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Abstract: The electricity sector has been undergoing profound transformations. In particular, the
Portuguese self-consumer regime has allowed customers of the medium and low voltage electricity
grid to be producers/consumers of electricity, actively contributing to greater energy efficiency. In
this context, the energy that comes from the sun is not used to its maximum. In addition, photovoltaic
cells have a characteristic operating curve (voltage vs. current), in which any operating point is
reflected. Within this curve, there is a particular point known as the maximum power point (MPP) at
which the cell supplies the maximum power output to a load. If the cell does not operate at this point,
it has lower efficiency values. To harness maximum power under standard and dynamic shading
conditions, there are various techniques of low complexity for capturing maximum power. We present
a maximum power point tracking (MPPT) algorithm capable of dealing with the problem of partial
shading. This algorithm involves modifying one of the most used algorithms within photovoltaic
systems, known as P&O, using a simulated annealing (SA) algorithm. P&O is often used due to
its straightforward implementation, but it is susceptible to partial shade conditions. Sampling was
added to this algorithm to a better approach to the point of maximum power using the SA, and then
to attain a more precise convergence with P&O. Implementing a maximum power point tracking
method under partial shading was the major goal of this study.

Keywords: global maximum power point (GMPP); local maximum power point (LMPP); simulated
annealing (SA); perturbation and observation (P&O)

1. Introduction

Traditional energy sources, such as fossil fuels and nuclear energy, have environmental,
social and political problems because they are highly polluting. Due to the constant energy
demand of the industrial sector and the increase in the use of electrical equipment in
a variety of human activities, the demand for electrical energy has increased exponentially
in recent decades. Renewable energy sources are sustainable alternatives to meet the need
for electricity, provide the diversification of the matrix and increase energy security for
countries in terms of supply. Options for generating renewable energy include hydraulic,
biomass, wind, and solar [1]. Among renewable sources, solar energy has great potential to
contribute to the world’s demand for electricity, especially in countries with high levels of
solar radiation. The world’s solar energy power in 2015 was 227 GW, and the prospect is to
reach a power of 1362 GW by 2030,. This source encompasses large solar plants or parks,
and distributed generation on the roofs of buildings [2].

Photovoltaic cells have characteristic V-I curves that define their behavior under
different operating conditions. The power of a solar cell is given by the product of the
current and the voltage of the cell. The maximum power point (MPP) is the product of the
voltage at the maximum point (VMPP) and current at the maximum point (IMPP) for which
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the power extracted from the photovoltaic system is maximum (PMPP). The maximum
power point varies continuously, depending on factors such as the temperature of the
solar cell and the irradiance conditions. To increase the competitiveness of PV energy with
respect to other types, it is necessary to increase its efficiency, which is low, or reduce the
costs. The MPP changes over time since it depends on the temperature and the level of
irradiance; therefore, to make the photovoltaic modules operate close to the MPP point, the
use of tracking algorithms is needed to be linked to a power converter, which is usually
a direct current to direct current (DC/DC) device. The photovoltaic module then delivers
specific current and voltage values that maximize power delivery.

To deal with nonlinear phenomena and achieve system stability with MPPT, many
approaches have been proposed in the literature, such as techniques with adapted con-
stant voltage [3], fuzzy logic [4–6], neural Networks [7,8], perturbation and observation
(P&O) [9–12], and incremental conductance [13–15].

The choice of technique depends on factors such as speed and accuracy in tracking,
the level of complexity of the sensors used, and the cost of the necessary equipment. Con-
ventional techniques, such as perturbation and observation, and incremental conductance,
have easy implementation. Techniques based on artificial intelligence, such as particle
swarm optimization, and ant colony optimization, as well as techniques based on fuzzy
logic and artificial neural networks, have a greater degree of complexity and require greater
computational effort [16].

Regarding efficiency, two situations must be analyzed. When the system is subjected
to homogeneous levels of irradiance, when all its modules receive the same value of solar
power, conventional techniques are able to track the MPPT efficiently. However, when the
modules receive different levels of irradiance in a condition known as partial shading or
PSC (partial shading condition), the PV curve, due to the construction of the modules, has
more than one power peak, one of which is a global peak and the others, with lower power
values, are known as local peaks [17].

