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Abstract: When drinking water flows into the water distribution network from a reservoir, it is
exposed to the risk of accidental or deliberate contamination. Serious drinking water pollution
events can endanger public health, bring about economic losses, and be detrimental to social stability.
Therefore, it is obviously crucial to research the water contamination source identification problem,
for which scholars have made considerable efforts and achieved many advances. This paper provides
a comprehensive review of this problem. Firstly, some basic theoretical knowledge of the problem
is introduced, including the water distribution network, sensor system, and simulation model.
Then, this paper puts forward a new classification method to classify water contamination source
identification methods into three categories according to the algorithms or methods used: solutions
with traditional methods, heuristic methods, and machine learning methods. This paper focuses on
the new approaches proposed in the past 5 years and summarizes their main work and technical
challenges. Lastly, this paper suggests the future development directions of this problem.

Keywords: water distribution network; contamination source identification; heuristic algorithm;
machine learning

1. Introduction

Water is essential to human survival, and the drinking water system is a considerable
resource to human health and wellbeing relating to the material life, culture, society,
politics, and economy. Therefore, the safety of the water distribution system (WDS) plays
an important strategic role in maintaining public health and industrial growth [1]. While
drinking water quality is tested at water plants, the WDS is vulnerable to accidental or
deliberate attacks due to openness, accessibility, and the aging infrastructure, leading to
drinking water contamination during transportation to users. Berglund et al. believed that
the WDS would be threatened by pollution invasion, physical damage, connection facility
failure, and control attack, among which the number of papers on pollution invasion far
exceeded other types of threats [2]. The ways for pollution to invade pipe networks include
polluting water sources or pipe network nodes, incorrect pipe connections or pipeline leaks,
and the lack of water quality management [3]. In January 2014, chemical pollution occurred
in the Elk River, West Virginia, USA, resulting in a lack of direct drinking water supply
for more than 300,000 people within 5 days [4]. In May 2016, a faulty pipe connection in
Beijing’s water supply system accidentally led to graywater intrusion into drinking water
pipes. On 31 May of that year, Hong Kong’s drinking water was found to contain excessive
levels of lead, well above the World Health Organization’s highest level. Contamination
events of the WDS have always occurred and may still occur in the future. Due to the rapid
and unpredictable propagation of pollutants in the water distribution network (WDN), it is
important to quickly identify the contamination source to stop the spread of pollution.

To reduce the risk to the community, it is possible to strengthen the physical equipment
security of the WDS and place water quality monitoring sensors in the WDN. If water qual-
ity monitoring can be carried out at all points in the network, the WDS management would
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be much easier. However, due to high sensor procurement costs and budget constraints,
water quality sensors are deployed on several nodes in the WDN, and the observation data
obtained from a sparse set of sensors are limited. Considering the WDN with the sensor
network, the water pollution response system can be divided into three parts: (1) pollution
detection, where the water quality sensors are used to continuously detect water quality;
when the pollutant concentration detected by the sensors exceeds the threshold, the warn-
ing system will be triggered; (2) contamination identification, where, once contamination is
detected in the WDN, the extent of contamination needs to be assessed and the evolution
of contaminants within the network needs to be inferred; (3) pollution control, where, in
order to minimize the risk after detection, water companies need to make effective response
decisions [5].

The contamination source identification (CSI) is a complicated task to deduce pollution
source information from the water quality sensor observation data. It is often defined as
an inverse problem looking for a group of information about the contamination source,
including the location, injection time, mass, and diffusion range. Solving the CSI problem is
challenging. First of all, the data obtained from the sensors are limited, resulting in potential
uncertainty of the contamination source location [6]. Secondly, the scale and complexity
of the WDN affect the performance of the solutions. When the number of sensors in the
WDN is fixed, a larger WDN scale leads to a significant increase in the non-uniqueness of
the solution [7]. In addition, the changes in the flow velocity and water demand increase
the uncertainty, and the accuracy of sensor degree directly affects the performance of
the solutions.

