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Abstract: The problem of poor air quality in urban areas has a negative impact on the health of
residents. This is especially important during periods of smog. In Poland, as in other countries,
the problem of poor air quality, especially during the winter season, is associated with a high
concentration of particulate pollutants in ambient air (PM10, PM2.5). Sources of particulate emissions,
in addition to solid-fuel boilers, include means of transportation, especially those equipped with
diesel engines. In turn, during periods of strong sunshine (spring and summer), the problem of
photochemical smog, whose precursors are nitrogen oxides NOX, arises in urban areas. Their
main sources of emissions are internal combustion engines. Therefore, to improve air quality in
urban areas, changes are being made in the transport sector, among which is upgrading the fleet
of urban transport vehicles to low- or zero-emission vehicles, which are more environmentally
friendly. In addition, measures that reduce the harmfulness of the transportation sector to air quality
include the introduction of clean transportation zones, as well as park-and-ride (P&R) systems. The
purpose of this article is to present the results in terms of PM10, PM2.5, and NOx emission reductions,
implemented over a period of two years (2021–2022) in the area of the Rzeszow agglomeration,
related to the modernization of the suburban bus fleet and the implementation of a P&R system for
passenger cars. The results of the study were compared with the value of estimated emissions from
coal-fired boilers used for residential heating and hot water, which also contribute to smog. Thanks
to the implementation of the project, i.e., the replacement of 52 old buses with new buses of the Euro
VI emission class and the construction of new P&R spaces, the total average annual reduction in
emissions amounted to approximately 703.6 kg of PM10, approximately 692.7 kg of PM2.5, and a
reduction of approximately 10.4 tons of NOX.

Keywords: PM emission; NOX emissions; city buses; vehicle emissions; park and ride; smog

1. Introduction

Poor air quality in Poland and other countries of the European Union is largely
attributed to high concentrations of volatile dust, including monitored PM2.5 and PM10. In
the year 2020, as much as 96% of the urban populace encountered levels of fine particulate
matter (PM2.5) exceeding the World Health Organization’s recommended threshold of
5 µg/m3 [1,2]. Dust emissions are particularly high in winter, when solid fuel boilers
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become the main source of emissions. Figure 1 graphically shows the average values of
dust in the ambient air at the air quality monitoring station in Rzeszow [3]. As can be seen,
the problem of high concentrations of particulate matter is related to the winter season.
However, this does not mean that the problem is exclusive to the winter season. Sources
of particulate emissions also include vehicles, especially vehicles with diesel engines [4,5],
which, in addition to releasing dust from the abrasion of the tires, the road surface, clutch
friction materials, or brakes, emit significant amounts of particulate matter in the engine
exhaust [6,7]. In addition, internal combustion engines are a major source of NOX emissions
in urban areas [2,7]. The dependencies of changes in air pollutant concentrations are
proportional to traffic intensity [8]. The problem of engine exhaust emissions depends
on many factors, including those related to road resistance and driving cycle [9,10]. It is
important to introduce solutions in urban transportation to improve the energy efficiency of
the transportation system. [11]. The issue of particulate emissions from vehicular sources is
addressed by the proposed Euro 7 vehicle emission standard [12]. As predicted by previous
projections [13], the Euro 7 standards are poised to become the pioneering global emissions
regulations, surpassing the scope of merely controlling exhaust emissions. These standards
will introduce further constraints on particulate emissions originating from brakes, along
with guidelines for addressing microplastic emissions originating from tires. The rules
will apply to all vehicles, including electric vehicles. The solutions being introduced to
improve the operation of transport in urban areas in terms of environmental impact [14] are
also related to reducing the emissions of other pollutants, including greenhouse gases [15],
which is particularly important in view of the problem of global warming and observed
climate change [16]. In addition, reductions in nitrogen oxide emissions are important due
to their harmfulness to the environment and efforts to reduce the risk of photochemical
smog [17].
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At the same time, air pollution has become an important criterion affecting human
health. It also has a significant impact on the health of the exposed population. It is
becoming important to ensure clean air, which is increasingly affecting inequalities in
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health, both locally and globally. Unsatisfactory air quality involves significant social and
economic deficits but can be avoided by coordinated action [18].

It should be noted that a person inhales, in relation to their level of activity, about
10–20 m3 of air per day of life, and with the air, various types of pollutants also enter the
body. The body’s reaction to toxic factors can vary in nature [19]:

• Strong, caused by a single introduction of a large dose of toxins into the body;
• Chronic, caused by the long-term introduction of small doses of toxins into the body;
• Imperceptible; the effects of introducing toxins into the body can manifest themselves

only after a certain period of time.

When analyzing the individual effects of PM10 dust on human health, it should be
noted that it directly affects the development and exacerbation of respiratory diseases
associated with pulmonary and bronchial obstruction. Exposure to PM10 can cause inflam-
mation in the lower respiratory tract, leading to symptoms analogous to asthma and chronic
obstructive pulmonary disease (COPD) [18]. A study carried out in several European cities
indicated that an increase in PM10 concentration leads to an increase in asthma incidence
of 1.2% for the age group 0–14 years and 1.1% in the 15–64 age group. In the case of the
incidence of COPD in people 65 years and older, it increases by 1.0% [20].

