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Abstract: Incorporating renewable Distributed Energy Resources (DER) into the main grid is crucial
for achieving a sustainable transition from fossil fuels. However, this generation system is complicated
by the fluctuating behavior of renewable resources and the variable load demand, making it less
reliable without a suitable energy storage system (ESS). This study proposes an Optimal Power
Flow Management (OPFM) strategy for a grid-connected hybrid Micro Grid (MG) comprising a
wind turbine (WT), a photovoltaic (PV) field, a storage battery, and a Micro Gas turbine (MGT).
This proposed strategy includes (i) minimizing the MG’s daily energy cost, (ii) decreasing CO2

emissions by considering the variable load, weather forecast, and main grid fees to optimize the
battery charging/discharging strategy, and (iii) optimizing the decision-making process for power
purchase/sell from/to the main grid. The suggested OPFM approach is implemented using a Genetic
Algorithm and compared with the Bellman Algorithm and a restricted management system via
several simulations under the Matlab environment. Furthermore, the hybridization of the Bellman
Algorithm and the Genetic Algorithm is proposed to enhance the OPFMC strategy’s efficiency by
leveraging both algorithms’ strengths. The simulation results demonstrate the effectiveness of the
proposed strategy in lowering energy costs and CO2 emissions and enhancing reliability. Additionally,
the comparison of the hybridized GA algorithm reveals a cost 16% higher than the Bellman Algorithm;
however, the use of the hybridized GA algorithm leads to a reduction in GHG emissions by 31.4%.
These findings underscore the trade-off between cost and environmental impact in the context of
algorithmic optimization for microgrid energy management.

Keywords: optimal power flow management (OPFM); hybrid micro-grid; renewable energy;
Bellman Algorithm; Genetic Algorithm (GA); energy management system (EMS); distributed energy
sources (DES)

1. Introduction
1.1. Motivation

Inefficient energy management practices contribute to the increase in carbon emissions
and grid strain during peak consumption periods, and raise energy expenses. This compels
a shift towards sustainable energy integration, featuring intelligent microgrids and OPFM
energy management systems. Our study embarks on a journey to tackle these complex
challenges by presenting a bespoke Optimal Power Flow Management Control (OPFM)
strategy tailored to rural smart grids.

At the core of our research lies a profound comprehension and optimization of the
intricate dynamics between renewable energy sources, energy storage systems, the primary
grid, and the auxiliary source (GT). The formulated strategy is designed to achieve diverse
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objectives, encompassing cost-efficient energy consumption, reduction in carbon emissions,
consideration of battery degradation costs, and effective power interchange with the
main grid.

This investigation introduces an OPFM strategy employing a Genetic Algorithm,
a type of evolutionary algorithm. This approach is benchmarked against two alternate
management strategies: the first employs a rule-based management system grounded in
common sense, while the second is based on the Bellman Algorithm, a dynamic program-
ming methodology. Moreover, we propose a hybridization of the Genetic Algorithm and
the Bellman Algorithm, leveraging the strengths of both to enhance the overall results.

1.2. Literature Review

The urgent global climate change campaign, combined with the unpredictability of
fossil fuel prices provides a compelling impetus for us to actively reduce our power usage
and carbon dioxide emissions, in an effort to combat the negative effects of global warming
on our planet.

Accepting the challenge of mitigating climate change needs a coordinated effort to
minimize our energy usage and carbon dioxide emissions to promote a sustainable future
and ensure the well-being of future generations. By combining renewable energy resources
into our existing electrical networks, companies not only ease the transition away from
fossil fuels but also provide a practical method for mitigating CO2 emissions, setting the
groundwork for cleaner and more friendly responsible energy employment.

The fight against climate change and the ambivalence of fossil fuels price variation
encourages the decrease in our energy usage and our greenhouse gas (GHG) emissions to
limit planet global warming. Injecting renewable energy sources in electrical grids can relay
fossil energies effectively and mitigate the impact of CO2 emissions. Thus, the structure of
the grid has been adapted [1,2].

Distributed Energy Resources (DER) play a critical role in improving grid efficiency
and security in a Smart Micro Grid. Unlike typical centralized power systems, which
generate and distribute electricity from a single point, a Smart Micro Grid incorporates
numerous DERs spread across the grid. One of the primary benefits of DERs is their
capacity to generate power in response to a changing load profile. The pattern of power
consumption throughout the day, which might vary depending on elements like time of
day, weather conditions, and unique consumer demands is referred to as the load profile.
Solar panels, WTs, and small-scale generators are examples of DERs that can alter their
power generation to reflect the changing load profile. Therefore, to enhance grid efficiency
and security in Smart Micro Grid, DER generates their power corresponding to the varying
load profile [3,4].

Several methodologies are adopted to identify the most efficient energy distribution
in Smart Micro Grids (SMGs) by taking into account numerous objectives and utilizing
optimization algorithms. However, a common thread unites these approaches: preserving
the balance between electricity provided by DERs and power needed by loads [5,6]. This
guarantees that energy production would match the needed consumption, reduce energy
waste, and increase production efficiency.