Adedoja et al. reviewed the CSI problem, summarized the relevant literature before
2018, and divided the CSI algorithms into the simulation/optimization method, proba-
bilistic method, and other methods [8]. Gong et al. believed that the CSI problem was
characterized by multimodality, expensive computing, and uncertainty; hence, the litera-
ture was divided into three types on the basis of these three characteristics [9]. However,
this paper mainly focused on the simulation/optimization method. According to the exist-
ing research, the CSI solutions have been developed in three stages. Particle backtracking
was a commonly used method early, which traces the state of each node at the previous
timepoint by particles [7,10,11]. Then, with the development of the machine learning
methods, scholars began to use the Bayesian formula to calculate the probability that the
node is the contamination source [12–21]. At the same time, the simulation/optimization
framework based on optimization algorithms was proposed [22]. This method iteratively
searches the real contamination source by narrowing the difference between the sensor
data corresponding to the preset contamination source and the real sensor observation
data [23–37]. In recent years, many new types of research have emerged on solving the CSI
problem, especially the methods combined with deep learning, which provides new ideas
for the CSI problem. This paper reviews the relevant literature on the CSI problem and
focuses on the studies in the past 5 years. This paper classifies the CSI solutions according
to the algorithms or methods used into three categories: solutions with traditional methods,
heuristic methods, and machine learning methods. Moreover, this paper summarizes
the basic theories related to the CSI problem, so as to provide references for researchers
engaged in this field.

The remainder of the paper is structured as follows: Section 2 introduces the basic
theories related to the CSI problem; Section 3 classifies the CSI algorithms or methods in
recent years; Section 4 gives the future directions of the CSI problem.

2. Theory of Contamination Source Identification
2.1. WDN Model
2.1.1. Composition of WDN

The WDN is a complex system consisting of a set of spatially interrelated parts, which
can supply drinking water to consumers from different sources [38]. The WDN is mainly
divided into two parts. One is the node collection, including nodes, source(s), and tank(s).
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The other is the pipelines connecting the nodes and other components attached to the
pipelines such as the pumps and valves. Reservoirs are usually the sources of water, often
denoting underground water sources, lakes, and rivers. Pools can serve as the containers
and sources of water. The flow rate, velocity, and head loss of water in the WDN are
all different, affected by the diameter, length, roughness coefficient, and other pipeline
parameters. In the CSI problem, the advective transport and reaction are commonly
assumed to occur in the WDN, and there is a complete instantaneous mixing process at any
connecting node that receives the inflow of two or more pipeline flows [38]. This simplified
model makes it convenient to study, although it does not exactly correspond to reality.

Figure 1 shows a simplified WDN model, consisting of one reservoir, one pool, eight
nodes, and 12 pipelines. The black arrow represents the water flow direction. The asterisk
represents the contamination is injected from point A. The triangle represents that a water
quality sensor is placed at point E. Under the influence of water flow, pollutants will spread
to other locations in the WDN and be detected by the water quality sensor. It can be seen
from Figure 1 that the polluted water mainly flows in three directions: from point A to
point B to the pool, from point A to point D to point G, and from point A to point D to
point E. When the water quality sensor at point E detects that the pollutant concentration
exceeds the threshold value, the sensor will set off an alarm, indicating that a pollution
event has been detected.
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2.1.2. Hydraulic Model and Quality Model

Drinking water enters the WDN from a reservoir and is used at each node. The water
velocity and flow direction over time are called the hydraulic characteristics of WDN,
which can be calculated using the hydraulic energy of the inlet and outlet nodes [39]. The
water velocity and flow direction are determined by the pump power, water demand,
tank volume, and other factors. The water demand of different nodes is not constant
and usually changes daily or seasonally. Therefore, the hydraulic characteristics of WDN
need to be adjusted at any time to ensure the response to the water demand. With the
change in water velocity, the WDN presents a complex behavior, and the flow direction
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even changes in some cases [38]. The study of hydraulic characteristics is vital to the CSI
problem, and almost all simulation models are based on the hydraulic model. Creaco et al.
analyzed two nodal demand reconstruction methods, top-down deterministic and bottom-
up stochastic approaches, as well as their influences on the hydraulic model of WDN [40].
They also described the models for water demand pulse generation and the differences in
the modeling structures [41]. Some CSI methods also consider the uncertainty brought by
water demand, which makes the research more consistent with the reality [27,41–45].