There is also no doubt that PM2.5 and PM10 particulate matters also have a carcinogenic
effect [21,22]. Exposure to PM10 is associated with an increased risk of relative lung cancer
development of 1.22 per 10 µg/m3 increase in its concentration in the air [23]. PM10 also
has a negative impact on the circulatory system, but this impact is smaller than that of
PM2.5 [24]. As research shows, an increase in PM10 concentration by 21 µg/m3 results in
a risk of developing atherosclerosis increasing by approximately 4%, because PM10 dust
always contains smaller particles (including PM2.5), according to WHO data. PM10 dust
also has the ability to penetrate the bloodstream, and its increased concentration in the air
can cause a higher number of deaths from cardiovascular causes [25,26].

Nitrogen oxides enter the human body through inhalation and are adsorbed through
the tissue of the respiratory system into the circulatory system. In recent years, the negative
health effects of short- and long-term exposure to elevated NO2 concentrations have been
confirmed. The relevant studies clearly indicated a relationship between short-term expo-
sure to NO2 and respiratory symptoms. The most common symptoms were pneumonia,
worsening of symptoms in patients with asthma, and worsening of allergic reactions in
the airways [27]. In the case of prolonged exposure to NO2 in children, there was a high
probability of developing asthma [28].

In conclusion of the health aspect, it should be noted that scientific research shows
that a reduction in particulate matter by 10 µg/m3 after 10 years results in a 27% reduction
in the number of deaths from cardiovascular diseases [29]. Furthermore, it has been proven
that reducing the average annual concentration of PM2.5 to 15 µg/m3 could extend useful
life by 1 month to 2 years [30]. Therefore, reducing the emission of harmful dust is also
important from the perspective of the health of the society living in a given area.

One of the EU initiatives includes a project executed in Rzeszow, titled “Development
of a Low-Emission Economy and improvement of the mobility of residents by improving
sustainable public transportation in the ROF.” This undertaking aims to replace the aging
bus fleet with new buses that adhere to low-emission standards. The project encompasses
the Rzeszow Functional Area and involves nine municipalities. The endeavor encompassed
various components, such as the procurement of 54 novel low-emission passenger buses,
and the revitalization of 233.3 km of public transportation routes (achieved by constructing
new road connections and bridges, as well as refurbishing road infrastructure). It also
involved the establishment of bus stops, bus bays, sidewalks, and bus shelters, along
with the accompanying infrastructure. Furthermore, the initiative included the creation
of 11 park-and-ride parking facilities, offering a total of 481 parking spaces, including
31 designated for individuals with disabilities. The renovation of bus and train stations,
along with the establishment of an interchange center to facilitate seamless transfers, was
also part of the plan. Additionally, the project encompassed the construction of bicycle



Energies 2023, 16, 6956 4 of 18

paths spanning a total length of 12.45 km, accompanied by 13 “Bike & Ride” parking
facilities. The scope also extended to the establishment of technical facilities like workshop
buildings, bus washing facilities, and supporting infrastructure.

The purpose and novelty of this article is to present the benefits of reducing the
emissions of particulate matter and nitrogen oxides, associated with the replacement of
the old-type city bus fleet with new low-emission buses of the EURO 6 emission class.
Furthermore, the reduction in the emissions of the pollutants analyzed, associated with the
construction of parking lots of the P&R system, was taken into account, because drivers
leave their personal cars in places outside of Rzeszów and use public transport while
traveling to work in Rzeszów. In addition, a comparison of vehicle emissions results with
emissions from solid-fuel central heating and hot water boilers used in single-family homes
is presented.

This research employed actual data for all bus traffic calculations, and emissions
assessments were conducted using the COPERT Version 5.6.5 software suite. The study
introduces a novel approach for assessing the repercussions of transitioning from an aging
bus fleet to a modern counterpart, a method that can readily find application in analogous
scenarios within other European urban contexts. An overview of the study’s framework is
depicted in Figure 2.
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2. Research Background

The use of modern propulsion systems in urban buses is crucial in the context of
the implementation of European Union projects and policies, in particular, the European
Green Deal [31]. The use of low-emission, renewable-based city buses is also crucial to
achieving sustainable public transport goals [32]. A study of this type, which compared the
use of, e.g., electric buses as a replacement for older generation propulsion, is described
in the paper [33]. Buses of this type are an effective means of reducing emissions of, e.g.,
PM and NOx. The use of modern bus designs and propulsion systems also contributes
to the reduction in noise in congested areas [34]. As an example of the issues described
above, there is also a paper, [35], in which the authors describe different strategies for the
development of urban transport with a view to its electrification in the city of Szczecin,
Poland. In this paper, three hypotheses are tested which describe the introduction of zero-
emission buses into urban transport for different scopes of implementation. Another article
dealing with the decomposition of public transport in Poland over the years is [36], in which
the authors describe the development of different public transport strategies in Poland over
the years 1990–2020, highlighting socioeconomic, environmental, and technological aspects.

