency
of the hybrid ICA-PSO algorithm compared to both the ICA and PSO. In terms of cost
savings, the hybrid ICA-PSO algorithm achieves a remarkable 4.47% (2920 EUR/year)
improvement over the ICA and a substantial 14.93% (10,950 EUR/year) improvement over
PSO. Additionally, when compared to the GA algorithm, the hybrid ICA-PSO algorithm
achieves an impressive cost reduction of 26% (21,900 EUR/year).

The findings highlight the significant advantage of the hybrid ICA-PSO algorithm
in reducing costs in power generation systems. Its optimization capabilities in power
generation and storage operations effectively balance power supply and demand, mini-
mizing wastage and maximizing RES utilization. As a result, substantial cost reductions
are achieved over time. Implementing the hybrid ICA-PSO algorithm offers significant
financial benefits and improves economic viability in multi-source MGs.

Overall, these findings, summarized in Table 5, underscore the superiority of the
hybrid ICA-PSO over the benchmark algorithms in terms of cost savings, adaptability,
and energy efficiency. The ICA-PSO algorithm outperforms the benchmark algorithms,
achieving significant reductions in operating costs and demonstrating higher adaptability in
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maintaining the SOC of the ESS. These advantages highlight the economic and sustainability
benefits of implementing the ICA-PSO algorithm in residential MGs.

Table 5. Comparison of performance metrics between ICA and GA Algorithms.

Performance Metrics ICA PSO GA ICA-PSO

Daily Cost EUR 179 EUR 201 EUR 231 EUR 171

SOC preservation Moderate efficiency in
maintaining SOC of ESS

Limited preservation of
SOC

Low preservation of
SOC

Higher efficiency in
maintaining SOC of ESS

Energy mix
participation

Provides a strong
participation of RESs

Ensures a moderate
participation of RESs

Shows a relatively low
participation of RESs

Efficiently maximizes
participation of RESs

4.5. Limitations and Challenges

While the results presented in the previous sections demonstrate the effectiveness of
the hybrid ICA-PSO algorithm in addressing various aspects of energy management in
multi-source residential microgrids, it is important to acknowledge certain limitations and
challenges inherent to this approach.

4.5.1. Assumption of Perfect Forecasting

One of the underlying assumptions of the algorithm is the availability of accurate
forecasts for energy generation, consumption, and weather conditions. However, real-
world scenarios often involve uncertainties and variations that can impact the reliability of
these forecasts. Imperfect forecasts might lead to suboptimal decisions, affecting the overall
performance of the algorithm. Incorporating robust predictive models and strategies to
handle uncertainty could enhance the algorithm’s resilience in unpredictable situations.

4.5.2. Scalability and Complexity

The algorithm’s complexity may increase as the scale of the microgrid and the number
of integrated energy sources grow. This could potentially affect computational efficiency
and optimization time, especially for larger systems. Addressing scalability challenges and
optimizing computational efficiency will be crucial to ensure the algorithm’s applicability
to diverse microgrid scenarios.

4.5.3. Parameter Tuning

As with many optimization algorithms, the performance of the hybrid ICA-PSO
algorithm can be influenced by the choice of algorithmic parameters. Finding the right
combination of parameters for different microgrid configurations might require iterative
experimentation. Automated parameter tuning techniques or sensitivity analysis can aid in
optimizing the algorithm’s performance for specific cases.

4.5.4. Generalization to Dynamic Scenarios

The current implementation of the hybrid ICA-PSO algorithm assumes an offline en-
ergy management mode, based on historical data and forecasts. Adapting the algorithm to
dynamic real-time scenarios, where energy generation and consumption patterns fluctuate
rapidly, could pose challenges. Developing strategies to handle dynamic scenarios and
integrating real-time data could be avenues for further research.

5. Conclusions

In this paper, we have investigated the application of a hybrid ICA-PSO algorithm for
optimizing energy flow management in a multi-source residential MG. The results demon-
strated the superiority of the hybrid algorithm in achieving cost savings and enhancing
the overall performance of the MG. By considering multiple energy sources, including
PV panels, WTSs, and ESSs, the proposed hybrid ICA-PSO algorithm effectively balanced
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power generation, consumption, and storage, leading to efficient resource utilization and
reduced operating costs.

The comparison with benchmark algorithms underscores the hybrid ICA-PSO al-
gorithm’s superiority, yielding notable cost reductions and significantly promoting the
integration of renewable resources into the energy mix. Additionally, the algorithm en-
hances energy storage system state-of-charge management and overall energy efficiency.

However, it is important to acknowledge that no solution is without limitations.
The complexities of real-world scenarios, varying weather conditions affecting renewable
energy generation, and inherent uncertainties in demand forecasting might pose challenges
to the algorithm’s performance. While our current study emphasizes the algorithm’s
advantages, it is equally crucial to consider its limitations and potential challenges in
practical applications.

Our findings contribute substantively to the domain of residential microgrid energy
management. By showcasing the hybrid ICA-PSO algorithm’s prowess in achieving eco-
nomic viability and sustainability, this study imparts crucial insights into the design of
intelligent and resilient energy systems. Looking ahead, avenues for further exploration
encompass refining the algorithm to encompass factors like demand response mechanisms
and real-time pricing. Additionally, extending the algorithm’s scalability to encompass
larger microgrid systems and a wider array of energy sources holds promise.
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Nomenclature

CESS Energy storage system cost (EUR)
SoH State of health of ESS (%)
SoC ESS state of charge (%)
CGrid Grid cost (EUR)
C CO2 CO2 emissions penalties (EUR)
PPV Power generated by the photovoltaic system (W)
PWTS Power generated by the wind turbine system (W)
PGrid Power imported from the grid (W)
PLoad Power consumed by the loads within the MG (W)
PESS Power stored in the ESS (W)
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