Water quality is affected by agricultural and industrial discharges, and it needs to
be controlled in real time within qualitative and quantitative parameters. As chlorine is
commonly used as a water disinfectant in the WDS, it can be used as an indicator of water
quality deterioration [46]. In fact, the chlorine flows from the reservoir to network and
reacts in the pipeline, causing the chlorine concentration to gradually decrease. Therefore,
it is necessary to analyze the chlorine decay model according to the characteristics of decay
reaction kinetics and correctly estimate the residual chlorine content in the WDN. This is
called a water quality simulation. In most studies, the water quality simulation process
follows the chlorine decay model proposed in [47].

2.1.3. Sensor Network

The sensor network can obtain observation data by detecting contamination in the
WDN, which helps to quickly identify the contamination source features. The sensor
placement problem (SPP) is an independent problem from the CSI problem, but sensor
placement has a significant impact on the performance of the CSI methods [6].

The detection and the tracing of water pollution using sensor data are directly related
to the type of sensor. Different types of sensors can detect different types of pollutants.
There are two types of sensors. One type is for specific pollutants, such as sensors designed
for metal ion concentration detection. These sensors have excellent performance in the
detection of specific pollutants, but lack the detection ability of other pollutants. The other
type is for general pollutants, commonly used in the current WDNs. These sensors have
a general detection ability for most pollutants. Their detection indicators usually include
residual chlorine, temperature, pH, oxidation/reduction potential, electrical conductivity,
dissolved oxygen, total organic carbon, nitrogen, turbidity, and particle count. In addition,
sensors can also be divided into fixed sensors and mobile sensors. A fixed sensor is placed
in some fixed nodes, while a mobile sensor moves to other nodes with the flow of water
after being placed in the WDN. At present, most studies on the CSI problem are based
on the fixed sensor network, but researchers have also explored the application of mobile
sensors in the CSI problem [48].

The location of traditional water quality monitoring points in the WDS is determined
by experience, and the main points are set in dense urban areas. In the past 20 years,
the SPP has been defined as a single-objective or multi-objective optimization problem.
The optimization targets include the number of affected people, the number of detectable
pollution events, the length of contaminated pipelines, the quality of pollutants consumed
by users, and the detection time [49]. Hu et al. reviewed the SPP for water contamination
detection, focusing on optimization strategies and frameworks [50].

In addition to the type and location of sensors, the reality of “false positives and false
negatives” can also affect the identification of contamination. If the sensors fail to detect
contamination occurring in the WDN that the sensors should have detected, the sensor
reading is considered a false negative. If the sensors incorrectly detect contamination
and no event has occurred in the WDN that would explain the test, the sensor reading is
considered a false positive. Assuming that the response of sensors is continuous, these
situations impact the CSI results and reduce the accuracy of the CSI algorithm [38].
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2.2. Simulation Model
2.2.1. Simulation Software

Simulation software has been widely used in the WDS management because of its
ability to simulate pollution scenarios. In the study of pollution tracing, the real pollution
data are sparse. On the one hand, for natural disasters and accidental intrusion affecting
water quality, water companies need to manage the pollution data safely. On the other
hand, the frequency of some deliberate attacks is very low, and the pollution data are rarely
observed or recorded. In reality, it is impossible to conduct real physical experiments in
the WDN. Due to the lack of data, many research communities have developed modeling
tools and frameworks that can provide simulations of potential contamination dispersal
and control measures.

Berglund et al. reviewed the simulation modeling of WDS [2]. Most frameworks
use hydraulic modeling, which can calculate the water flow direction, flow rate, and
water quality transport processes. Some studies use graph theory to represent the pipe
network, emphasizing the connection between nodes. Some tools and frameworks have
been developed into software that combines the simulation of the underlying pipe network
with statistical models and optimization methods to facilitate the study and management
of the WDS. Table 1 lists the simulation software commonly used in the CSI problem and
the functions they have.

Table 1. Modeling tools for CSI.