Another strategy seeks to reduce the cost of SMG electricity [7,8]. The overall cost
of energy can be decreased by optimizing the allocation and utilization of DERs, which
benefits both grid operators and customers. This entails smart energy management systems
that use real-time data and predictive algorithms to improve power source dispatch and
balance supply and demand. Furthermore, grid stability is a major goal in SMGs [9,10].
For instance, advanced control strategies and algorithms are used to regulate power flow,
maintain voltage and frequency stability, and prevent potential interruptions.

To accomplish these objectives, several algorithms are utilized to address the optimiza-
tion challenge. Different mixes and combinations of electrical generators are connected in
these SMGs. Hereafter is a review of some associated articles. For example, the authors
of [8] present a Q-learning method based on energy control for OPFM in SMG, taking
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into account the sporadic nature of the electric vehicles’ power and grid-connected WTs.
In [11], to solve the Dynamic optimal active power dispatch (DOAPD), a fully distributed
algorithm is suggested in a hybrid grid. To obtain the best power exchange with the grid,
in a grid-connected, average consensus and the projected gradient method are used (with a
power fixed price), two ESS units, two distributed generators, and four loads. The study
by [12] proposes a stochastic optimal operating framework to lower the functional cost for
a grid-connected SMG. “Hong’s 2 m point estimate method” and a planted probabilistic
optimization algorithm are employed to reach the best generation schedule, storage system
dispatch approach, and the optimal motivating price for an incentive-dependent load
response program. G. et al., 2021, in [13], present a hybrid solution for power flow man-
agement. By combining the consolidation of turbulent flow of water-based optimization
(TFWO) with battle royale optimization (BRO), referred to as TFW-BRO, this paper targets
the optimization of power fluctuations and cost and the control of power flow. To lower
the likelihood of power blackouts with the Power cost while considering CO2 emanations,
the authors of [14] propose a Multi-Objective Particle Swarm Optimization (MOPSO) ap-
proach within an SMG composed of ESS, a hydrogen tank, and sustainable energy sources.
In [15], an alternating direction method of multipliers (ADMM) based on a distributed
model predictive control (DMPC) algorithm employs a distributed approach, reducing the
operational cost and making power load fluctuations flat. It studies the online scheduling
of both load flexibility and optimal power flow management. In the study by authors [16],
a Multi-stage Energy Management System is proposed. This system encompasses two
main components: (i) a forecasting system that predicts load demand and renewable power
generation for the next day using an Artificial Neural Network and (ii) an optimal power
dispatching mechanism in a grid-connected Smart Microgrid (SMG), equipped with a PV
system and an Energy Storage System (ESS).

In the present paper, we address several key aspects that are not considered in the
existing literature. Firstly, we tackle the issue of CO2 emissions, which are not effectively
curtailed in the studies referenced in [8,11,12,15,16]. Additionally, we take into account
the variability of grid power fees based on energy market costs throughout the day, a
factor that is often overlooked [11,14]. Furthermore, we emphasize the importance of
integrating ESS within the microgrid, a crucial element for peak shifting and minimizing
power costs, as opposed to the studies mentioned in [8,15]. Lastly, we recognize the
significance of considering ESS fees [17], an aspect that has been overlooked by the authors
of [12–15]. As a matter of fact, by addressing these important factors, our research provides
a more comprehensive and realistic analysis of power management in rural smart grids. It
compares a power management strategy study over 24 h of three different optimization
techniques: Genetic Algorithms, the Bellman Algorithm, and a Constrained Management
Technique. These algorithms were used to optimize the GHG footprint and the electricity
costs in an SMG respecting technical constraints. This energy management approach
hinges on multiple factors, including weather predictions, load patterns, the battery’s
state of charge (SOC), electricity pricing, and the energy cost associated with each power
source. The study was contextualized in a rural fishing village in southern Morocco,
where the challenges of optimizing smart grids are particularly acute. We then tested a
hybrid algorithm that combines Bellman’s solution with the Genetic Algorithm to obtain
an optimal solution.

The investigated MG is grid-connected. It comprises the following (cf. Figure 1):

• A 100 kWp photovoltaic array harnessing sustainable energy;
• A 60 kWp wind turbine installation harnessing sustainable energy;
• A 125 kW electrochemical storage system serving for storage purposes;
• A 30 kW gas turbine serving as an additional source;
• A 220 V/50 Hz electrical grid operating in a single-phase configuration.
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Figure 1. Architecture of the considered microgrid.

This article is structured as follows: First, we provide a general background of the
issue. In the second section, details on the microgrid (MG) architecture, including the
electric model, functional costs, and technical constraints associated with each power
source are provided. In Section 3, we describe the proposed management optimization
models, which include the restricted management, GA, and Bellman algorithm. The final
section is dedicated to presenting the simulation results and discussing the improvements
obtained after the hybridization was adopted in the Lamhiriz fishing village. The results
are then compared and discussed within each method.

