Performance Signature of the Best Candidate-Graded Bandgap Materials for Solar Cells with Steady-State Conversion Efficiency
Abstract
:1. Introduction
2. Different Suggested Solar Cell Structure Descriptions
3. Solar Cell Design and Modeling Equations
- : The hole and electron concentrations.
- : The hole and electron densities.
- : The electron and hole generation rates.
- : The electron and hole recombination rates.
4. Results and Discussion
4.1. Optimized Solar Cell Structure Design
4.2. RAT Variations with Spectrum Wavelength Variations
4.3. Effects of the Surface Morphology on the Photo-Current Absorption and IQE
4.4. Substrate Materials’ Variation Effects on the Photo-Current Absorption and IQE
4.5. Absorber Material Layer Variation Effects on the Photo-Current Absorption and IQE
4.6. Contact Layer Material Variation Effects on the Photo-Current Reflection/Absorption and IQE
5. Equivalent Circuit Modeling and Circuit Performance Parameter Optimization
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Soonmin, H.; Hardani; Nandi, P.; Mwankemwa, B.S.; Malevu, T.D.; Malik, M.I. Overview on Different Types of Solar Cells: An Update. Appl. Sci. 2023, 13, 2051. [Google Scholar] [CrossRef]
- Zalas, M.; Jelak, K. Optimization of platinum precursor concentration for new, fast and simple fabrication method of counter electrode for DSSC application. Optik Int. J. Light Electron Opt. 2020, 206, 164–175. [Google Scholar] [CrossRef]
- Madadi, D. Achieving beyond 26.6% efficiency for graded bandgap perovskite solar cell: Theoretical study. Mater. Chem. Phys. 2023, 308, 128231. [Google Scholar] [CrossRef]
- Prasanna, J.L.; Goel, E.; Kumar, A.; Laref, A.; Santhosh, C.; Ranjan, P.; Kumar, A. Bandgap graded perovskite solar cell for above 30% efficiency. Optik 2022, 269, 169891. [Google Scholar] [CrossRef]
- Siegler, T.D.; Shimpi, T.M.; Sampath, W.S.; Korgel, B.A. Development of wide bandgap perovskites for next-generation low-cost CdTe tandem solar cells. Chem. Eng. Sci. 2019, 199, 388–397. [Google Scholar] [CrossRef]
- Saha, P.; Singh, S.; Bhattacharya, S. Efficient and Lead-Free Perovskite Solar Cells Based on Defect-Ordered Methyl Ammonium Antimony Iodide. IEEE Trans. Electron Devices 2023, 70, 1095–1101. [Google Scholar] [CrossRef]
- Gulomov, J.; Accouche, O. Gold Nanoparticles Introduced ZnO/Perovskite/ Silicon Heterojunction Solar Cell. IEEE Access 2022, 10, 119558–119565. [Google Scholar] [CrossRef]
- Kaifi, M.; Gupta, S.K. Simulation of Perovskite based Solar Cell and Photodetector using SCAPS Software. Int. J. Eng. Res. Technol. 2019, 12, 1778–1786. [Google Scholar]
- Ziani, N.; Belkaid, M.S. Computer Modeling Zinc Oxide/Silicon Heterojunction Solar Cells. J. Nano-Electron. Phys. 2018, 10, 06002. [Google Scholar] [CrossRef]
- Morales-Vilches, A.B.; Cruz, A.; Pingel, S.; Neubert, S.; Mazzarella, L.; Meza, D.; Korte, L.; Schlatmann, R.; Stannowski, B. ITO-Free Silicon Heterojunction Solar Cells with ZnO:Al/SiO2 Front Electrodes Reaching a Conversion Efficiency of 23%. IEEE J. Photovoltaics 2019, 9, 34–39. [Google Scholar] [CrossRef]
- Pham, D.P.; Lee, S.; Kim, S.; Chowdhury, S.; Khokhar, M.Q.; Le, A.H.T.; Kim, Y.; Park, J.; Yi, J. Wide-gap ZnO layer as electron-selective front contact for single-junction GaAs solar cells. Mater. Sci. Semicond. Process. 2021, 121, 105344. [Google Scholar] [CrossRef]
- Mamta; Singh, Y.; Maurya, K.; Singh, V. n-Si/p-Sb2Se3 structure based simple solar cell device. Mater. Today Sustain. 2022, 18, 100148. [Google Scholar] [CrossRef]
- Ali, Z.; Ali, K.; Hussain, B.; Maqsood, S.; Iqbal, I. Towards the enhanced efficiency of ultrathin Sb2Se3 based solar cell with cubic silicon carbide (3C–SiC) buffer layer. Opt. Mater. 2022, 128, 112358. [Google Scholar] [CrossRef]
- Singh, Y.; Rani, S.; Shashi; Parmar, R.; Kumari, R.; Kumar, M.; Sairam, A.B.; Mamta; Singh, V. Sb2Se3 heterostructure solar cells: Techniques to improve efficiency. Sol. Energy 2023, 249, 174–182. [Google Scholar] [CrossRef]