Software Description Hydraulic Simulation Risk Assessment Mitigation Response and
Recovery

EPANET Hydraulic and quality
modeling

√
— — —

EPANET-MSX Multispecies modeling
√

— — —

EPANET-RTX Integration with
SCADA

√
— — —

TEVA-SPOT
Contamination

simulation and sensor
placement

√ √ √
—

WST Response actions to
contamination

√
—

√ √

CANARY Event detection — — —
√

Among the simulation software listed above, EPANET is the most widely used, de-
veloped by the United States Environmental Protection Agency. The underlying code is
open-access and implemented by the C program. It can carry out hydraulic and water
quality analysis for different types of the WDS by adopting a simplified approach to water
quality based on advective transport and some simplified reaction kinetics [51]. EPANET
can set the configuration of water source and pump, simulate the reaction of water flow
with contact walls such as pipes and water head, and simulate the tracking of water source.
EPANET can also use N-order reaction kinetics to simulate water quality reactions, simulate
the reaction process of reactive substances, and simulate the change process of tracers of
nonreactive substances over time.

EPANET can set the source water quality for each node, which can simulate the
pollution intrusion scenario. Pollutants may enter from any node of the pipe network
at any time. By injecting a certain concentration of pollutants into a node or several
nodes of the pipe network, EPANET is invoked for hydraulic and quality simulation, and
continuous data detected by sensors can be obtained. This allows a complete simulation of
pollution intrusion. The source water quality parameters to be set include water demand
mode, source water quality, sensor location, hydraulic simulation time, and pollution
injection mode.

Models for hydraulic and water quality simulation have been constantly studied.
The standard version of the EPANET model solves the advective transport equation by
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solving a mass balance of the fundamental plug flow substance that considers the advective
transport and kinetic reaction processes. However, this method is limited exclusively to
monitoring the advective transport and fate of a single chemical species, such as fluoride,
which can be used in a tracer study or free chlorine to study the decay of disinfectants. To
consider multiple and interacting chemical species, an extension of the EPANET model
called multispecies extension (EPANET-MSX) was developed [52], capable of modeling
the behavior of any chemical species within water networks. In addition, to consider
dispersive processes, intrinsic to transport mechanisms and relevant in the case of laminar
flow regimes, Piazza et al. proposed the EPANET dynamic dispersion model, in which
diffusive–dispersive processes in two dimensions (axial and transverse) for laminar flow
regimes were considered [53].

2.2.2. WDN Data

The CSI problem has corresponding benchmarks, which consist of pipe network
data with supporting hydraulic and water quality models. The Center for Water Systems
provides examples of WDN used by various researchers in the literature as benchmarks.
The network data include basic network information, simulation input files, and other
information that might be used in network analysis. Table 2 shows the benchmark network
commonly used in the CSI research and the number of nodes, pipes, sources, tanks, and
pumps, all of which can be used as input files of EPANET.

Table 2. Benchmark WDN for CSI.

WDN Node Pipe Source Tank Pump

Anytown 22 43 1 2 3
Net3 92 117 2 3 2

BWSN1 126 168 1 2 2
KY3 273 349 3 3 5
KY5 423 496 4 3 11

Wolf-Cordera 1782 1985 4 0 6
BWSN2 12,523 14,822 2 2 4

The CSI methods are not only tested on the benchmarks, but also tested on the real
pipe networks in some studies. For example, Tao et al. [17] and Xin et al. [54] adopted the
WDN in Zhenjiang City, Jiangsu Province, China. The model consisted of 3379 nodes, two
sources, and 3701 pipes. The research of Bazargan-Lari et al. was applied to the WDN in
District 19, south of Tehran [55].

3. CSI Methods/Algorithms

With the development of emerging algorithms and technologies, some early CSI
methods have gradually lost advantages with fewer updates. Furthermore, the new
methods derived from new technologies cannot be simply classified by the previous
labels, especially the research of integrated technologies. This paper classifies the CSI
solutions according to the algorithms or methods used into three categories: solutions with
traditional methods, with heuristic methods, and with machine learning methods. The
traditional methods include the mathematical method (MM) and topological properties of
pipe the network. Heuristic methods include the evolutionary algorithm (EA) and rough
set theory (RS). The machine learning methods include Bayesian, deep learning (DL), and
other machine learning (ML) algorithms. Since Adedoja et al. provided a comprehensive
summary of the studies before 2018, this paper does not reclassify this work, instead paying
more attention to the research from 2018 until now. In order to facilitate comparison, labels
classified according to solutions are still listed [8], in addition to the challenges brought by
uncertainty that many studies focused on. The overall content is shown in Table 3.
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Table 3. Literature review of CSI methods.