2. Microgrid Overview
2.1. Overview of Distributed Energy Resources

In this chapter, a comprehensive overview of the MG’s energy sources is provided.
These sources define the intricate energy dynamics that power the microgrid: photovoltaic
(PV) cells, wind turbines, micro gas turbines, and energy storage systems.

• Photovoltaic Characterization:

PV cells generate electrical energy from solar irradiation. The hourly power extracted
from these cells at the maximum power point is defined with [18]

PPV_GEN = NPV × PS ×
Gi
GS
× (1 + α(Tj − TjS) (1)

where PPV_GEN is the hourly extracted power from PV modules; NPV is the PV modules
number; PS is the photovoltaic peak power in Wc; Gi is the global irradiance in W/m2; Gs
is the Standard Test Conditions irradiance in W/m2; α is the (PV) temperature coefficient of
power in %◦C; and Tj and T jS are the PV and STC PV cells temperature, respectively.
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For PV arrays, it is important to note that factors such as oxidation, corrosion, and
thermal stresses have not been taken into consideration.

• Wind Turbine Characterization:

Wind turbines extract electricity from wind speed. The WT’s output power, denoted
as PWT_GEN, can be calculated as described [19]:

PWTGEN =


0.0 V < Vcutin

137.17V3 Vcutin ≤ V ≤ VR
137.17V3

R VR ≤ V ≤ Vcutout

0.0 V > Vcutout

(2)

In this context, V represents the wind speed, VR stands for the rated speed, Vcut-in
refers to the WT cut-in speed, and Vcut-out indicates the WTcut-out speed.

• Gas Turbine Characterization:

A micro gas turbine (MGT) serves as an additional source. Compared to diesel
generators, WT has better efficiency, reduced CO2 emanations, and rapid reaction time.
The WT combustion emits CO, CO2, and NOx [19,20]. The cost and CO2 emanations of the
GA are acknowledged for MGT.

• Energy Storage System Characterization:

An energy storage system (ESS) has a crucial function in modern energy systems, en-
abling the efficient management and utilization of renewable energy sources, grid stability,
and load balancing.

The ESS State of Charge is evaluated as [21]:

SOC(k) = 1 +
Qch(k)−Qdis(k)

Cnom
(3)

where Cref is the storage energy nominal capacity.
Qch and Qdis are the quantity of charge that is stored and released from the battery

during a specific charging and discharging cycle, respectively.

• Grid Characterization:

Renewables have intermittent behavior, the utility grid feeds the load if DER is not
sufficient, and if there is a power surplus produced by renewables, the grid purchases it.

Renewable energy sources exhibit intermittent characteristics, whereby the utility grid
supplies the load when the distributed energy resources (DERs) are insufficient. Conversely,
when renewables generate a surplus of power, the excess energy is purchased by the grid.

2.2. Optimization Problem

To fulfill the objective of our study, we pursue these goals, which include the following:

• Ensure the SMG power balance without any suspension;
• Minimize electricity costs;
• Reduce GHG emissions;
• Maximize the use of renewables;
• Fulfill all technical constraints.

Objective Function (Cost Function)

The objective cost function encompasses the summation of expenses from all power
generators along with the associated cost of CO2 emissions.

Obj = min∑24
t=t0

 CESS(t)︸ ︷︷ ︸
Battery cost

+ CGrid(t)︸ ︷︷ ︸
Main grid cost

+Cost(PMGT(t)) + δCMGTON/OFF (t)︸ ︷︷ ︸+CCO2eq(t)

Gas Turbine Cost

 (4)
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In Equation (4), the upper bound of summation (24) corresponds to the 24 h in a
day. This value signifies the integration of the optimization process over the entire daily
time period.

• Gas Turbine Energy Cost:

The MGT power price is associated with a combusted natural gas total cost, the start
and stop turbine operational cost, and the GHG emanations corresponding cost.

The combusted gas price during τt is [22]

Cost(PMGT_GEN) = Mgas ×Cg× τt (5)

with
Mgas =

Eelec
dg × ηG

(6)

Mgas represents the mass of combusted gas, Cg is the price of one kilogram of natural
gas, dg is the energy density of consumed gas (dg = 13.5 Kwh/kg), and ηG refers to the
turbine efficiency.

CCO2eq(k) = MCO2eq(k)× Costpenal_CO2 (7)

The assessment of GHG emanations is limited to the most environmentally harmful
gases: NOx, CO, and CO2 [20]. To measure equivalent CO2 emanation’s charge

(
CCO2eq

)
,

we acknowledge equivalent Carbon Dioxide mass [22,23] and 30 euros per ton as the
ecological penalty price [24].

