Treatment of Agricultural Wastewater Containing Pesticides by Hydrophytic Method as a Preliminary Method of Water Recovery
Abstract
:1. Introduction
2. Materials and Methods
2.1. Technological Procedure
2.2. Analytical Procedure
3. Results and Discussion
4. Conclusions
- Constructed wetland beds operating in a system with subsurface vertical effluent flow can be used with great success to recover water by decomposing selected pesticides applicable when spraying agricultural crops.
- The use of three different layers (0.15, 0.40 and 0.15 m) of chemically inactive granulometrically differentiated (2 ÷ 8, 8 ÷ 20 and 20 ÷ 80 mm) filter material influenced the high treatment efficiency. During the entire experimental period, the wastewater feeding the bed was treated satisfactorily.
- The determined parameters of pesticide half-life in DT50 wastewater ranged from 2.33 to 3.29 for microorganisms and 3.42 to 3.79 without microorganisms. Thus, it can be unequivocally concluded that the biopreparation has influence on reducing the half-life of the tested pesticides.
- The determined parameters of the theoretical time to reach the concentration of 0.01 mg/L t0.01 were about 22 and 38 days for microorganisms and 33 and 44 days without microorganisms. Thus, it can be unequivocally concluded that the biopreparation has influence on reducing time of the tested pesticides.
- The applied biopreparation increased the efficiency of pesticide removal from wastewater and the DT50 decomposition time was reduced by up to about 1 day, while the t0.01 time was reduced by 11 days. This will make it possible in the future to design disposal stations for the working liquid of pesticides used for spraying agricultural crops, and thus recover water.
- Based on the results, a biobed system can be designed in the future to recover water from wastewater with pesticides.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
BFC | bioaccumulation factor, L/kg |
BOS, PYR | without microorganisms, - |
BOS/MIK, PYR/MIK | with microorganisms, - |
C0 | initial concentration at time t = 0, mg/L |
C0.01 | theoretical times to reach concentrations of 0.01, mg/L |
C0.05 | theoretical times to reach concentrations of 0.01, mg/L |
Ct | concentration at time t, mg/L |
CT50 | half-life days |
CE (V) | collision energy, |
CXP (V) | collision cell exit potential, |
D | diameter, m |
d10, d20, d50 | average grain diameter, mm |
DP (V) | declustering potential, |
DT50 | degradation time, days |
EC50 | toxicity determined as toxin effective concentration in the environment, which effects 50% of Daphnia magna population mg/L |
EP (V) | entrance potential, |
φ | granulation, mm |
F | surface area, m2 |
H | depth, m |
HL | Hydraulic load, m3/m2/d |
Hn | height bed filling, m |
k | process rate constant, 1/d |
Kfoc | soil adsorption and mobility coefficients, mL/g |
LC | lethal dose, mg/L |
LD50 | lethal dose, mg/kg |
ME | matrix effect, |
mrp | mass deposition, % |
OC | Organic compound, g BZT5/m2/d |
R | recovery, |
R2 | coefficient of determination, - |
RSD | relative standard deviation, |
t | duration of experiment, d |
U | extended measurement uncertainty, |
References
- Bugajski, R.; Satora, S. Bilans ścieków dopływających i dowożonych do oczyszczalni na przykładzie wybranego obiektu. Infrastrukt. I Ekol. Teren. Wiej. 2009, 5, 73–82. [Google Scholar]
- Bergel, T.; Bugajski, P. Wpływ czynników na bezzwrotne zużycie wody w gospodarstwach wiejskich. Gaz Woda I Tech. Sanit. 2008, 9, 60–63. [Google Scholar]
- Heidrich, Z.; Stańko, G. Leksykon Przydomowych Oczyszczalni Ścieków; Seidel Przywecki Sp. z o.o; Wydawnictwo: Józefosław, Poland, 2007. [Google Scholar]
- Bergel, T.; Kaczor, G. The volume of wastewater discharged from rural households to the sewer system in the light of tap water consumption structure. Pol. J. Environ. Stud. 2007, 16, 109–112. [Google Scholar]
- Janoszka, B.; Bodzek, D.; Bodzek, M. Występowanie i oznaczanie wielopierścieniowych węglowodorów aromatycznych i ich pochodnych w wybranych osadach ściekowych. Arch. Ochr. Środ. 1997, 23, 55–67. [Google Scholar]