Work Algorithm/Method Solution Uncertainty

Rutkowski et al. [56] ML Other —
Yan et al. [57] EA Simulation/optimization —

Gong et al. [58] EA Simulation/optimization —
Sankary et al. [48] Bayesian Probabilistic

√

Sun et al. [59] DL Other —
Tinelli et al. [60] ML Other —

Yan et al. [61] EA Simulation/optimization
√

Yan et al. [62] EA Simulation/optimization —
Yan et al. [43] EA Simulation/optimization

√

Capano et al. [46] Topological Other —
Grbcic et al. [63] ML Other

√

Grbcic et al. [64] ML Other —
Marlim et al. [65] MM Other

√

Yan et al. [66] EA Simulation/optimization —
Bazargan-Lari et al. [55] RS Other

√

Butera et al. [67] MM Other —
Cai et al. [44] Bayesian Probabilistic

√

Grbcic et al. [68] ML Other —
Li et al. [69] EA Simulation/optimization —

Lucin et al. [70] Topological Simulation/optimization —
Qian et al. [71] DL, EA Simulation/optimization

√

Yan et al. [45] EA Simulation/optimization
√

Yan et al. [72] EA Simulation/optimization —
Zhou et al. [73] DL Other —
Gong et al. [74] EA Simulation/optimization —

3.1. Traditional Methods

Due to the existence of a series of physical models of the WDN, such as hydraulic
characteristics, topological properties of the network, and the particularity of pollutant
transport, some traditional methods can be used to solve the CSI problem. These meth-
ods are not limited to mathematical methods, including particle backtracking method
(PBA) [7,10,11], origin tracking method [75], mixed quadratic programming [76], and
topology properties of the pipe network or pollutant transmission properties.

Capano et al. proposed the dynamics of network pollution method, connecting the
pollution matrix and the network topology to identify the nodes or paths that are most
sensitive to pollution. They might be the key nodes or paths that help the diffusion of
pollutants, which can ultimately be traced back to the pollution source node [46]. The
importance linked to the topology determines the application conditions of the method, as
it makes it possible to define a priori and absolutely the necessary measurement points.

Marlim et al. introduced the contamination-probable setting identifier, which mainly
solved the uncertainty caused by changes in water demand and sensor misreading. The
identifier applied the spatial filter based on backtracking to acquire all possible settings,
thereby focusing on reducing the number of suspect injection location. This method could
identify the contamination setting with a reduced number of sensors. However, it did not
optimally locate the sensors, revealing that sensor information significantly affects model
performance [65].

Inspired by the Kalman filter to solve the groundwater pollution source identification,
Butera et al. applied it to solve the CSI problem. The experiment was carried out in
Anytown network, which verified that Kalman filter could be applied in the field of the
water supply system [67]. However, the sensors were located in all nodes of the network.
This is unrealistic and not conducive to transplanting the method to a larger network.



Energies 2023, 16, 705 8 of 14

Lucin et al. proposed a search space reduction method. For each potential pollution
source node, an extreme pollutant scenario was simulated with an unrealistic large con-
tamination amount constantly being injected at the analyzed node. If the sensor did not
record the pollution, the node was considered not a pollution source [70]. The method
uses a forward simulation model, which can be conducted easily in large-scale networks,
as well as on multiple processors, due to the single instruction multiple data nature of
the method’s computational process. The accompanying optimization algorithm of this
method is the standard genetic algorithm (GA); thus, the computational efficiency can be
improved by using a more efficient optimization algorithm.

3.2. Heuristic Methods

Heuristic methods are widely used in optimization problems because of their univer-
sality. Therefore, when the CSI problem is defined as an optimization problem, it can be
solved by heuristic methods. Given a set of observed concentration data of sensor networks,
an inverse problem can be constructed by combining the WDN simulation model with
the optimization framework to identify the pollution source location and release history
characteristics. By minimizing the error between the simulated pollution concentration
obtained by the sensor in the WDN and the real observed concentration, this inverse prob-
lem iteratively searches for the most likely pollution source nodes. In this time, the CSI
problem is regarded as an optimization problem [22].