- Zapukhlyak, Z.R.; Nykyruy, L.I.; Prokopiv, V.V.; Lishchynskyy, I.M.; Katanova, L.O.; Yavorskyi, R.S.; Rubish, V.M.; Wisz, G.; Galushchak, M.O. SCAPS Simulation of ZnO/CdS/CdTe/CuO Heterostructure for Photovoltaic Application. Phys. Chem. Solid State 2020, 21, 660–668. [Google Scholar] [CrossRef]
- Hajjiah, A. COMSOL simulation of non-radiative recombination heat and joule heat in CZTSSe thin film solar cells. Micro Nanostruct. 2022, 168, 207313. [Google Scholar] [CrossRef]
- Zandi, S.; Saxena, P.; Razaghi, M.; Gorji, N.E. Simulation of CZTSSe Thin-Film Solar Cells in COMSOL: Three-Dimensional Optical, Electrical, and Thermal Models. IEEE J. Photovoltaics 2020, 10, 1503–1507. [Google Scholar] [CrossRef]
- Saxena, P.; Gorji, N.E. COMSOL Simulation of Heat Distribution in Perovskite Solar Cells: Coupled Optical–Electrical–Thermal 3-D Analysis. IEEE J. Photovoltaics 2019, 9, 1693–1698. [Google Scholar] [CrossRef]
- Zaky, A.A.; Elewa, S.; Alyahya, S.; Al-Dhaifallah, M.; Rezk, H.; Yousif, B. Mitigation of Temperature Effects and Performance Enhancement of Perovskite Solar Cells Using Nano-Pyramids Grating. IEEE Access 2023, 11, 36399–36408. [Google Scholar] [CrossRef]
- Singh, A.; Ghosh, R.; Agarwal, P. Selection of materials and optimization of antireflection coatings for silicon solar cells using Sentaurus TCAD. J. Mater. Sci. Mater. Electron. 2023, 34, 1235. [Google Scholar] [CrossRef]
- Guo, S.; Ma, F.-J.; Hoex, B.; Aberle, A.G.; Peters, M. Analysing Solar Cells by Circuit Modelling. Energy Procedia 2012, 25, 28–33. [Google Scholar] [CrossRef]
- Gulomov, J.; Aliev, R.; Mirzaalimov, A.; Mirzaalimov, N.; Kakhkhorov, J.; Rashidov, B.; Temirov, S. Studying the Effect of Light Incidence Angle on Photoelectric Parameters of Solar Cells by Simulation. Int. J. Renew. Energy Dev. 2021, 10, 731–736. [Google Scholar] [CrossRef]
- Gulomov, J.; Aliev, R.; Abduvoxidov, M.; Mirzaalimov, A.; Mirzaalimov, N. Exploring optical properties of solar cells by programming and modeling. Glob. J. Eng. Technol. Adv. 2020, 5, 032–038. [Google Scholar] [CrossRef]
- Danladi, E.; Achem, C.U.; Echi, I.O.; Michael, S.U.; Oni, M.E. Thickness Variation Study of Perovskite Layer Over the Range 100–1300 nm and Its Influence on the Performance of Perovskite Solar Cells Using SCAPS Software. J. Nano Mater. Sci. Res. 2022, 1, 22–27. [Google Scholar]
- Eskandari, M.; Rostami, G.; Dolatyari, M.; Rostami, A.; Heidarzadeh, H. Optimization of power conversion efficiency in multi band solar cells (theoretical investigation using GA optimization). Opt. Quantum Electron. 2021, 53, 469. [Google Scholar] [CrossRef]
- Ojha, V.; Jansen, G.; Patanè, A.; La Magna, A.; Romano, V.; Nicosia, G. Design and characterization of effective solar cells. Energy Syst. 2022, 13, 355–382. [Google Scholar] [CrossRef]
- Baniyounis, M.J.; Mohammed, W.F.; Abuhashhash, R.T. Analysis of power conversion limitation factors of Cu (InxGa1−x) (Se)2 thin-film solar cells using SCAPS. Mater. Renew. Sustain. Energy 2022, 11, 215–223. [Google Scholar] [CrossRef]
- Balasubrahmanyam, C.S.; Gupta, O.H. Detailed Study of Solar Energy Conversion System using Boost Converter—A New MPPT Technique. J. Inst. Eng. Ser. B 2020, 101, 631–639. [Google Scholar] [CrossRef]
- Tahhan, S.R.; Taha, R.M. Mercedes Benz logo based plasmon resonance PCF sensor. Sens. Bio-Sens. 2021, 35, 100468. [Google Scholar] [CrossRef]
- Li, Z.; Ni, M.; Feng, X.D. Simulation of the Sb2Se3 solar cell with a hole transport layer. Mater. Res. Express 2019, 7, 16–32. [Google Scholar]
- Benami, A. Effect of CZTS Parameters on Photovoltaic Solar Cell from Numerical Simulation. J. Energy Power Eng. 2019, 13, 32–36. [Google Scholar] [CrossRef]
- Available online: www.pvlighthouse.com.au (accessed on 11 August 2023).