A key issue in the modernization of existing transport systems in modern cities is
the integration of different means of public transport to reduce energy consumption and
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vehicle emissions. Currently, a lot of research and work is being conducted on efficient
interchange plans that enable a seamless combination of different modes of transport. This
is essential to encourage people to use public transport, among other things. According
to a study by Transport for London (2018), the introduction of integrated ticketing and
payment systems has significantly increased public transport and reduced CO2 emissions
by 180,000 t per year [37]. A Chinese study shows that the integration of different modes
of public transport has also contributed to a 3.5% annual increase in employment in the
transport sector [38].

The decomposition of the bus fleet structure in urban agglomerations is currently
being carried out around the world. These studies provide a wealth of information on
the differences in emissions from different fuel types and vehicle propulsion systems. In
general, buses powered by petrol or diesel engines emit a higher amount of, e.g., particulates
and nitrogen oxides compared to hydrogen [39]. However, the use of modern solutions for
these buses and the use of other alternative fuels, e.g., CNG, helps to reduce the emissions
of toxic compounds, in order to reduce their impact on the health of city dwellers as much
as possible. An example of a paper that addresses the implementation of CNG-powered
buses is [40], where the authors show how the introduction of CNG has reduced the impact
of bus emissions on air pollution in Delhi, India.

It is also important to use different emission forecasting models to predict the potential
of different bus fleet decomposition strategies as an effective tool to reduce air pollution.
Through such analyses, multiple scenarios can be tested to determine the optimum strategy
for sustainable public transport, thus contributing to emission reduction targets in line with
transport policies in different parts of the world. An example of such work is, e.g., [41],
where the authors analyze the introduction of HEVs and BEVs and their impact on emission
reductions for CO, NOx, and PM using the calculation method of the HBEFA model.

The topic addressed is very important in the context of the current literature review
and can be an important contribution to the further development of different bus fleet
decomposition strategies. Studies by the WHO (World Health Organisation) and other
health organizations provide important epidemiological data to estimate the reduction in
morbidity and mortality as a result of improved air quality. For example, a WHO (2018)
report showed that a reduction in PM2.5 concentrations by 10 µg/m3 could reduce deaths
from respiratory diseases by approximately 15% in cities [42].

3. Research Methodology

The existing emission models are categorized into two distinct types:

• Models that utilize traffic parameters such as acceleration, braking, continuous driving,
and idling, functioning at the microscale and mesoscale levels.

• Models founded on the average speed of a vehicle, primarily employed at the macro level.

Macro-scale models primarily rely on the average speed parameter of the specific road
section(s) under analysis [43]. These models are instrumental in approximating both fuel
consumption and the ecological footprint of road transportation. They enable the assess-
ment of the overall energy consumption attributed to road infrastructure development
initiatives and strategies, as well as the evaluation of the ecological ramifications pertaining
to greenhouse gas emissions within the study region. The environmental effects can span
local, regional, or even global domains, encompassing both short- and long-term implica-
tions. Macro-scale emission models facilitate the quantification of the extensive impact of
transportation, whether on a regional scale or within a designated transportation corridor.

For the purpose of calculating emissions, the most commonly used method for project
evaluation is the use of COPERT software [44,45]. COPERT is a model for macro-scale
emissions calculations based on European data using the distance traveled, vehicle type,
emission class, driving speed, load, humidity, and air temperature [46].

The mass of pollutants emitted in the COPERT model is calculated according to
Equation (1):

Ei = ∑j

[
∑m

(
FCj,m·EFi,j,m

)]
(1)
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where:
Ei—emissions of the exhaust component i (g);
FCj,m—fuel consumption of vehicle of category j, for fuel m (kg);
EFi,j,m—emission factor of component i for vehicle category j and fuel m (g/kg).

This model encompasses a range of fuels, including diesel, gasoline, CNG, and LPG.
The current methodology employed in macro-scale emission models for assessing the quan-
tity of detrimental exhaust constituents is characterized by two fundamental calculations.
The initial step involves the selection of a set of emission factors that dictate emissions based
on specific traffic conditions, while the subsequent stage entails the evaluation of vehicular
activity within the designated study area. Emission levels are derived by multiplying the
outcomes of these two stages.

Consequently, the COPERT emissions calculator was employed to evaluate the impli-
cations of replacing the aging bus fleet with a newer one, focusing on the municipality of
Rzeszow. The project also encompasses the establishment of park-and-ride (P&R) facilities
situated in suburban regions.

Within the study, two distinct scenarios, denoted as variants, were examined:

• V0: This serves as a counterfactual scenario, considering emissions from the old bus
fleet (accounting for no P&R service and additional passenger car trips).

• V1: Represents the existing scenario, encompassing emissions from the novel low-
emission bus fleet (excluding any additional passenger car trips due to the presence of
the current P&R service).