- Berg, A.K.; Peoples, R.S. Distribution of polichlorinated biphenyls in municipal wastewater treatment plant and environs. Sci. Tot. Environ. 1977, 8, 197–204. [Google Scholar] [CrossRef]
- Ignatowicz, K. Occurrence study of agrochemical pollutants in waters of Suprasl catchment. Arch. Environ. Prot. 2009, 35, 69–77. [Google Scholar]
- Ignatowicz, K.; Piekarski, J.; Skoczko, I.; Piekutin, J. Analysis of simplified equations of adsorption dynamics of HCH. Des. Water Treat. 2016, 57, 1420–1428. [Google Scholar] [CrossRef]
- Lozowicka, B.; Kaczynski, P.; Szabunko, J.; Ignatowicz, K.; Warentowicz, D.; Lozowick, J. New rapid analysis of two classes of pesticides in food wastewater by quechersliquid chromatography/mass spectrometry. J. Ecol. Eng. 2016, 17, 97–105. [Google Scholar] [CrossRef]
- Ignatowicz, K. Use of natural waste materials as sorbents for limiting the migration of pesticides from graveyards. Przemysł Chem. 2008, 87, 464–466. [Google Scholar]
- Ignatowicz, K.; Puchlik, M.; Łozowicki, J. Removal of pesticides from wastewater by the use of constructed wetlands. J. Ecol. Eng. 2020, 21, 219–223. [Google Scholar] [CrossRef]
- Ignatowicz, K. Application of energetic willow (Salix viminalis) for biosorption of soil contaminated with chloroorganic pesticides. Des. Water Treat. 2020, 199, 107–111. [Google Scholar] [CrossRef]
- Ozimek, T.; Dąbrowski, W. Removal of Pesticides and Polychlorinated Biphenyls from Municipal Wastewater by Reed Beds in A Constructed Wetland. J. Life Sci. 2014, 8, 563–569. [Google Scholar]
- Łaskawiec, E.; Fryczkowska, B.; Wyczarska-Kokot, J.; Dudziak, M. Physicochemical and ecotoxicological assessment of the fraction of impurities present in washings obtained in ultrafiltration and nanofiltration. Des. Water Treat. 2021, 216, 104–117. [Google Scholar] [CrossRef]
- Agudelo, C.R.M.; Jaramillo, M.L.; Peñuela, G. Comparison of the removal of chlorpyrifos and dissolved organic carbon in horizontal sub-surface and surface flow wetlands. Sci. Total Environ. 2012, 431, 271–277. [Google Scholar] [CrossRef] [PubMed]
- Agudelo, R.M.; Machado, C.; Aguirre, N.J.; Morató, J.; Peñuela, G. Optimal conditions for chlorpyrifos and dissolved organic carbon removal in subsurface flow constructed wetlands. Inter. J. Environ. Anal. Chem. 2011, 91, 668–679. [Google Scholar] [CrossRef]
- Agudelo, R.M.; Peñuela, G.; Aguirre, N.J.; Morató, J.; Jaramillo, M.L. Simultaneous removal of chlorpyrifos and dissolved organic carbon using horizontal sub-surface flow pilot wetlands. Ecol. Eng. 2010, 36, 1401–1408. [Google Scholar] [CrossRef]
- Anwar, S.; Liaquat, F.; Khan, Q.M.; Khalid, Z.M.; Iqbal, S. Biodegradation of chlorpyrifos and its hydrolysis product 3,5,6-trichloro-2-pyridinol by Bacillus pumilus strain C2A1. J. Hazard. Mater. 2009, 168, 400–405. [Google Scholar] [CrossRef] [PubMed]
- Garrett, P. Electrochemical degradation of some pesticides in agricultural wastewater by using modified electrode. Int. J. Agric. Environ. 2013, 1, 53–61. [Google Scholar]
- Gajewska, M.; Obarska-Pempkowiak, H. 20 lat doświadczeń z eksploatacji oczyszczalni hydrofitowych w Polsce. Rocz. Ochr. Sr. Wydaw. Srod. Pomor. Tow. Nauk. Ochr. Sr. 2009, 11, 875–888. [Google Scholar]
- Haley, M.G.; Rodgers, M.; Mulqueen, J. Treatment of wastewater using constructed wetlands and intermittent sand filters. Bioresour. Tech. 2007, 98, 2268–2281. [Google Scholar] [CrossRef]
- Puchlik, M.; Ignatowicz, K.; Dąbrowski, W. Ifluence of bio-preparation on wastewater purtification rocess in constructed wetlands. J. Ecol. Eng. 2015, 15, 159–163. [Google Scholar] [CrossRef] [Green Version]
- FOCUS. Guidance Document on Estimating Persistence and Degradation Kinetics 602 From Environmental Fate Studies on Pesticides in EU Registration. Report of the 603 FOCUS Work Group on Degradation Kinetics. EC Document Reference 604 Sanco/10058/2005 version. 2.0: 434. 2006. Available online: https://esdac.jrc.ec.europa.eu/public_path/projects_data/focus/dk/docs/finalreportFOCDegKinetics.pdf (accessed on 21 November 2022).