• Grid Energy Cost:

The industrial electricity pricing information is available in the references [25,26]. The
pricing for electricity purchased from the grid varies based on the consumption period:

Gcost_buy =

{
0.18€ /kWh , 8h ≤ k ≤ 22h
0.13€ /kWh , 23h ≤ k ≤ 7h

(8)

The pricing for the electricity supplied to the grid will be as follows:

Gcost_sell = 0.1176€ /kWh (9)

If the purchased energy outstrips the stipulated power with the grid operator after
24 h, the Subscribed Power Exceeding Charge (SPEC) is priced as follows [27]:

SPEC =
1.5× f ixed_increase

365
× (PA−PS) (10)

PS represents the stipulated power and PA denotes the utmost power bought within a
day. As a result, the exchanged main grid power price is determined as follows:

CGrid = Gcost_buy + SPEC−Gcost_sell (11)

• Battery bank cost:

An electrochemical storage system in the form of a lead–acid battery bank is utilized.
Every hour, battery aging is linked to a deterioration charge, and is expressed as [26,28,29].

CESS(k) =
Bic× ∆SOH(k)

1− SOHmin
(12)

with

SOH(k) = SOH(k− 1)× (1−
Neq100

cycles(k)

N100%
cycles_max

) (13)
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• Renewables energy cost:

Wind turbines and solar panels extract power at no cost to fully harness their
energy potential.

• Equality and Inequality Constraints:

At every moment, the equilibrium between energy production and consumption must
be fulfilled (14).

PPV_GEN + PWT_GEN + PGrid + PGT_GEN − PESS = PLD (14)

If generated, a provision of ten percent of DER power is stated by electrical grid rules.
Thus, the exchanged power must respect

Pi ≤ 0.9× Pi_GEN (15)

i: PV, WT, and ESS.
The MGT should operate at more than 50% of its maximum power to increase efficiency

and weaken GHG emanations [20,30].

0.5× PMGT ≤ PMGT_GEN ≤ 0.9× PMGT (16)

The maximum SOCmax and the minimum SOCmin allowed for the State of Charge are
defined as (17) and (18) [28–31].

SOCmin ≤ SOC ≤ SOCmax (17)

∆SOC(k) ≤ ∆SOCmax (18)

The State of Health (SOH) is limited to SOHmin to increase battery lifetime and storage
autonomy [28].

SOH(k) ≥ SOHmin (19)

2.3. Optimization Problem Solving

In this section, we will examine the Genetic Algorithm selected for OPFM Problem
Solving. Also, we will see two distinct management strategies, namely the Rule-Based
Management System (RBMS) and the Bellman Algorithm to rigorously evaluate the results
obtained from the Genetic Algorithm.

2.3.1. Genetic Algorithm Application

A Genetic algorithm (GA) is a metaheuristic evolutionary algorithm. It is a popular
optimization approach. J. H. Holland detailed GA in the 1970s [32].

GAs are widely employed for addressing complex global optimization problems
and have demonstrated favorable outcomes in terms of computational efficiency [33–35].
Figure 2 presents different GA steps. Those steps are as follows:

Step 1: The GA begins with a first population; it consists of all the probable solutions
of the studied constrained optimization. The population size helps maintain diversity to
prevent premature convergence, striking a balance between a large population, which may
slow down the Genetic Algorithm (GA), and a smaller one, which might compromise a
suitable mating pool. The individuals must respect upper and lower boundaries.

LB ≤ x ≤ UB→ bounding o f variables (20)

Step 2: During the Selection phase, candidates (the best-fit offspring) from the current
population are chosen for the production of offspring of the new generation. The chosen
candidates are subsequently grouped in pairs to optimize reproduction. These pairs then
transfer their genetic information to the subsequent generation.
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For good diversity in the next generation, crossover or mutation strategies help create
the other population of chromosomes.

Step 3: Crossover generates children by combining two parents. The fraction of
crossover children is also an optimization parameter.

Step 4: The mutation strategy helps the production of remaining children in a popula-
tion; those individuals are created only by one parent.

Step 5: The fitness function assesses the performance of each chromosome, indicating
how effectively it aligns with the cost function: the criteria the algorithm is striving to
optimize (Equation (4)). The fitness function is calculated for all chromosomes (individ-
uals), and the subsequent generation is formed based on the fitness function scores. The
population chromosomes must respect the technical and economic requirements. It consists
of the following: (1) maintaining power balance: (Equation (14)) and (2) Equality and
Inequality Constraints: (Equations (15)–(19)).
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This process cycle is started over until a termination criterion is found. The termination
criteria could be a fixed best fitness individual that satisfies the function tolerance condition
over a stall generation number or a calculation time threshold.

The used values for the parameters of GA optimization are listed in Table 1.
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Table 1. GA chosen parameters.