For the V0 scenario (a scenario assuming no investment), emissions from buses prior
to replacement were computed, along with emissions projections for passenger cars that
would have been utilized in the absence of the project and its associated P&R parking. The
analysis spanned the period from 3 January 2021 to 2 January 2023. The data used for these
calculations were sourced from the Association of Rzeszow Municipalities. Emission calcu-
lations were conducted in accordance with the EMEP/EEA methodology [46], integrated
into COPERT 5.6.5. A comprehensive overview of the study’s framework is depicted in
Figure 3.

3.1. Description of the Area of the Implemented Project

The project was executed within the confines of Rzeszow, which is situated in Poland.
Rzeszow holds the status of being the capital of the Subcarpathian Voivodeship and stands
as the central hub of the Rzeszow agglomeration, boasting a populace of approximately
200,000 individuals [47]. This city accommodates six universities, and its vicinity is graced
by an international airport positioned near Jasionka.

In order to facilitate the COPERT emission calculations, pertinent meteorological data
concerning the analyzed region are required, encompassing variables like annual tempera-
ture and humidity. The weather conditions characteristic of the Rzeszow agglomeration
are depicted in Figure 4.

The urban transportation network within the Rzeszow agglomeration encompasses a
total of 63 bus lines. In 2015, a comprehensive system was introduced, aiming to seamlessly
integrate public transportation services not only within Rzeszow itself but also across the
adjoining areas. This overarching system incorporates multiple enhancements, includ-
ing the implementation of traffic light control mechanisms designed to prioritize public
transport vehicles. Furthermore, the system encompasses an online vehicle tracking sys-
tem, an information dissemination system, the adoption of electronic ticketing, and the
establishment of stationary ticket vending machines. To support the realization of these
enhancements, Rzeszow secured supplementary funding from European Union resources.
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As part of these developments, a diverse fleet of buses has been procured, spanning
modern diesel and CNG, along with hybrid and electric models. The city also enjoys the
convenience of a well-connected rail transportation network, facilitating travel between
suburban locales and the city center, and further extending to encompass rural and interna-
tional rail connections. In recent years, the establishment of park-and-ride (P&R) facilities
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in suburban regions has contributed to the overall transportation landscape. Figure 5
provides an overview of the study area, encompassing the city of Rzeszow and its affiliated
municipalities, alongside an approximate depiction of the P&R spaces.
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3.2. Description of the Vehicle Fleet under Study

The bus fleet involved in this study encompassed a total of 52 vehicles operating
across 13 distinct lines. Following the project’s implementation, the outdated bus fleet
underwent a comprehensive overhaul, with the entire roster being replaced by modern
vehicles procured for this purpose. The original bus fleet comprised 29 buses without
assigned emission classes, while the remaining 23 adhered to EURO II standards. This
fleet underwent replacement with EURO VI-compliant buses, the majority of which were
manufactured post-2019. For a comprehensive overview of the bus fleet composition,
please refer to Table 1. Furthermore, an in-depth breakdown of the bus fleet data, serving
as input for COPERT calculations, is furnished in Table S1 in the Supplementary Materials.

Table 1. Comparison between the original bus fleet (left side) and the new replacement buses (right
side), inclusive of fundamental parameters such as the count and EURO standard. These details serve
as input for COPERT calculations.

Fleet of Buses Prior to Replacement Fleet of Buses following Replacement

Quantity of Buses Standard Quantity of Buses Standard

29 -
52 EURO VI23 EURO II

Input data crucial for the COPERT emissions calculator encompassed average mileage
per vehicle, which was sourced from the transportation operator. These mileage figures
underwent individual adjustments for each bus line. Alongside this, other essential param-
eters consisted of average speed and load for each of the examined bus lines. The average
speed and load metrics for the buses were derived from factual data made available by
the transportation operator. These aforementioned parameters, pivotal for subsequent
emission calculations, are outlined in Tables 2 and 3. Subsequently, PM emissions were
computed utilizing these input parameters. The calculations for PM emissions were carried
out for each line independently, and the ensuing averages were calculated for each of the
analyzed variants.
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Table 2. Actual operational data from the bus fleet incorporated to perform emission calculations for
the studied bus lines in the year 2021.

Route Occupancy (%) Average Speed
(km/h)

Yearly Distance
Traveled (km)

1 11 27.8 94,097
2 6 33.4 39,398
3 8 26.5 116,657
4 11 28.1 85,188
5 8 30.2 82,186
6 5 28.5 64,976
7 13 28.1 93,263
8 11 23.6 193,972
9 14 31.6 39,197
10 22 32.3 95,098
11 12 27.1 112,724
12 10 27.5 62,215
13 9 26.2 48,549

Table 3. Authentic operational data from the bus fleet utilized to conduct emission calculations for
the investigated bus lines in the year 2022.