- Mamta, M.; Maurya, K.K.; Singh, V.N. Enhancing the Performance of an Sb2Se3-Based Solar Cell by Dual Buffer Layer. Sustainability 2021, 13, 12320. [Google Scholar] [CrossRef]
- Han, J.; Fu, G.; Krishnakumar, V.; Liao, C.; Jaegermann, W.; Besland, M. Preparation and characterization of ZnS/CdS bi-layer for CdTe solar cell application. J. Phys. Chem. Solids 2013, 74, 1879–1883. [Google Scholar] [CrossRef]
- Skhouni, O.; El Manouni, A.; Mari, B.; Ullah, H. Numerical study of the influence of ZnTe thickness on CdS/ZnTe solar cell performance. Eur. Phys. J. Appl. Phys. 2016, 74, 24602. [Google Scholar] [CrossRef]
- Perrenoud, J.; Kranz, L.; Buecheler, S.; Pianezzi, F.; Tiwari, A.N. The use of aluminum doped ZnO as transparent conductive oxide for CdS/CdTe solar cells. Thin Solid Film 2011, 519, 7444–7448. [Google Scholar] [CrossRef]
- Aranovich, J.A.; Golmayo, D.; Fahrenbruch, A.L.; Bube, R.H. Photovoltaic properties of ZnO/CdTe heterojunctions prepared by spray pyrolysis. J. Appl. Phys. 2012, 51, 4260–4268. [Google Scholar] [CrossRef]
- Liu, T.; He, X.; Zhang, J.; Feng, L.; Wu, L.; Li, W.; Zeng, G.; Li, B. Effect of ZnO films on CdTe solar cells. J. Semicond. 2012, 33, 11–120. [Google Scholar] [CrossRef]
- Matin, M.A.; Amin, N.; Zaharim, A.; Sopian, K. A study towards the possibility of ultra thin CdS/CdTe high efficiency solar cells from numerical analysis. Wseas Trans. Environ. 2010, 6, 571–580. [Google Scholar]
- Fardi, H.; Buny, F. Characterization and Modeling of CdS/CdTe Heterojunction Thin-Film Solar Cell for High Efficiency Performance. Int. J. Photoenergy 2013, 6, 176–188. [Google Scholar] [CrossRef]
- Amoupour, E.; Hassnzadeh, J.; Ziabari, A.A.; Anaraki, P.A. Numerical simulations of ultrathin CdTe solar cells with a ZnxCd1−xS window layer and a Cu2Ohole transport layer. J. Comput. Electron. 2021, 20, 2501–2510. [Google Scholar] [CrossRef]
Parameters | AlN | CdS | CBTS | ZnO:Al | SWCNT | ZnS | GaP |
---|---|---|---|---|---|---|---|
Thickness (nm) | ----- | ----- | ----- | ----- | ----- | ----- | ----- |
Band gap (eV) | 6.42 | 2.4 | 1.9 | 3.55 | 1.1 | 3.5 | 2.26 |
Electron affinity (eV) | 0.6 | 4.3 | 3.6 | 4.5 | 4.27 | 4.5 | 3.8 |
Dielectric permittivity | 8.9 | 8.73 | 5.4 | 8.96 | 3.4 | 10 | 11.1 |
CB effective density of the states (1/cm3) | 6.3 × 1018 | 2.2 × 1018 | 2.2 × 1018 | 2.94 × 1018 | 5 × 1016 | 1.5 × 1018 | 1.8 × 1019 |
VB effective density of states (1/cm3) | 4.8 × 1020 | 1.8 × 1019 | 1.8 × 1019 | 2.98 × 1018 | 6 × 1017 | 1.8 × 1018 | 1.9 × 1019 |
