Bioethanol Production from Lignocellulosic Biomass Using Aspergillus niger and Aspergillus flavus Hydrolysis Enzymes through Immobilized S. cerevisiae
Abstract
:1. Introduction
2. Materials and Methods
2.1. Biochemical Characterization of Cellulase under SmF
2.2. Carboxymethyl Cellulase (CMCase) Production Assay and the Analytical Method
- Y = [11.007x − 0.0286] mg/mL
- Y = [11.007x − 0.0286] × 1000/180] µmol/mL [34].
2.3. Characterization of SSF Culture Condition for CMCase Production
2.3.1. Optimization of SSF Culture Condition for CMCase Production
2.3.2. Measuring Cellulase Activity through CMCase Production
2.4. Bioethanol Production Using S. cerevisiae
2.4.1. Immobilization of S. cerevisiae Cells
2.4.2. Fermentation of Targeted Sugar (Glucose) for Bioethanol Production
2.4.3. Bioethanol Production Assay and Analytical Methods
2.5. Statistical Analysis
3. Results and Discussion
3.1. Biochemical Characterization of Cellulase under SmF
3.1.1. Thermal Stability
3.1.2. pH Stability
3.1.3. Storage Stability
3.2. Characterization of SSF Culture Condition of the Lignocellulolytic Substrates for CMCase Production
3.3. Optimization of SSF Culture Condition for CMCase Production
3.3.1. The Effect of the Incubation Period
3.3.2. The Effect of Carbon Source
3.3.3. The Effect of Nitrogen Source
3.3.4. The Effect of Moisture Content
3.4. Bioethanol Production Using S. cerevisiae
3.4.1. Fermentation of the Targeted Produced Glucose by A. niger
3.4.2. Fermentation of the Targeted Produced Glucose by A. flavus
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Singh, R.; Kumar, M.; Mittal, A.; Mehta, P.K. Microbial enzymes: Industrial progress in 21st century. 3 Biotech 2016, 6, 174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anwar, Z.; Gulfraz, M.; Irshad, M. Agro-industrial lignocellulosic biomass a key to unlock the future bio-energy: A brief review. J. Radiat. Res. Appl. Sci. 2014, 7, 163–173. [Google Scholar] [CrossRef]
- Valjamae, P.; Pettersson, G.; Johansson, G. Mechanism of substrate inhibition in cellulose synergistic degradation. Eur. J. Biochem. 2001, 268, 4520–4526. [Google Scholar] [CrossRef] [PubMed]
- Duff, S.J.; Murray, W.D. Bioconversion of forest products industry waste cellulosics to fuel ethanol: A review. Bioresour. Technol. 1996, 55, 1–33. [Google Scholar] [CrossRef]
- Broda, M.; Yelle, D.J.; Serwanska, K. Bioethanol Production from Lignocellulosic Biomass—Challenges and Solutions. Molecules 2022, 27, 8717. [Google Scholar] [CrossRef]
- Aneja, K.R. Experiments in Microbiology, Plant Pathology and Biotechnology, 4th ed.; New Age: New Delhi, India, 2005; pp. 248–254. [Google Scholar]
- Sajith, S.; Priji, P.; Sreedevi, S.; Benjamin, S. An Overview on Fungal Cellulases with an Industrial Perspective. J. Nutr. Food Sci. 2016, 6, 461. [Google Scholar]
- Robson, L.M.; Chambliss, G.H. Cellulases of bacterial origin. Enzym. Microb. Technol. 1989, 11, 626–644. [Google Scholar] [CrossRef]
- Begum, F.; Absar, N.; Alam, M.S. Purification and characterization of extracellular cellulase from A. oryzae. ITCC-4857.01. J. Appl. Sci. Res. 2009, 5, 1645–1651. [Google Scholar]
- Sette, L.D.; de Oliveira, V.M.; Rodrigues, M.F.A. Microbial lignocellulolytic enzymes: Industrial applications and future perspectives. Microbiol. Aust. 2008, 29, 18–20. [Google Scholar] [CrossRef]
- Amriani, F. Physical and Biological Pretreatment of Water Hyacinth Biomass for the Production of Cellulase Enzymes by Aspergillus niger and Tricoderma reseei. Master’s Thesis, Sumatra Utara University, Medan, Indonesia, 2013. Available online: http://repositori.usu.ac.id/handle/123456789/33405 (accessed on 10 July 2022).