Route Occupancy (%) Average Speed
(km/h)

Yearly Distance
Traveled (km)

1 29.3 27.8 101,816
2 23.5 33.4 80,534
3 4.6 26.5 91,688
4 5.0 28.1 77,675
5 4.6 30.2 74,557
6 7.0 28.5 53,005
7 13.6 28.1 74,325
8 13.6 23.6 181,959
9 18.0 31.6 31,950
10 26.0 32.3 103,037
11 10.2 27.1 90,407
12 10.7 27.5 54,633
13 16.5 26.2 54,002

Emission assessments also encompass passenger car emissions. Given the project’s
scope, which involves the substitution of the old bus fleet with new buses and the estab-
lishment of fresh park-and-ride (P&R) facilities, the analyses account for a specific quantity
of passenger cars operating on the road in the scenario without P&R facilities. The re-
search encompasses four P&R locations, serving as parking points for over 150,000 vehicles
throughout the examined two-year period. The data pertaining to the volume of vehicles
utilizing these P&R parking zones were sourced from road management authorities at the
respective locations.

In the V0 scenario, characterized by the absence of P&R parking lots, the study
postulated that passenger cars would travel an approximately equivalent distance to buses,
originating from the existing P&R parking lots. The average distances for each driver were
multiplied by the overall count of vehicles utilizing the P&R facilities. Specifics regarding
the number of vehicles within the P&R zones are shown in Table 4.
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Table 4. Data on passenger cars at P&R locations for the 2-year period analyzed.

Parking Quantity of Vehicles Mean Approximate Distance
Covered by Drivers (km)

1 52,012 10.0
2 29,375 22.4
3 64,410 13.0
4 5744 14.0

Figure 6 shows the percentages of passenger cars, taking into account the emission
standards and fuels used, adopted for calculations in the COPERT model. These data were
adopted based on information contained in the statistical data for Rzeszow County.
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Emissions originating from passenger cars within the V0 scenario were computed
using data encompassing the number of cars within each park-and-ride (P&R) parking
facility, coupled with an estimated average travel distance derived from the buses utilized
by the car drivers who parked in the P&R lots (as detailed in Table 4). The study’s
assumption posited that the distance covered by car drivers utilizing the parking facilities
equates to half the distance covered by the buses of each line, originating from the stops
situated close to the parking facilities and culminating at the final stops. To facilitate these
calculations, data pertaining to the number of cars were employed, segregated by both fuel
type and emission class [47]. These specific details are presented in Table 5.

Table 5. Quantity of passenger cars categorized by distinct fuel type and emission standard, serving
as inputs for COPERT calculations.

P&R Fuel

Quantity of Vehicles

Euro Standard

- 1 2 3 4 5 6

Parking 1

Petrol 3902 1560 3900 6242 4682 2600 3120
Diesel 2574 1030 2574 4120 3090 1716 2060
LPG 1326 530 1326 2122 1592 884 1062
Sum 52,012

Parking 2

Petrol 2204 881 2202 3526 2645 1469 1762
Diesel 1454 583 1454 2327 1747 970 1162
LPG 748 298 748 1198 898 500 599
Sum 29,375

Parking 3

Petrol 4830 1932 4832 7730 5798 3220 3864
Diesel 3188 1276 3188 5102 3826 2126 2550
LPG 1642 656 1642 2628 1970 1096 1314
Sum 64,410

Parking 4

Petrol 230 144 202 230 460 804 804
Diesel 152 94 132 152 304 530 530
LPG 78 48 68 78 156 274 274
Sum 5744

4. Results and Discussion

The proposed methodology and its practical implementation are exemplified through
a comparative analysis of two bus fleet variants, focusing on PM and NOx emissions. As
previously outlined, variant V0 encompasses the original bus fleet and supplementary car
trips resulting from the absence of park-and-ride (P&R) facilities. Conversely, variant V1
involves a modern low-emission bus fleet and the establishment of new P&R spaces in
suburban regions.

Emission calculations were conducted using authentic data spanning a two-year
interval from the beginning of 2021 to the start of 2023. These calculations were grounded
in actual information sourced from bus journeys and road infrastructure.

The quantifiable reduction in emissions was evaluated utilizing the following
Formula (2) [15]:

∆E = Eo − E1 (2)

where:
∆E—reduction in pollutant (PM2.5, PM10, and NOX) emissions;
Eo—non-investment scenario emissions (variant V0);
E1—emissions related to the implementation of the project (variant V1).

The outcomes of PM emission calculations pertaining to the V0 variant (i.e., the former
vehicle fleet with the absence of park-and-ride parking lots) for each of the examined bus
lines are consolidated and presented in Table 6.
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Table 6. PM emission (kg) and NOX emission (kg) calculation results of the V0 variant for the old
bus fleet.