Yan et al. proposed corresponding solutions to different challenges of the CSI problem
based on EAs. In view of the expensive computing, they proposed to use the Gaussian
model as surrogate to replace part of the EPANET simulation to reduce the calculation
cost [57]. They combined it with the collaborative strategy to obtain non-unique solu-
tions [58]. They also optimized the surrogate to further improve the accuracy and efficiency.
Experiments were all carried out on the large-scale BWSN2 network [74]. In order to solve
the uncertainty of CSI problem, the Gaussian model and autoregressive model were used
to simulate the water demand [43], while the Poisson distribution was used in [45]. In
addition, the episodic CSI problem was studied [61]. In order to improve the objective
function and locate it in real time, the search for the contamination source begins immedi-
ately after the first detection of pollution data, instead of starting to trace it after collecting
sufficient sensor data. In other studies, the CSI problem was regarded as a multimodal
optimization problem. A niche GA was proposed to solve this multimodal problem with
an improved objective function and threshold [62]. A dynamic multimodal GA based
on domain knowledge was also proposed, and its effectiveness was verified on multiple
WDNs [72].

Bazargan-Lari et al. proposed a method integrating the rough set theory and Monte
Carlo simulation model. The method provided forecasts of water contamination zoning
map for determining the spread of contamination. The Monte Carlo simulation was used
to incorporate the uncertainties of pollution injection. This method was applied to the
southern Section 19 of the Tehran water supply network [55]. This work was the first to
explore the capabilities of rough set theory in monitoring the WDN, but lacked a study of
the checkpoint pattern.

Li et al. proposed an adaptive multi-population evolutionary optimization algorithm,
which adopted a collaborative strategy to identify location and pollution injection char-
acteristics, and used a feedback learning mechanism to adjust population size adaptively,
mainly to solve the problem of the non-uniqueness of solutions and real-time location [69].
The proposed method could find more candidate solutions than the adaptive dynamic
optimization technology framework, which is a classic method to solve the real-time CSI
problem [26].
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3.3. Machine Learning Methods
3.3.1. Bayesian

In the case of discrete probabilities, the Bayesian formula is used to calculate the
conditional probabilities associated with the occurrence of an event. On the basis of flow
path analysis, De Sanctis et al. used the Bayesian formula to update the posterior probability
of each node as the source of pollution over time [13]. On this basis, a large number of
studies based on the Bayesian probability method were conducted.

Sankary et al. expanded on a previous study [77], but used a Bayesian framework to
estimate the likelihood of injection upstream from the observed sensor data instead of equal
injection likelihood at all upstream junctions. The Bayesian method with mobile sensor
data provided better performance [48]. Compared to the fixed sensor system, this approach
could improve performance on the small network and improve the localization accuracy
on the larger network. The placement of fixed water quality sensors is to minimize the
expected population affected [78], which can be optimized through a better SPP algorithm.

Cai et al. devised a new Bayesian framework for the CSI problem with random water
demand. It integrated forward and backward tracking of contaminant movement with the
probability updating of suspicious contaminant events. The mathematical formulas for
proposed weighted Bayesian updating scheme were derived [44]. This study used binary
sensor data to update probability in real time. However, the injection duration was not
considered, which might be advantageous to probability updating.

3.3.2. Deep Learning

In recent years, the development of deep learning has promoted the progress of
research in various fields, including research on the CSI problem. Whether introducing
new methods or improving the efficiency of existing methods, deep learning has shown
certain advantages and will be a major trend of the development of the CSI algorithms in
the future.

Sun et al. proposed a method wherein the convolutional neural network (CNN) was
used to solve the CSI problem on the basis of consumer complaint information. According
to the automatic feature extraction of CNN, the proposed method explored the inherent
characteristics of complaint patterns corresponding to contaminant intrusion nodes [59].
However, the recognition accuracy of CNN is sensitive to the noise level of the complaint
delay time.