In this condition, conventional techniques track the first peak found, which can be
a global or a local one, resulting in a loss of power if tracking a local peak. Therefore, under
PSC, it is preferable to use techniques capable of distinguishing the power level between
the different peaks. In this case, the best examples are based on artificial intelligent concepts.
Several algorithms are used to track the maximum power point, as already mentioned
when they come across the LMPP points, and PSO (Particle Swarm Optimization), ACO
(Ant Colony Optimizer), and Gray Wolf Optimization (GWO) algorithm are used to solve
the problems associated with partial shading [18–20].

In our research, new hybrid techniques were implemented experimentally and theo-
retically. The proposed optimization system, based on a meta-heuristic SA, conducts the
operation of the boost converter to GMPP promptly and accurately under any of the shad-
ing conditions. To perform the MPPT, the SA algorithm is used separately. Its combination
with the P&O, initiating the SA-P&O algorithms, boosts converter operation to GMPP
under any of the conditions. To evaluate the performance of the SA and SA-P&O-based
MPPT algorithms, a comparison was made with the traditional MPPT algorithm, i.e., the
P&O method. The implemented MPPT techniques were compared and evaluated consider-
ing convergence time, the amplitude of the steady-state oscillations in the MPP, and the
methods’ efficiencies during uniform irradiance and partial shading.

2. System Description

Figure 1 shows the PV system used in this study. The 60 Wp PV panel is connected by
the DC-DC boost converter and a single-phase inverter for connection to the grid. A Voltage
Source Inverter (VSI) is used to perform the DC/AC conversion, and a connection filter of
the L type is used to connect the VSI to the grid.
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Figure 1. PV grid-connected system.

The block diagram of the MPPT method is shown in Figure 1, where Ipv and Vpv
are the current and voltage measurements of the photovoltaic panel, respectively. Vref is
a reference current provided by the algorithm for operating the arrangement at maximum
power, which is compared with the operating current of the PV panel. The result of this
comparison constitutes the input of a proportional integral (PI) controller that produces
a modulation index of the PWM connected to the switching device of the boost converter
connected to the photovoltaic array. In the double-stage PV system used in this work, the
single-phase DC-AC inverter is responsible for both the voltage control of the DC bus and
the current injected into the grid.

2.1. PV Model

Solar cells are made of a semiconductor material, usually silicon (Si). Each cell has
a thin layer of type n material and another with a greater thickness of type p material,
forming the p-n junction. When exposed to photons from solar radiation, the electrons
are energized, creating free charge carriers that move between the bands of the material,
causing a potential difference between the cell terminals from the electric field, generating
an electric current. The photocurrent effect is represented by a current source, as shown
in Figure 2, where Rsh and RS represent the parallel and the series resistance, respectively.
Both are intrinsic elements of the cell [21].
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When the solar cell is irradiated with light, an equivalent circuit of the solar cell can be
drawn, as shown in Figure 2. At this time, the output current of the solar cell is as shown in
Equation (1) [22]:

IL = Iph − Io

[
exp

(
q(VL + IL·Rs)

A·Vt

)
− 1

]
−

(
VL + Ns· IL·Rs

Rsh

)
(1)

where Io is the leakage current or reverse saturation of the diode [A], q is the electron
charge (1.60217646 × 10−19 C), k is the Boltzmann constant (1.3806503 × 10−23 J/K), T
is the junction temperature p-n [K], A is the diode ideality factor (1 ≤ to ≤ 2), NS is the
number of cells connected in series, and Vt is the panel thermal voltage given by:

Vt =
K·T

q
(2)

The behavior of a photovoltaic panel is thus described by two characteristic curves,
current-voltage and power-voltage. These curves are usually available from the PV manu-
facturer and are of great importance because their values change according to the tempera-
ture and radiation conditions. The characteristics of the voltage-power and voltage-current
characteristic curves of a photovoltaic module are shown, respectively, in Figure 3a,b for
radiation of 1000 W/m2 and a temperature of 25 ◦C.
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Figure 3. Characteristic curves of a photovoltaic module: (a) voltage-current curve, (b) voltage-
power curve.

It is essential to highlight the five main points of the characteristic curves: the open-
circuit voltage Voc; the short-circuit current Isc; maximum power Pmax, and the maximum
voltage and current values related to Pmax, Vmax, and Imax. The appearance of the graph
appearance in Figure 3 varies with temperature and irradiation. On cloudy days, the
irradiation is low, and the current produced is proportionately low. For days when the
temperature is higher, the voltage decreases proportionately. Equations (3) and (4) show
the dependency of the open circuit voltage on the PV open circuit voltage.