Line PM10 PM2.5 NOx

2021 2022 2021 2022 2021 2022

1 61 69 56 61 842 911
2 24 49 22 45 337 690
3 62 60 74 56 1056 830
4 55 54 51 50 760 751
5 52 51 48 47 721 709
6 41 43 38 40 578 603
7 60 64 56 59 832 891
8 132 153 123 142 1811 2092
9 25 24 24 22 352 325
10 59 67 54 62 822 969
11 73 76 68 70 1015 1054
12 40 42 37 39 558 577
13 32 35 30 33 441 490

Annual sum 716 787 681 726 10,125 10,892
Sum 1503 1407 21,017

The computed PM and NOX emissions for the V0 variant from passenger cars for the
analyzed two-year period (2021–2022) are shown in Table 7.

Table 7. PM10, PM2.5, and NOX emission calculation results of the V0 variant for passenger cars.

P&R PM10 (kg) PM2.5 (kg) NOx (kg)

Parking 1 35.6 26.1 250.8
Parking 2 45.0 33.1 317.3
Parking 3 57.3 42.1 403.7
Parking 4 0.7 0.5 26.9

Sum 138.6 101.8 998.7

Table 8 shows the computed values of PM and NOX emissions for new buses in the V1
variant for each bus line.

Table 8. PM10, PM2.5, and NOX emission (kg) calculation results of the V1 variant for new EURO
VI buses.

Line PM10 PM2.5 NOx

2021 2022 2021 2022 2021 2022

1 9.4 11.0 5.0 5.5 51.8 56.1
2 3.8 8.5 2.0 4.2 19.9 40.7
3 11.5 8.9 6.1 4.7 65.7 51.7
4 8.5 8.2 4.5 4.3 46.7 46.2
5 8.1 7.8 4.3 4.1 43.6 42.9
6 6.3 6.6 3.4 3.5 35.4 37
7 9.4 10.0 5.0 5.3 51.1 54.8
8 19.5 22.7 10.3 12.0 115.8 133.8
9 4.0 3.7 2.1 2.0 21.7 20.1
10 10.0 10.8 5.2 5.8 49.1 43.4
11 11.3 11.6 6.0 6.1 62.9 65.3
12 6.2 6.4 3.3 3.4 34.5 35.6
13 4.8 5.4 2.5 2.8 27.5 30.6

Annual sum 112.8 121.6 59.7 63.7 625.7 658.2
Sum 234.4 123.4 1283.9
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For the analyzed two-year period, the estimated average annual decrease in PM and
NOX emissions associated with the project is shown in Table 9.

Table 9. Estimated average annual reduction in PM and NOX emissions.

Information Regarding the Studied Scenarios PM10 (kg) PM2.5 (kg) NOX (kg)

Projected mean annual emission decrease due to
bus replacement 634.3 641.8 9867.0

Projected mean yearly emission decrease
resulting from drivers utilizing P&R facilities 69.3 50.9 499.3

Overall mean annual projected emission decrease 703.6 692.7 10,366.3

Thanks to the implementation of the project, i.e., the replacement of 52 old buses
with new buses of the Euro VI emission class and the construction of new P&R spaces,
the total average annual reduction in emissions amounted to approximately 703.6 kg of
PM10, approximately 692.7 kg of PM2.5, and a reduction of approximately 10.4 tons of NOX.
With the introduction of P&R zones, the average annual reduction in particulate emissions
was about 120 kg. In terms of NOx emission reductions, the replacement of the bus fleet
reduced NOx emissions by about 9867 kg, while the average annual reduction in emissions
due to the use of P&R parking lots was about 500 kg.

An additional significant aspect concerns the reduction in greenhouse gas emissions,
which was thoroughly examined in the referenced article [15]. Consequently, the execution
of such projects assumes a pivotal role in addressing the escalating challenges related to
particulate and gaseous emissions, inclusive of greenhouse gases, as well as the resultant
concern over global warming. Leveraging the methodology presented in this study, the
substitution of a fleet comprising 52 buses and the establishment of park-and-ride (P&R)
zones yielded remarkable outcomes: PM2.5 emissions were curtailed by over 690 tons,
PM10 emissions by more than 700.0 kg, and NOx emissions by more than 10.3 tons within
a single year. Considering emissions from buses only (Figure 7), it can be concluded that
after the fleet was replaced with a new one, the relative emissions of PM10, PM2.5, and NOX
were about 15.6%, 8.8%, and 6.1%, respectively.
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It is also worth highlighting the problem of data sensitivity analysis. This work is
based on a data set provided by the transport operator and based on statistical data from a
local data bank. An analysis of a certain range of data would give a possibly more complete
picture of a certain effect, e.g., a quantitative change in the fleet of vehicles meeting certain
EURO standards, as the vehicle fleet is subject to continuous modification due to aging
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and the registration of new vehicles. An example of a paper that addresses this problem
is [48], where the authors analyze the sensitivity of the input data to the output data of
the COPERT model. The uncertainty analysis of the emission results shows differences
ranging from −58% to 76%.