- Smalling, K.L.; Reilly, T.J.; Sandstrom, M.W.; Kuivila, M.K. Occurrence and persistence of fungicides in bed sediments and suspended solids from three targeted use areas in the United States. Sci. Tot. Environ. 2013, 447, 179–185. [Google Scholar] [CrossRef] [PubMed]
- Reilly, T.J.; Smalling, K.L.; Orlando, J.L.; Kuvila, K.M. Occurrence of boscalid and other selected fungicides in surface water and ground water in three targeted use areas in the United States. Chemosphere 2012, 89, 228–234. [Google Scholar] [CrossRef] [PubMed]
- LUWG 2010. LUWG (Landesamt für Umwelt, Wasserwirtschaft und Gewerbeaufsicht (LUWG) Rheinland-Pfalz) PSM-Wirkstoffe In Oberflächengewässern. Ergebnisse Und 642 Bewertungen Der Messprogramme 2008/2009. LUWG-Bericht 7/2010.
- Papaevangelou, V.A.; Gikas, G.D.; Vryzas, Z.; Tsihrintzis, V.A. Treatment of agricultural equipment rinsing water containing a fungicide in pilot-scale horizontal subsurface flow constructed wetlands. Ecol. Eng. 2017, 101, 193–200. [Google Scholar] [CrossRef]
- Georgios, D.G.; Pérez-Villanueva, M.; Tsioras, M.; Alexoudis, C.; Pérez-Rojas, G.; Masís-Mora, M.; Lizano-Fallas, V.; Rodríguez-Rodríguez, C.E.; Vryzas, Z.; Tsihrintzis, V.A. Low-cost approaches for the removal of terbuthylazine from agricultural wastewater: Constructed wetlands and biopurification system. Chem. Eng. J. 2018, 335, 647–656. [Google Scholar]
- Fenoll, J.; Ruiz, E.; Hellín, P.; Lacasa, A.; Flores, P. Dissipation rates of insecticides and fungicides in peppers grown in greenhouse and under cold storage conditions. Food Chem. 2009, 113, 727–732. [Google Scholar] [CrossRef]
- Gajbhiye, V.T.; Gupta, S.; Mukherjee, S.; Singh, S.B.; Singh, N.; Dureja, P.; Kumar, Y. Persistence of Azoxystrobin in/on Grapes and Soil in Different Grapes Growing Areas of India. Bull. Environ. Contam. Toxicol. 2011, 86, 90–94. [Google Scholar] [CrossRef] [Green Version]
- Krone-Davis, P.; Watson, F.; Los Huertos, M.; Starner, K. Assessing pesticide reduction in constructed wetlands using a tanks-in-series model within a Bayesian framework. Ecol. Eng. 2013, 57, 342–352. [Google Scholar] [CrossRef] [Green Version]
- Lyu, T.; Zhang, L.; Xu, X.; Arias, C.A.; Brix, H.; Carvalho, P.N. Removal of the pesticide tebuconazole in constructed wetlands: Design comparison, influencing factors and modelling. Environ. Pollut. 2018, 233, 71–80. [Google Scholar] [CrossRef] [Green Version]
- Ruiz-Hidalgo, K.; Chin-Pampillo, J.S.; Masís-Mora, M.; Carazo, E.; Carlos, R.; Rodríguez-Rodríguez, E. Degradation of carbofuran by Trametes versicolor in rice husk as a potential lignocellulosic substrate for biomixtures: From mineralization to toxicity reduction. Process Biochem. 2014, 49, 2266–2271. [Google Scholar] [CrossRef]
- Chen, X.; He, S.; Liang, Z.; Li, Q.X.; Yan, H.; Hu, J.; Liu, X. Biodegradation of pyraclostrobin by two microbial communities from Hawaiian soils and metabolic mechanizm. J. Hazard. Mat. 2018, 354, 225–230. [Google Scholar] [CrossRef] [PubMed]
- Felis, E.; Sochacki, A.; Sywia Magiera, S. Degradation of benzotriazole and benzothiazole in treatment wetlands and by artificial sunlight. Water Res. 2016, 104, 441–448. [Google Scholar] [CrossRef] [PubMed]