GA Options Selected Option

Selection strategy Stochastic uniform
Mutation strategy Adaptive feasible
Crossover strategy Scattered

Non-linear constraints strategy Augmented Lagrangian
Scaling function Rank

Selection strategy Stochastic uniform
Mutation strategy Adaptive feasible

Population size 1000
Crossover fraction 70%
Stall generations 50

Function tolerance 10−6

Elite count 50
Selection strategy Stochastic uniform
Mutation strategy Adaptive feasible

2.3.2. Validation Approaches for Genetic Algorithm
Rule-Based Management Strategy

The Rule-Based Management Strategy (RBMS) is a simple but effective approach for
optimizing smart grids in rural areas. It is established on a set of predefined guidelines
and priorities that are used to manage the flow of electricity in the system. As shown in
Figure 3 [36,37], the strategy starts by prioritizing the utilization of renewable sources, like
solar and wind power, to meet the electricity demand. If there is not enough renewable
power available, the battery bank is used to provide additional power. If there is excess
renewable power, it is stored in the battery bank or sold back to the grid. If DERs and the
ESS do not provide enough power to satisfy the load, then the residual power is taken out
via the main grid and/or from a gas turbine generator (MGT), depending on which is more
cost-effective [28,38]. The RBMS is easy to implement and requires minimal computational
resources, making it a practical solution for small-scale smart grid systems in rural areas.
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Bellman Algorithm Application

The Bellman Algorithm [39,40], also known as the dynamic programming algorithm,
is a well-known optimization technique that is used to solve a wide range of complex
optimization problems in various fields, including energy management. The algorithm is
founded on the optimality principle, which means that an optimal solution to a problem
can be obtained by decomposing it into smaller sub-tasks and determining the best solution
for each distinct task. The Bellman Algorithm is particularly useful for addressing complex
problems involving multiple decision variables and constraints, which contributes to
its popularity in optimizing energy management in SMG. This algorithm is applied to
determine the optimal power dispatch schedule for a microgrid by iteratively solving a
series of subproblems. By doing so, it can provide a solution that balances energy supply
and demand while minimizing costs and ensuring system stability.

The flowchart of the Bellman algorithm in Figure 4 was adapted from [18], depicting
the steps of the algorithm. The MG management in this optimization problem solving is a
progressive Bellman optimization. We start by the following steps:
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• Active power dispatching: PESS discretization (SOC is first discretized by a 10% step);
• Active power dispatching: Ppv discretization;
• Any leftover power is allocated to the grid and the MGT, according to the objective

function [18]. This allocation is determined via the use of linear programming [41]
techniques.

The organizational chart of Figure 5 provides a simple description of the proposed
management procedure. Indeed, the ESS’s power and the PV system are discretized within
nested loops with a small step size. Thus, any combination of these powers with the active
power demanded by the loads defines a residual power (rf Figure 5). During the resolution,
each level of this power will be allocated between the main grid and the gas turbine using
statistical repairing [18]. This constitutes a sub-optimization problem.
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Furthermore, the dynamic programming [40] loops will exhaustively test different
power strategies that meet the residual power, load balancing, and constraints associated
with each source (Equation (14)). At this point, the Bellman algorithm is triggered by
calculating the total transition costs (battery wear costs) between each state, located at two
successive steps (see Bellman algorithm). Thus, the total cost of each possible solution is
the sum of the two objective functions (Equation (12)) and (Equations (5), (7), and (8)). The
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objective is to find, starting from the initial state, the optimal SOC trajectory that enables
reaching the final state with minimal cost.

3. Simulation and Results
3.1. Simulation Context—Lamhiriz Village

Lamhiriz is a small fishing village nestled in the southernmost region of Morocco
with a population of 4625 [42] inhabitants spread over an area of 178 hectares. The village
is renowned for its unique natural landscapes and its potential for ecotourism. Despite
its popularity among tourists, Lamhiriz faces challenges related to its basic infrastructure
and access to reliable electricity. Therefore, Lamhiriz has been selected as an exemplary
case study for implementing DER and microgrids to meet the community energy needs
effectively. This article explores the feasibility of using various optimization algorithms to
manage a microgrid system in Lamhiriz, considering technical and financial limitations.

The daily load profile of Lamhiriz Village [42] in Figure 6 exhibits significant fluctua-
tions throughout the day. There is a relatively consistent energy consumption during the
early hours, followed by an increase from the sixth hour until the ninth hour. The load then
stabilizes at a lower level for several hours, with two consumption peaks at the twelfth and
thirteenth hour. A significant increase in consumption is observed in the late afternoon,
reaching its peak at the nineteenth hour. Afterward, the load gradually decreases until
the twenty-fourth hour. This analysis of the load profile provides insights into the energy
consumption patterns of Lamhiriz Village, which is crucial to implement efficient energy
management approaches and optimize the village’s microgrid system.
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Figure 6. Daily power load profile.

The daily power load profile in Figure 6 includes the load of desalination, public
lighting, and household demand, all aggregated on an active day at 20 ◦C.

To conduct this study, power generation data for solar panels and wind turbines was
acquired from the website Renewables.ninja [43]. The following three days were selected
from the year 2019 (rf. Figure 7):

• 29 December: this particular date was selected because it represents a day with
moderate renewables production.

• 29 November: represents the day with the maximum renewables production in the
year 2019.