As is well known, during the winter season, emissions of dust and gaseous pollutants
also come from individual heat sources used by residents. Taking into account the pollutants
analyzed, the average annual dust emissions from a single solid-fuel boiler in a single-
family home, according to [49], can range from about 17.5 kg/year of PM10 (using a
biomass boiler) to approximately 20.5 kg/year of PM10 (for a coal-fired boiler). For the
average annual NOx emissions, these values are about 6.6 kg/year for a biomass boiler and
about 7.20 kg/year for a coal boiler, respectively. If a condensing gas boiler is used, these
emissions can average about 0.67 kg/year for PM10 and about 3.61 kg/year for NOX.

Therefore, it can be seen that the estimated annual reduction in pollutant emissions
analyzed by replacing the bus fleet and introducing P&R zones is equivalent to the annual
emissions of about 35 coal-fired boilers used in a single-family home with a heating demand
of about 8000 kWh/year. Thus, in order to achieve improvements in air quality during the
winter season, it is very important to replace solid-fuel heat sources with other low-emission
heat sources, such as condensing gas boilers or heat pumps.

On the other hand, with NOX emissions in mind, it can be said that it is very important
to modernize the bus fleet and expand P&R zones. The value of the average estimated
reduction in NOX emissions after project implementation, at about 10,370 kg/year, corre-
sponds to the annual emissions of about 1500 coal-fired boilers.

When comparing the methodology and results used to other works, many differences
can be observed in the conduct of this study. For example, the work [50] describes a similar
problem but with a different approach. This paper introduces a remaining life additional
benefit–cost (RLABC) analysis approach, aiming to maximize net benefits by either the
early retirement of buses or retrofitting buses within their lifespans. By assessing net
benefits for different bus types, optimal fleet management schemes are identified for both
operators and governments. This approach enables the creation of government subsidy
plans for win-win solutions, enhancing efficiency and flexibility in fleet management.
Using a case study of Hong Kong’s largest bus company, the study demonstrates the
considerable benefits of this approach over fixed retirement plans. Another example is the
work presented in [44]. This study investigates the emission status and future trends of
heavy-duty diesel passenger buses in Hainan Province. It employs statistical analysis to
assess the technical distribution, activity patterns, and operational conditions of these buses.
Emissions of CO, CO2, NOX, and PM in 2017 are calculated using the COPERT model, with
additional refinement through calibration using Portable Emission Measurement System
data. Three emission scenarios are considered: baseline, emission reduction standard, and
emission reduction standard combined with the replacement of diesel buses by electric
vehicles. Utilizing a gray model, the study predicts the number of heavy-duty diesel
passenger buses in each scenario and combines this with calibrated emission factors to
project emission trends. The results indicate that the emission reduction standard alone
will lead to significant reductions in CO, CO2, NOX, and PM emissions by 2025, with
even more substantial reductions achieved when combined with electric vehicle adoption,
highlighting the potential for significant environmental improvements.

The introduction of the above-described retrofitting of the fleet and public transport
apparently brings some benefits in terms of ambient air quality. However, taking into
account all urban and non-urban emissions, this improvement in air quality represents a
margin and may be symbolic overall. However, every step to improve air quality, even a
local one, should be taken, because with small steps one can achieve a certain satisfactory
long-term effect.

Building upon the developed methodology, a comparative assessment was undertaken,
gauging PM and NOx emissions. The evaluation encompassed two distinct scenarios:
firstly, the condition preceding the replacement of the existing bus fleet with a novel
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one, and secondly, an envisaged situation featuring the new bus fleet, coupled with the
establishment of park-and-ride (P&R) parking facilities. In Central and Eastern European
countries, old bus fleets are common [51,52]. Calculations of particulate matter and nitrogen
oxide emissions, based on replacing bus fleets with new ones, show significant reductions
in the emissions of these pollutants.

Achieving a significant reduction in air pollutant dust emissions is crucial to improving
the quality of life and health of society.

5. Conclusions

The primary aim of this study was to introduce a methodology geared towards the
computation of PM and NOx emissions attributed to bus fleets. This methodology was
employed to conduct a practical case study within the vicinity of the Rzeszow municipality.
For this analysis, authentic data pertaining to 52 buses operating across 13 suburban bus
lines were employed.

The conducted research allows us to formulate the following conclusions:

• Replacement of the bus fleet with a new one resulted in a decrease in PM10 emissions
by about 84.4%, PM2.5 emissions by about 91.2%, and NOX emissions by about 93.9%;

• Taking into account the additional introduction of the P&R system (abandoning self-
driven cars in favor of buses), the estimated decrease in emissions of the analyzed
pollutants would additionally increase by about 1.3% for PM10, by about 0.6% for
PM2.5, and by about 0.3% for NOX;

• Solid-fuel heating systems used in single-family homes are mainly responsible for
PM10 and PM2.5 air pollution;

• For the implemented project (introduction of a P&R system and the replacement of
the bus fleet), NOX emission reductions equivalent to the elimination of about 1500
solid-fuel heating systems used in single-family homes can be achieved.

The results of the impact of the analyzed transport scenarios on air quality have an
application value and they can be used as an example helpful in the decision-making
process in urban management.