Electron thermal velocity (cm/s) | 1.85 × 107 | 107 | 107 | 1 × 107 | 107 | 1 × 107 | 2 × 107 |
Hole thermal velocity (cm/s) | 0.41 × 107 | 107 | 107 | 1 × 107 | 107 | 1 × 107 | 1.3 × 107 |
Electron mobility (cm2/Vs) | 300 | 160 | 30 | 46 | 8 × 104 | 50 | 250 |
Hole mobility (cm2/Vs) | 14 | 15 | 10 | 26 | 2 × 103 | 20 | 150 |
Donor density (1/cm3) | ----- | 1017 | ----- | 5 × 1019 | ----- | 2 × 1017 | ----- |
Acceptor density (1/cm3) | 1018 | ------ | 1017 | ----- | 1017 | ----- | 1018 |
Defect density (1/cm3) | 1 × 1017 | 1 × 1017 | 1 × 1015 | 3.4 × 1020 | 1 × 1014 | 3.02 × 1019 | 2 × 1015 |
Basic Solar Cell Structure | Solar Cell Circuit Key Parameters | ||||
---|---|---|---|---|---|
Voc (mV) | Jsc (mA/cm2) | FF (%) | η (%) | ||
Ref. [34] | ZnS/CdS/CdTe | 740 | 22.4 | 62.1 | 10.3 |
Ref. [35] | ZnO/CdS/CdTe | 1810 | 7.01 | 78.84 | 10 |
Ref. [36] | Al:ZnO/CdS/CdTe | 834 | 24.7 | 75.9 | 15.6 |
Ref. [37] | ZnO/CdTe | – | – | – | 8 |
Ref. [38] | ZnO/CdS/CdTe | 875 | 21 | 70.7 | 12.77 |
Ref. [39] | ZnO/CdS/CdTe | 1000 | 26.15 | 76.9 | 18.3 |
Ref. [40] | CdTe/CdS/ZnO/Cu | 917 | 28.45 | 75.99 | 19.83 |
Ref. [41] | CdTe/CdS/SnO2/FTO | 813 | 27.72 | 66.03 | 13.8 |
This work | SWCNT/CdS/ZnO/Si | 637.552 | 51.8738 | 74.31 | 29.91 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
El-Hageen, H.M.; Zaki Rashed, A.N.; Albalawi, H.; Alhartomi, M.A.; Alfaifi, Y.H.; Alsubaie, M.T.; Mead, M.A. Performance Signature of the Best Candidate-Graded Bandgap Materials for Solar Cells with Steady-State Conversion Efficiency. Energies 2023, 16, 7001. https://doi.org/10.3390/en16197001
El-Hageen HM, Zaki Rashed AN, Albalawi H, Alhartomi MA, Alfaifi YH, Alsubaie MT, Mead MA. Performance Signature of the Best Candidate-Graded Bandgap Materials for Solar Cells with Steady-State Conversion Efficiency. Energies. 2023; 16(19):7001. https://doi.org/10.3390/en16197001
Chicago/Turabian StyleEl-Hageen, Hazem M., Ahmed Nabih Zaki Rashed, Hani Albalawi, Mohammed A. Alhartomi, Yousef H. Alfaifi, Madhi Tarikham Alsubaie, and Mohamed A. Mead. 2023. "Performance Signature of the Best Candidate-Graded Bandgap Materials for Solar Cells with Steady-State Conversion Efficiency" Energies 16, no. 19: 7001. https://doi.org/10.3390/en16197001
APA StyleEl-Hageen, H. M., Zaki Rashed, A. N., Albalawi, H., Alhartomi, M. A., Alfaifi, Y. H., Alsubaie, M. T., & Mead, M. A. (2023). Performance Signature of the Best Candidate-Graded Bandgap Materials for Solar Cells with Steady-State Conversion Efficiency. Energies, 16(19), 7001. https://doi.org/10.3390/en16197001