• 25 August: represents the day with the minimum renewables production.
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Figure 7. Specific days for solar and wind power in Lamhiriz Village.

A Photovoltaic field with a capacity of 100 kWp generates solar energy, and two
30 kWp wind turbines are considered as the sources of generated renewable energy.

3.2. Simulation for a Random Load Profile

Within this section, we showcase the simulation outcomes of various optimization
techniques applied to a randomly generated load profile. Our main goal is to assess
the effectiveness of the Genetic Algorithm and compare it to both strategies: rule-based
management and the Bellman algorithm. The comparison is carried out in terms of energy
cost and GHG emissions. Furthermore, we propose a novel approach that combines the
Bellman and Genetic algorithms to improve optimization outcomes. We also evaluate the
simulation time necessary for each technique. These findings provide vital insight into the
success of each strategy for optimizing the power system for a certain load profile. This
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knowledge can aid in making educated decisions when picking appropriate optimization
strategies in practical circumstances.

During the analysis, the days under consideration are divided into 24 one-hour
intervals [44,45].

The provided values represent a random daily load profile used for simulation pur-
poses in a random environment. These values indicate the load power (in kilowatts) at
different hours of the day.

In Figure 8, the load power varies throughout the day, with peaks occurring at certain
hours, such as 4, 6, 10, and 15. These peaks indicate higher energy demands during those
specific hours. On the other hand, there are periods of relatively lower load power, such
as during hours 2, 7, 18, and 22. This highlights that these values are used for testing
algorithms and may not reflect actual load profiles in real-world scenarios.
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Figure 8. Random load power.

The primary objective of this study is to achieve a dual optimization goal: minimizing
both the overall cost and the CO2 emissions in the microgrid. To attain this, the optimization
process will be subject to various constraints. First and foremost, the power balance
Equation (14) will be strictly adhered to, ensuring that the power generated and consumed
in the microgrid is balanced at all times. Additionally, the optimization will respect the
technical constraints mentioned in Section 2.2, which encompass limitations related to the
capacity and operation of individual power sources and storage systems. By integrating
these constraints into the optimization algorithms, we aim to identify the power dispatching
strategy that not only reduces costs but also promotes environmental sustainability by
minimizing CO2 emissions. To tackle this optimization problem, we have employed
three Energy Management System (EMS) algorithms, including Rule-Based Management,
Genetic Algorithm, and the Bellman Algorithm.

3.2.1. Genetic Algorithm Optimization Results

Below is the graph depicting the results of the system optimization using GA. The dis-
played values represent the optimal power allocation among the different energy resources
to meet the demand load. Analyzing the results will provide us with a better understanding
of the algorithm’s effectiveness in optimizing the system and its overall influence on the
energy system’s performance.

The results in Figure 9 represent the optimal power dispatching by the genetic algo-
rithm for each hour of the day in kilowatts (kW). The optimization is conducted for the
three studied days. The gas turbine is utilized as an alternative power source if renewable
generation and storage are insufficient to fulfill the load demand. The algorithm optimizes
the gas turbine usage to minimize its operation while ensuring the load demand is fulfilled.
Negative values indicate the discharge of stored energy during periods of high demand,
while positive values represent energy being stored for later use when renewable genera-
tion is abundant. We observe that the ESS plays a role in maintaining the balance between
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energy supply and demand, although its contribution is moderate. Overall, the results
demonstrate the effectiveness of the genetic algorithm in optimizing the power dispatching
in the system, maximizing the utilization of renewable energy sources, minimizing the use
of non-renewable sources, and reducing the overall energy costs.
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3.2.2. Validation of Genetic Algorithm Results via RBMS and Bellman Algorithm Comparisons
Rule-Based Management

This part shows the results obtained by applying the Rule-Based management tech-
nique to a random load profile.

Rule-Based Management is a technique used in energy management that relies on
predefined rules and conditions to make decisions. It simplifies decision-making processes
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by following a set of predetermined guidelines. However, it may lack adaptability and
struggle with complex and dynamic environments. It is a straightforward approach but
may not be as effective in handling trade-offs or exploring a wide range of solutions
compared to more advanced optimization methods.

Figure 10 depicts the contributions of renewable sources, storage, the grid, and the gas
turbine in fulfilling the power demand, during the studied days. The findings emphasize
the varying roles of each source in the overall power supply. We observe that the ESS has a
moderate contribution in maintaining the power balance.
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Bellman Optimization Results

Based on Figure 11, the participation of each power source in the power balance
can be summarized as follows: Renewable sources contribute varying amounts of power
throughout the day. The ESS is utilized to store excess energy generated by renewables
or during periods of low demand. In Bellman Optimization, the ESS actively contributes
to maintaining the balance between energy supply and demand. The grid serves as an
external power source and contributes to the power balance when additional energy is
needed. The values represent the amount of power purchased from or supplied to the grid.
The gas turbine acts as a backup power source when other DERs are insufficient to meet
the load demand. The combination of these sources allows for balancing the power supply
and demand, optimizing the utilization of renewable energy, and minimizing reliance on
conventional power sources.
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Comparison of Energy Cost, GHG Emissions, and Computation Time

In this section, a comparison over the three studied days is conducted to explore
the outcomes related to energy cost, greenhouse gas (GHG) emissions reduction, and
computation time.