A constraint inherent to the present study lies in its focus, indicating a prospective
avenue for subsequent investigations. A noteworthy facet for future research involves
the incorporation of additional exhaust constituents within the analytical framework.
Furthermore, a compelling prospect pertains to the exploration of emissions associated with
alternative bus propulsion configurations, including electric or hydrogen-powered buses.
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//www.mdpi.com/article/10.3390/en16196956/s1; Table S1: Emission model input (COPERT):
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fundamental factors such as euro standard, manufacturing year, and curb weight.
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B.B., M.Ś. and S.P.; investigation, A.J. and H.K.; resources, A.J., V.M., B.B., M.Ś., S.P. and M.M.; data
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Abbreviations

CNG Compressed natural gas
CO2 Carbon dioxide
CO2e Carbon dioxide equivalent
EGD European Green Deal
GWP Global warming potential
LPG Liquefied petroleum gas
NOX Nitrogen oxides
P&R Park and ride
PM Particulate matter
PM2.5 Particulate matter with a diameter of 2.5 µm or less
PM10 Particulate matter with a diameter of 10 µm or less

References
1. European Environment Agency. Air Quality in Europe 2022; Report No. 05/2022; EEA: Copenhagen, Denmark, 2022. [CrossRef]
2. European Environment Agency. European Union Emission Inventory Report 1990–2021; Under the UNECE Convention on Long-

Range Transboundary Air Pollution (Air Convention): EEA Report XX/2023; European Environment Agency: Copenhagen,
Denmark, 2023; Available online: https://www.eea.europa.eu/publications/european-union-emissions-inventory-report-1990-2
021/at_download/file (accessed on 20 July 2023).

3. National Fund for Environmental Protection and Water Management. Measurement Data Bank. Available online: https:
//powietrze.gios.gov.pl/pjp/archives (accessed on 15 March 2020).

4. Bielaczyc, P.; Szczotka, A.; Woodburn, J. Exhaust emissions of particulate matter from light-duty vehicles—An overview and the
current situation. Combust. Engines 2017, 171, 227–238. [CrossRef]

5. Merkisz, J.; Kozak, M.; Molik, P.; Nijak, D.; Andrzejewski, M.; Nowak, M.; Rymaniak, Ł.; Ziółkowski, A. The analysis of the
emission level from a heavy-duty truck in city traffic. Combust. Engines 2012, 150, 80–88. [CrossRef]

6. Hvan der Gon, D.; Hulskotte, J.; Jozwicka, M.; Kranenburg, R.; Kuenen, J.; Visschedijk, A. Chapter 5—European Emission
Inventories and Projections for Road Transport Non-Exhaust Emissions: Analysis of Consistency and Gaps in Emission Inventories.
In Non-Exhaust Emissions; Academic Press: Cambridge, MA, USA, 2018; pp. 101–121. [CrossRef]

7. Giechaskiel, B.; Joshi, A.; Ntziachristos, L.; Dilara, P. European Regulatory Framework and Particulate Matter Emissions of
Gasoline Light-Duty Vehicles: A Review. Catalysts 2019, 9, 586. [CrossRef]

8. Smieszek, M.; Mateichyk, V.; Dobrzanska, M.; Dobrzanski, P.; Weigang, G. The Impact of the Pandemic on Vehicle Traffic and
Roadside Environmental Pollution: Rzeszow City as a Case Study. Energies 2021, 14, 4299. [CrossRef]

9. Jaworski, A.; Lejda, K.; Bilski, M. Effect of driving resistances on energy demand and exhaust emission in motor vehicles. Combust.
Engines 2022, 189, 60–67. [CrossRef]

10. Hu, R.; Zhang, F.; Peng, Z.; Pei, Y. The NOx emission characteristics of gasoline vehicles during transient driving cycles. Transp.
Res. Part D Transp. Environ. 2022, 109, 103386. [CrossRef]

11. Mateichyk, V.; Kostian, N.; Smieszek, M.; Mosciszewski, J.; Tarandushka, L. Evaluating Vehicle Energy Efficiency in Urban
Transport Systems Based on Fuzzy Logic Models. Energies 2023, 16, 734. [CrossRef]

12. Samaras, Z.; Hausberger, S. Preliminary findings on possible Euro 7 emission limits for LD and HD vehicles. In Proceedings of
the AGVES Meeting, Online, 27 October 2020; Available online: https://circabc.europa.eu/sd/a/fdd70a2d-b50a-4d0b-a92a-e6
4d41d0e947/CLOVE%20test%20limits%20AGVES%202020-10-27%20final%20vs2.pdf (accessed on 21 May 2023).

13. European Commission. Commission Proposes New Euro 7 Standards to Reduce Pollutant Emissions from Vehicles and
Improve Air Quality. 2022. Available online: https://ec.europa.eu/commission/presscorner/detail/en/ip_22_6495 (accessed on
15 June 2023).

14. Holman, C.; Harrison, R.; Querol, X. Review of the efficacy of low emission zones to improve urban air quality in European cities.
Atmos. Environ. 2015, 111, 161–169. [CrossRef]
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