Voc =
K·T

q
ln
(

Jsc

Jo
+ 1

)
(3)
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dVoc

dT
=

(
Voc

T

)
+

K·T
q

(
1
Jsc

dJsc

dt
− 1

Jo

dJo

T

)
(4)

where, Jsc = Jph, Voc is related to Jsc and Jo, and hence to the bandgap (Eg).
MPPT methods can be classified depending on different factors or characteristics

that differentiate them from one another, such as their implementation complexity or
convergence speed, which cause their efficiency to vary. There are a large number of
characteristics by which methods can be classified. Table 1 shows the main maximum
power point monitoring methods according to their different characteristics.

Table 1. Main characteristics of the maximum power point tracking methods.

Method Analog
or Digital

Setting
Parameters

Speed of
Convergence

Implementation
Complexity

Parameters
Sensed

Method
Type Cost

P&O Both of them No It varies High Voltage
and current Direct High

Inc Conductance Digital No It varies High Voltage
and current Direct High

Ripple
Correlation

Control
Analog Yes Fast High Voltage

and current Direct High

Maximization of
voltage or

current on load
Analog No Fast Low Voltage Direct Low

Curve fitting Digital Yes Varies Low Voltage
and current Indirect Low

Look-up table Digital Yes Average Average Voltage
and current Indirect Low

Factional open
circuit voltage Both Yes Average Average Voltage

and current Indirect Low

Factional short
circuit voltage Both Yes Average Average Voltage

and current Indirect Low

Fuzzy logic Digital Yes Fast High Voltage
and current Both High

Neural Network Digital Yes Fast Average Voltage
and current Both High

PSO, ACO,
GWO, SA. Digital Yes Fast High Voltage

and current Both High

2.2. Shading Effect

Throughout the day, variations in irradiation and temperature occur naturally. There
are also situations, such as total or partial shading on the module due to clouds, trees,
leaves, and buildings that cause sudden variations in these levels, as shown in Figure 4.
This causes power reduction. As the cells are usually connected in series, all modules are
affected, in addition to causing the risk of damage to the modules due to the so-called
hotspot that can lead to rupture of the glass and melting of polymers that are part of the
module structure [23].

Continuing with the model of the equivalent circuit of the photovoltaic panel, the effect
that partial shading has in photovoltaic systems is considered below. For this, four panels
connected in series are shown (Figure 5). The four panels, seen as an equivalent circuit, are
also shown in Figure 6. A photovoltaic module is partially shaded when it does not receive
the total available irradiation in one or more modules in the chain. Some causes of this
shading are trees, birds, snow, and buildings, among others.
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If we take the example of Figure 6 and shade a panel of the array (Figure 7), the
shadow at module 2 does not allow the supply of current, and there is a limitation in its
supply, so the equivalent circuit, in this case, would be the one shown in Figure 8.
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It can be seen that because the source does not receive radiation, it does not supply
current and behaves like an open circuit, so the current flows through the resistance
Rsh2 (Figure 9).
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In Figure 10, a characteristic curve is represented when some of a module’s cells are
shaded. The algorithm needs to be robust and efficient to be able to detect the maximum
power point and prevent it from being in a top call place. Due to partial shading, the
modules have different IV curves. When they are connected in series or parallel, different
IV curves are superimposed, generating an IV curve with multiple inflections and, conse-
quently, a PV curve with various maximum power points, as shown in Figure 10. Under
the effect of PSC, the system has a considerable loss of control, which can become even
more significant if it does not have a proper MPPT method.
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3. MPPT Using Simulated Annealing

The simulated annealing method in Figure 11 is based on a metallurgy technique, and
involves controlled heating and cooling of a material. This technique aims to reduce defects
by increasing the size of a material’s crystals.
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The heating and cooling of the material affect the temperature and the free thermo-
dynamic energy. Although the same decrease in temperature causes the same decrease in
free thermodynamic energy, cooling at a given rate causes a more significant reduction in
free energy.

This temperature reduction approach is implemented in the simulated annealing
algorithm as it is the optimum solution [24–26].

The method starts with a random solution, Pi and selects a neighboring solution Pk.
After calculating the cost of the two solutions, their difference ∆P = Pk − Pi is calculated. If
∆P is less than zero, then the value of the objective function of the neighboring solution is
better, and replaces the current solution Pi with Pk.