In Figure 12, for the three specific days, the cost associated with the Bellman algorithm
is lower than that of both GA and RBMS. Among the three optimization strategies, RBMS
incurs the highest cost. RBMS is 17% more expensive than the other management strategies.
Bellman is less costly and economizes up to 24% compared to GA management.
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Upon analyzing the results presented in Figure 13, it becomes evident that RBMS
exhibits variability in its performance when compared to the GA and Bellman Algorithm
across the three studied days. Notably, RBMS outperforms GA in terms of CO2 emissions
on the day with moderate renewable energy generation, with a 19% reduction in emissions.
However, on the day with the minimum renewables generated power, RBMS lags behind
both GA optimization, leading to a 17% increase in CO2 emissions. It is also worth noting
that when comparing the Bellman Algorithm to GA optimization, the results reveal a
significant disparity in GHG gas emissions. In particular, the Bellman Algorithm can
result in emissions up to 45% higher than those achieved with GA optimization. This
finding highlights the potential environmental benefits of employing GA in microgrid
energy management, particularly in scenarios where minimizing GHG emissions is a
crucial objective.

The optimization problem is addressed using the MATLAB environment, and the
computations are carried out on a laptop equipped with an i7-8750H processor of 16 GB
RAM and running at 2.20 GHz.

Table 2 provides insights into the simulation times for each of the management strate-
gies, the computation times for the three different management strategies vary considerably.
The Rule-Based Management strategy is the fastest, taking only 2 s to complete. In contrast,
the Bellman Management strategy is the most time-consuming, requiring approximately
1950 s (or 32.5 min). The Genetic Algorithm (GA) management falls in between, taking
around 600 s for 200 generations. This variation in simulation times reflects the different
computational complexities and optimization approaches employed by these strategies.
While Rule-Based Management offers quick results, it may sacrifice optimization perfor-
mance compared to the more time-intensive Bellman Algorithm and GA management.
Therefore, the choice of strategy should consider a trade-off between computational effi-
ciency and optimization quality based on specific application requirements.
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Table 2. Comparison summary of time simulation.

Simulation Time
(s)

Rule-Based Management 2

GA management 600 for 200 generations

Bellman Management 1950
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3.3. Hybridization of Bellman and GA Optimization
3.3.1. Methodology for Hybridization

The hybridization of Bellman and GA optimization is a technique that combines the
strengths of both Bellman and Genetic Algorithm (GA) optimization methods.

The initial step of population generation is a fundamental component in any genetic
algorithm application, as it produces a range of potential solutions or individuals that are
randomly generated or initialized experimentally and serve as input for the GA. While
this phase is only carried out once, it significantly contributes to the GA’s performance
improvement; other steps in the GA process are replicated iteratively.

We used the solution generated by the Bellman optimization, which consists of power
values for the grid, micro-gas turbines, and ESSs for each hour of the day:[

PGrid1 , PMTG1 , PESS1 , PGrid2 , PMTG2 , PESS2 , . . . . . . , PGrid24 , PMTG24 , PESS24

]
(21)

We created 100 individuals by applying the Bellman solution while ensuring compli-
ance with the power balance criteria and grid power constraints. The power values for each
hour are adjusted by adding ρi, σi, andβi, where ρi, σi and βi represent the adjustments for
the grid, micro-gas turbines, and ESS powers, respectively.[

PGrid1+ρ1, PMTG1
+σ1, PESS1

+β1, PGrid2+ρ2, PMTG2
+σ2, PESS2+β2 ,

. . . , PGrid24+ρ24, PMTG24
+σ24, PESS24

+β24

] (22)

With ρi + σi + βi = 0 |ρi, σi, βi| ≤ 50kW i = 1...24.
In this approach, the optimal energy dispatch generated from the Bellman optimization

is employed to generate the initial population, while GA optimization is used to find the
fast optimal scheduling strategy. By combining these two methods, the hybrid optimization
technique can achieve better results in terms of cost, GHG emissions, and simulation time
compared to using either the Bellman or GA optimization alone. This chapter presents the
results of applying the hybridization technique to a random load profile and the comparison
of the results with those obtained using Bellman and GA optimizations separately [46].

3.3.2. Results of Bellman and GA Hybridization

Figure 14 showcases the results of applying a refined Genetic Algorithm (GA) opti-
mization technique to achieve optimal power dispatching. The simulation is conducted for
the three studied days. Overall, these results demonstrate the optimized power dispatching
strategy achieved via improved GA optimization, considering the participation of different
energy sources to meet the load demand efficiently.