Qian et al. paid attention to the depth learning ability of the deep neural network
(DNN), and used it to optimize the search space of EAs. DNN captured the relationship
between time-series sensor data and the source node. The experiment compared the
proposed algorithm with pure EA. The results showed that the performance of EA could
be significantly improved after introducting the DNN [71].

Zhou et al. used the graph neural network (GNN) to transfer the CSI knowledge
learned from different WDNs to a new WDN, which infilled insufficient training samples
of the CSI problem when using deep learning. The experiment was carried out on the
Wolf-Cordera network and compared with other DNNs. The results showed the superiority
of the GNN in solving the CSI problem [73]. GNN is in the development stage at present.
Its advantage in processing topology graphs perfectly fits the research of WDN. In this
work, the contamination data of the non-sensor nodes were all filled with zeros to simplify
the model training, which confused cases where the sensor did not detect contamination.

3.3.3. Other Methods

Rutkowski et al. used the learning vector quantization (LVQ) neural network as a
classical pattern classification tool to identify the potential contamination source. As a result
of identification, a certain subzone was marked as the location of pollution entering [56].
The method is strongly dependent on the appropriate mathematical model of the WDS,
which limits its usability.
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Tinelli et al. developed and demonstrated the feasibility of monitoring the WDS based
on artificial intelligence by referring to the application of the support vector machine and
artificial neural network (ANN) in pattern recognition and anomaly detection. The study
labeled risk areas to help operators control water quality, and it was applied in the WDS of
the Science City Campus of the University of Lille in France [60].

Grbcic et al. proposed using machine learning classifiers to identify pollution source,
combining two machine learning algorithms [63]. They used ANN to classify the contami-
nation source, and used random forest to perform regression prediction on contamination
characteristics [64]. Then, they combined machine learning algorithms and optimization
algorithms in [68] to solve the CSI problem. First, potential pollution nodes were classified
using random forest, and then the optimization algorithm was used to determine the
pollution injection characteristics.

4. Conclusions

This paper provided a comprehensive review of the relevant studies on the water
contamination source identification problem, mainly introducing the basic theory of the
CSI problem and the new research in recent years. At present, each CSI algorithm has
its applicability and limitations, and further research is still needed to expand on the
CSI problem.

At present, almost all studies have been carried out for a single pollution source.
However, considering reality, it is completely possible for pollutants to invade the pipe
network from multiple places. Algorithms for a single contamination source may not be
applicable to multiple contamination source identification (MCSI). However, information
about the number of contamination sources, contamination concentration, and contam-
ination intrusion pattern are unknown in reality; thus, the universality of the algorithm
will be greatly reduced. The MCSI problem has always been considered as a problem
worth studying, but related research is scarce. Some researchers believe that their methods
can be extended to solve the MCSI, but experiments are needed to verify these claims.
The authors of [79] used a machine learning approach to identify the number of injection
locations. Although a CSI method was not provided, this approach might help in the study
of the MCSI. It is important to carry out research on the problem of multiple pollution
sources and fully consider the uncertainties in the pipeline network to make the research
more realistic.

At present, only a few studies have considered the efficiency of the algorithm. Consid-
ering the dependence of the CSI problem on simulation and the low efficiency of simulation
software when simulating large-scale pipe networks, the CSI algorithm should shorten the
solving time as much as possible. When considering the MCSI, the time complexity will
increase exponentially as the dimensions of the decision variable increase. Only by finding
out the information of pollution sources as soon as possible can we effectively curb the
spread of pollution and reduce losses. The feasible methods are to reduce the dependence
on simulation software or adopt parallel computing.

The research on machine learning in CSI is no longer limited to using probability esti-
mation; it also involves using pattern recognition, anomaly detection, and other methods.
Deep learning also opens up a new way to solve the CSI problem. Research in this direction
is still in its infancy. Combining machine learning with the physical properties of pipe
networks or with optimization methods can be a future research direction.

It is necessary to detect abnormal sensor data. Most existing studies have specified a
point at which hydraulic simulation begins. This is usually before sensor contamination
detection. In reality, sensor data are obtained all the time; thus, it is necessary to detect
anomalies from time-series data and determine the occurrence of contamination. Data
mining can be used to detect abnormal data, and different kinds of sensors can be used to
improve the sensitivity to abnormal phenomena.
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