If ∆P is greater than or equal to zero, the solution with the worst result is accepted.
The value of this probability decreases with the number of iterations. If the value of pr is
more significant than a random number between zero and one, the solution with the worst
result is accepted. This procedure is repeated until a stopping criterion is satisfied.

One of the main advantages of this algorithm is that it allows testing solutions that
differ from those currently available. It thus minimizes the possibility of the energy
generated by the system oscillating over a local maximum point indefinitely.

To extract the MPPT of a PV module, the probability of acceptance is given by [27]:

Pr = exp
(

Pk − Pi
Tk

)
(5)

where Pk is the measured power, Pi is the best power defined up to the time of the search,
and the parameter Tk corresponds to the current variable parameter with iterations (called
temperature) of the search process. Several methods can define parameter reduction;
however, there are two commonly used methods. One consists of geometric reduction,
which is given by [28,29]:

Tk = α T(k − 1) (6)

where α < 1 is the geometric cooling constant T(k − 1). Another method for updating the
parameter Tk was proposed by [30], and calculated as follows:

Tk =
T(k − 1)

1 − β T(k − 1)
(7)

where β controls Lundy’s cooling schedule; however, regardless of how Tk is updated, this
method needs to be restarted when changes in the conditions of the environment occur.
The first equation for Tk is best used since there is no need to restart the calculations in the
case of environmental changes.

3.1. Perturbation and Observation (P&O) Algorithm

The P&O method is based on the modification of the trip ratio or duty cycle (D) of
the boost converter that modifies the value of the current supplied by the photovoltaic
panel. This method consists of monitoring the board operating voltage (Vpv); for example,
if the voltage rises (disturbance) and the power drawn by the load increases (observation)
it means that the operating point has moved towards the maximum power point, at which
point the operating voltage should be disturbed in the same direction. By contrast, if the
power extracted by the load decreases, the operating point has moved in the opposite
direction to the maximum power point as evidenced in the flow diagram in Figure 12.
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3.2. SA-P&O Algorithm

The SA-P&O algorithm uses the SA technique to reach a point close to the global
maximum power point. Soon after finding it, the algorithm switches to the P&O method,
which starts with referencing the best power point found defined by the SA method.
Figure 13 shows the flowchart for this algorithm, the SA-P&O MPPT. Figure 13 shows the
SA-P&O hybrid MPPT algorithm.
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4. Results and Discussion

The performance of the SA-P&O-based MPPT algorithm was evaluated using experi-
mental results for the system configuration shown in Figure 14. An empirical analysis was
performed using Microlabbox for the implementation of the MPPT, a DC-DC boost con-
verter, a DC/AC converter to adapt the voltage to the connection grid utility, and a passive
L filter were used. The SA-P&O-based MPPT algorithm was compared to the traditional
P & O-based MPPT algorithm. Both MPPT algorithms were compared considering the
following cases: (1) the photovoltaic arrangement operates in STC (as shown in Figure 5),
and case (2) when the photovoltaic arrangement works under partial shading conditions
(as shown in Figure 7). In the latter case, two photovoltaic panels were partially shaded, in
which the first was subjected to 300 W/m2 solar radiation, while the second was subjected
to 500 W/m2 solar radiation.
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Figure 14. PV system setup.

The MPPT algorithms were evaluated under two different operating conditions of the
PV system. Figure 15a shows the first testing condition characteristic curves (case 1) of the
PV module, Figure 15b shows the characteristic curves for case 2, and Figure 15c shows
case 3. A transparent sheet covered parts of the PV array to simulate partial shading with
different patterns in cases 1, 2, and 3.
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Figure 15. PV characteristics: (a) case 1, (b) case 2, (c) case 3.
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The experimental results presented in this section show the power extracted from the
PV array and the voltage and current at the array’s output terminals obtained for each
MPPT algorithm.