Figure 15 offers a comprehensive visual comparison of CO2 emissions between the
Genetic Algorithm (GA) and the proposed improved GA management strategies over the
three studied days.

The results depicted in Table 3 are noteworthy, showcasing a consistent improvement
in overall cost efficiency. The proposed improved GA management led to a remarkable cost
reduction of at least 4% across various scenarios. This substantial cost saving highlights the
efficacy of our strategy in optimizing energy resource allocation. Furthermore, the posi-
tive environmental impact of these improvements is strikingly evident. GHG equivalent
emissions have been significantly curtailed, with reductions of up to 59%. This reduction
underscores the potential for our improved GA management to significantly lower the
carbon footprint of energy operations. Moreover, Table 4 reveals that the implementation of
our improved GA management strategy has not only enhanced cost-efficiency and reduced
GHG emissions but has also expedited the optimization process. The simulation time
has been notably reduced, taking approximately 25% less time. This efficiency gain is
primarily attributed to the provision of an initial population, expediting the convergence of
the algorithm. In summary, the results strongly support the effectiveness of our proposed
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improved GA management strategy, demonstrating its potential to achieve cost savings,
reduce GHG emissions, and enhance computational efficiency.
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Table 3. Comparison summary of time simulation, energy cost, and GHG emissions.

Optimization Strategy Power Cost (c€) GHG Equivalent Emission (kg)

Moderate Renewables Generation Day GA 342.9242 316.8
Hybrid GA 331.9803 316.80

Maximum Renewables Generation Day GA management 192.4991 208.4713377
Hybrid GA 186.5361 84.0004243

Minimum Renewables Generation Day GA management 414.3854 475.91
Hybrid GA 403.7089 372.3391267

Table 4. Time simulation comparison.

Simulation Time
(s)

GA management 600 for 200 generations

Improved GA Management 450 for 200 generations

3.3.3. Hybridization of Bellman and GA Optimization: Simulation for Lamhiriz Profile

The previous sections of this study presented the individual outcomes of the GA and
the Hybrid GA management approaches applied to a random load profile. Building upon
these findings, this section focuses on the results obtained from the hybridization of the
Bellman and GA optimization techniques specifically tailored to the Lamhiriz case. By
combining the strengths of both algorithms, the hybrid approach aims to enhance the
overall performance in terms of energy cost, GHG emissions, and simulation time. These
observations offer significant insights into the effectiveness and potential advantages of
combining these optimization approaches in the context of the Lamhiriz microgrid system.

Figure 16 presents the optimal power dispatching achieved via Bellman optimization
during a moderate renewable generation day. This dispatching strategy plays a crucial
role as it serves as the foundation for generating the initial population for the subsequent
genetic algorithm optimization process. By leveraging the insights gained from the Bellman
optimization, the genetic algorithm can further refine and enhance the power dispatching
strategy to achieve even more efficient and optimal results.
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The optimal power dispatching by the improved Genetic Algorithm in Lamhiriz
Village’s power distribution is presented in Figure 17. It reveals the varying contribution of
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different sources in meeting the load power demand. Notably, renewable energy sources
show fluctuating values, while the storage system illustrates moderate variability. The
power grid exhibits positive values to sell the necessary energy to cover the village’s load.
The gas turbine remains relatively inactive throughout the hours. Therefore, we can observe
how different sources work together to maintain the power balance.
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The results presented in Table 5 highlight the power cost in c€, GHG equivalent
emissions in kg, and simulation time in seconds for the different management strategies,
specifically the improved GA management for the studied day with moderate renewable
generation power.

Table 5. Improved GA Management: time simulation, energy cost, and GHG emissions.

Power Cost (c€) GHG Equivalent Emission
(kg)

Simulation Time
(s)

Improved GA
Management 192.7954 40.26 500 for 200

generations

4. Conclusions

The outcomes derived from the integration of Bellman and genetic algorithm (GA)
optimization techniques for the Lamhiriz case demonstrate great promise. This hybridized
approach, termed ‘Improved GA Management’, exhibits notable enhancements across
various performance metrics. The proposed Improved GA Management resulted in a sig-
nificant cost reduction of at least 4% across various scenarios, highlighting the effectiveness
of our strategy in optimizing energy resource allocation.

Moreover, the positive environmental impact of these improvements is evident as
GHG equivalent emissions have been significantly reduced. This reduction underscores
the potential of our Improved GA Management to lower the carbon footprint of energy
operations, contributing to a more sustainable energy solution.

Additionally, the computational time required for the Improved GA Management
approach is noteworthy, taking only 500 s for 200 generations, which is approximately 25%
less time compared to individual GA and Bellman algorithms.

Furthermore, the Hybrid Genetic Algorithm proves to be the most effective Energy
Management System (EMS) for the gas turbine, achieving a significantly reduced power
usage of up to 59%. This highlights the potential of the Hybrid Genetic Algorithm in
enhancing microgrid system performance and promoting sustainable energy solutions via
optimal power resource allocation and improved efficiency.
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