Lp. | Layer | Granulation | Height |
---|---|---|---|
φ (mm) | Hn (m) | ||
1 | A | 2 ÷ 8 (gravel) | 0.15 |
2 | B | 8 ÷ 20 (gravel) | 0.40 |
3 | C | 20 ÷ 80 (stones) | 0.15 |
Lp. | Parameter | Symbol | Unit | Value |
---|---|---|---|---|
1 | Diameter | D | (m) | 0.5 |
2 | Surface area | F | (m2) | 0.2 |
3 | Depth | H | (m) | 0.7 |
4 | Hydraulic load | HL | (m3/m2/d) | 0.1 |
5 | Organic compound load | OC | (g BZT5/m2/d) | 57–730 |
Active Substance (Chemical Group) | BFC (L/kg) | LD50 (mg/kg) Mammals | LC (mg/L) Fish | DT50 * (days) | Kfoc ** (mL/g) | EC50 *** (mg/L) | CT50 (days) |
---|---|---|---|---|---|---|---|
Boscalid Carboxamide (Anilid) | 21 Low limit | 721 | 21.3 | 118 | 772 | 5.33 | 0.42 |
Pyraclostrobin Strobilurin (Methoxycarbaminian) | - Low limit | 884 | 100 | 32 | 9315 | 0.016 | - |
Pesticides | Retention Time (min) | Quantitative/Qualitative Determination | Qualitative Determination | DP (V) | EP (V) | ||||
---|---|---|---|---|---|---|---|---|---|
Fragmentation Reaction (m/z) | CE (V) | CXP (V) | Fragmentation Reaction (m/z) | CE (V) | CXP (V) | ||||
Boscalid | 10.33 | 343 > 307 | 27 | 16 | 343 > 140 | 25 | 8 | 116 | 10 |
Pyraclostrobin | 10.66 | 388 > 194.1 | 17 | 12 | 388 > 163.1 | 33 | 10 | 41 | 10 |
Pesticides | R2 | 0.001 | 0.05 | 0.5 | 10.0 | 100.0 | U | ME | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(mg/L) | |||||||||||||
R | RSD | R | RSD | R | RSD | R | RSD | R | RSD | ||||
(%) | |||||||||||||
Boscalid | 0.99 | 89 | 11 | 93 | 6 | 90 | 11 | 116 | 8 | 100 | 11 | 13 | 10 |
Pyraclostrobin | 0.99 | 102 | 9 | 101 | 7 | 106 | 3 | 106 | 7 | 102 | 14 | 11 | 11 |
Pesticides | C0 | k | DT50 | t0.05 | t0.01 |
---|---|---|---|---|---|
Boscalid | 30.564 | 0.183 | 3.79 | 35.04 | 43.87 |
Boscalid/MK | 30.564 | 0.211 | 3.29 | 30.42 | 38.05 |
Pesticides | C0 | k | DT50 | t0.05 | t0.01 |
---|---|---|---|---|---|
Pyraclostrobin | 8.124 | 0.203 | 3.42 | 25.08 | 33.01 |
Pyraclostrobin/MK | 8.124 | 0.298 | 2.33 | 17.08 | 22.48 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ignatowicz, K.; Łozowicki, J.; Łozowicka, B.; Piekarski, J. Treatment of Agricultural Wastewater Containing Pesticides by Hydrophytic Method as a Preliminary Method of Water Recovery. Energies 2023, 16, 660. https://doi.org/10.3390/en16020660
Ignatowicz K, Łozowicki J, Łozowicka B, Piekarski J. Treatment of Agricultural Wastewater Containing Pesticides by Hydrophytic Method as a Preliminary Method of Water Recovery. Energies. 2023; 16(2):660. https://doi.org/10.3390/en16020660
Chicago/Turabian StyleIgnatowicz, Katarzyna, Jakub Łozowicki, Bożena Łozowicka, and Jacek Piekarski. 2023. "Treatment of Agricultural Wastewater Containing Pesticides by Hydrophytic Method as a Preliminary Method of Water Recovery" Energies 16, no. 2: 660. https://doi.org/10.3390/en16020660
APA StyleIgnatowicz, K., Łozowicki, J., Łozowicka, B., & Piekarski, J. (2023). Treatment of Agricultural Wastewater Containing Pesticides by Hydrophytic Method as a Preliminary Method of Water Recovery. Energies, 16(2), 660. https://doi.org/10.3390/en16020660