Figure 16 illustrates the power extracted from the PV array operating under partial
shading conditions using the P&O algorithm. As shown in Figure 15, the characteristic
curve Ppv × Vpv has one GMPP and two LMPP, with the GMPP equal to 60 W and the
LMPP equal to 30 W. The P&O method reached the GMPP first and maintained this value.
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Figure 17 shows the power extracted from the PV array for the SA-based MPPT
algorithm. GMPP was achieved, and the method produced a power of 60 W. In addition,
this MPPT method resulted in reduced power fluctuations in steady-state. The results
demonstrate that the SA-P&O-based MPPT algorithm can quickly convert to GMPP when
the PV array operates under partial shading conditions. In addition, the proposed MPPT
method consistently showed less power fluctuation and greater efficiency in tracking when
compared to the traditional method (P&O).

Figures 16 and 17 show that the P&O method takes longer to achieve the MPPT and
suffers from steady-state ripples more than the SA-P&O. Figure 18 shows the PV voltage,
current, and power when the SA-P&O method was used under partial shading conditions
when the maximum local and global forces, respectively, were 22 W and 29 W. GMPP was
achieved with low power oscillation and short convergence time. Experimental results
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involving power, voltage, and current of the PV array of the P&O method are shown in
Figure 19. The results indicates that the MPPT algorithm based on the P&O way did not
reach the GMPP, becoming fixed at an LMPP of 22 W. Moreover, the MPPT algorithm
showed more significant power fluctuations and had the longest convergence time.
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Figure 17. Experimental results of SA-P&O MPPT considering case 1.
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Figure 18. Experimental results of SA-P&O MPPT considering Case 2 (a) PV voltage, (b) PV current,
and (c) PV power.



Energies 2023, 16, 577 14 of 17

Energies 2023, 16, x FOR PEER REVIEW 14 of 18 
 

 

Figure 18. Experimental results of SA-P&O MPPT considering Case 2 (a) PV voltage, (b) PV current, 

and (c) PV power. 

0.0 s

0 [V]

15 [V]

3.2 [A]

0 [A]

59.5 [W]

0 [W]

2.7 [A]

21.5 [W]

9 [V]

10.0 s

(a)

(b)

(c)

 

Figure 19. Experimental results of P&O MPPT considering Case 2. (a) PV voltage, (b) PV current, 

and (c) PV power. 

In case 3, the PV array was exposed to nominal irradiance, and then a part of the PV 

was covered by the transparent sheet. The method tracked the global MPP at 36.5 W with-

out fixing on a local MPP, as shown in Figure 20. However, the P&O process fixed on local 

MPP tracking at 12.5 W and failed to find the global MPP, as shown in Figure 21. 
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and (c) PV power.

In case 3, the PV array was exposed to nominal irradiance, and then a part of the
PV was covered by the transparent sheet. The method tracked the global MPP at 36.5 W
without fixing on a local MPP, as shown in Figure 20. However, the P&O process fixed on
local MPP tracking at 12.5 W and failed to find the global MPP, as shown in Figure 21.

By comparing the performance of P&O and SA-P&O methods, it was found that
the tracking time was reduced by 18.5% when the latter method was used, and the most
important advantage was avoiding the LMPP.
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and (c) PV power.
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5. Conclusions

We present the results of implementing an SA-P&O-based MPPT algorithm for extract-
ing the maximum power from photovoltaic arrays. The efficiency of the MPPT algorithm
was validated by comparison with the MPPT P&O algorithm. From the results obtained
using computational simulation, it was demonstrated that the SA-P&O-based MPPT al-
gorithm was able to quickly converge to GMPP when the photovoltaic arrangement was
operating in STC, and when it is subjected to partial shading conditions. In addition, use of
the SA-P&O-based MPPT algorithm resulted in reduced power oscillations in steady-state
and greater tracking efficiency in the search of the GMPP.

Therefore, the SA-P&O-based MPPT method has an excellent performance in dealing
with local and global maximums in PV systems subjected to partial shading, maximizing
the system’s overall efficiency. Since our approach simulated conditions of real irradiation,
our results indicate excellent applicability of the technique to any PV system for delivering
maximum power output regardless of irradiation conditions and shading. As demonstrated
quantitatively, the proposed optimization method allows attainment of the best possible
power, which can guarantee maximum energy production from an entire PV system, with
the shortest financial return time for the investor.

Our results show that the SA-P&O method followed the GMPP efficiently in all STC
and PSC operating conditions and reduced transient periods, which increased the generated
energy and reduced the convergence time under all operating conditions. In addition to the
accurate converge to GMPP, SA-P&O requires fewer parameters than other metaheuristics
methods. The disadvantages of the proposed method are oscillations around the MPP, and
the complex computations required.
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