- Amorea, A.; Faracoa, V. Potential of fungi as category I Consolidated BioProcessing organisms for cellulosic ethanol production. Renew. Sustain. Energy Rev. 2012, 16, 3286–3301. [Google Scholar] [CrossRef]
- Lynd, L.R.; Weimer, P.J.; van Zyl, W.H.; Pretorius, I.S. Microbial cellulose utilization: Fundamentals and biotechnology. Microbiol. Mol. Biol. Rev. 2002, 66, 506–577. [Google Scholar] [CrossRef] [Green Version]
- De Vries, R.P.; Visser, J. Aspergillus Enzymes Involved in Degradation of Plant Cell Wall Polysaccharides. Microbiol. Mol. Biol. Rev. 2001, 65, 497–522. [Google Scholar] [CrossRef]
- Itelima, J.; Ogbonna, A.; Pandukur, S.; Egbere, J.; Salami, A. Simultaneous saccharification and fermentation of Corn Cobs to Bio-Ethanol by Co-Culture of Aspergillus niger and Saccharomyces cerevisiae. Environ. Sci. Technol. Devel. 2013, 4, 239–242. [Google Scholar] [CrossRef] [Green Version]
- Cherry, J.; Merino, S.T. Progress and challenges in enzyme development for Biomass utilization. Adv. Biochem. Eng. Biotechnol. 2007, 108, 95–120. [Google Scholar]
- Buckeridge, M.S.; de Souza, A.P.; Arundale, R.A.; Anderson-Teixeira, K.J.; DeLucia, E. Ethanol from sugarcane in Brazil: A ‘midway’ strategy for increasing ethanol production while maximizing environmental benefits. Glob. Chang. Biol. Bioenergy 2012, 4, 119–126. [Google Scholar] [CrossRef] [Green Version]
- Cherubini, F. The biorefinery concept: Using biomass instead of oil for producing energy and chemicals. Energy Convers. Manag. 2010, 51, 1412–1421. [Google Scholar] [CrossRef]
- Percival Zhang, Y.H.; Himmel, M.E.; Mielenz, J.R. Outlook for cellulase improvement: Screening and selection strategies. Biotechnol. Adv. 2006, 24, 452–481. [Google Scholar] [CrossRef]
- Lu, J.; Li, X.Z.; Yang, R.F.; Yang, L.; Zhao, J.; Liu, Y.J.; Qu, Y.B. Fed-batch semi-simultaneous saccharification and fermentation of reed pretreated with liquid hot water for bio-ethanol production using Saccharomyces cerevisiae. Bioresour. Technol. 2013, 144, 539–547. [Google Scholar] [CrossRef]
- Jeffries, T.W.; Jin, Y. Metabolic engineering for improved fermentation of pentoses by yeasts. Appl. Microbiol. Biotechnol. 2004, 63, 495–509. [Google Scholar] [CrossRef]
- Duarte, J.C.; Rodrigues, J.A.R.; Moran, P.J.S.; Valenca, G.P.; Nunhez, J.R. Effect of immobilized cells in calcium alginate beads in alcoholic fermentation. AMB Express 2013, 3, 31. [Google Scholar] [CrossRef] [Green Version]
- Malhotra, I.; Basir, S.F. Immobilization of invertase in calcium alginate and calcium alginate-kappa-carrageenan beads and its application in bioethanol production. Prep. Biochem. Biotechnol. 2020, 50, 494–503. [Google Scholar] [CrossRef] [PubMed]
- Uemura, Y.; Hamakawa, N.; Yoshizawa, H.; Ando, H.; Ijichi, K.; Hatate, Y. Effect of calcium alginate coating on the performance of immobilized yeast cells in calcium alginate beads. Chem. Eng. Commun. 2000, 177, 1–14. [Google Scholar] [CrossRef]
- Lima, J.S.; Arau’jo, P.H.H.; Sayer, C.; Souza, A.A.U.; Viegas, A.C.; Oliveira, D. Cellulase immobilization on magnetic nanoparticles encapsulated in polymer nanospheres. Bioprocess. Biosyst. Eng. 2017, 40, 511–518. [Google Scholar] [CrossRef]
- ElKomy, H.; ElDosary, S.; ElNaghy, M.; Abdel Hamed, M. Optimization of azo-keratin hydrolysis by alginate-immobilized Keratinase produced from Bacillus lichen forms. J. Adv. Biomed. Pharm. Sci. 2019, 2, 41–46. [Google Scholar]
- Sukumaran, R.K.; Singhania, R.R.; Pandey, A. Microbial cellulases production, applications and challenges. J. Sci. Ind. Res. 2005, 64, 832. [Google Scholar]
- Singhania, R.R.; Sukumaran, R.K.; Patel, A.K.; Larroche, C.; Pandey, A. Advancement and comparative profiles in the production technologies using solid-state and submerged fermentation for microbial cellulases. Enzym. Microb. Technol. 2010, 46, 541–549. [Google Scholar] [CrossRef]
- Pandey, A. Solid-state fermentation. Biochem. Eng. J. 2003, 13, 81–84. [Google Scholar] [CrossRef]
- Robinson, T.; Singh, D.; Nigam, P. Solid-state fermentation: A promising microbial technology for secondary metabolite production. Appl. Microbiol. Biotechnol. 2001, 55, 284–289. [Google Scholar] [CrossRef]
- Couto, S.R.; Sanromán, M.A. Application of solid-state fermentation to food industry—A review. J. Food Eng. 2006, 76, 291–302. [Google Scholar] [CrossRef]
- Almutairi, A.A. Studies on Cellulolytic soil fungi isolated from Eastern Region of Saudi Arabia and Their Application in Biofuel Production. Master Thesis, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia, 2022. [Google Scholar]
- Ariffin, H.; Abdullah, N.; Umi Kalsom, M.; Shirai, Y.; Hassan, M.A. Production and characterization of cellulase by Bacillus pumilus EB3. Int. J. Eng. Technol. 2006, 3, 47–53. [Google Scholar]
- Ghose, T.K. Measurement of cellulase activities. Pure Appl. Chem. 1987, 59, 257–268. [Google Scholar] [CrossRef]
- EL-Hadi, A.A.; Abu El-Nour, S.; Hammad, A.; Kamel, Z.; Anwar, M. Optimization of cultural and nutritional conditions for carboxy methyl cellulase production by Aspergillus hortai. J. Radiat. Res. Appl. Sci. 2014, 7, 23–28. [Google Scholar] [CrossRef] [Green Version]
- Dashtban, M.; Schrai, H.; Qin, W. Fungal bioconversion of lignocellulosic residues; opportunities & perspectives. Int. J. Biol. Sci. 2009, 5, 578. [Google Scholar]
- Ul-Haque, I. Optimization of Cellulase Synthesis by Locally Isolated Trichoderma Species Using Agricultural By-Products as Substrates. Ph.D. Thesis, Department of Botany, Punjab University, Lahore, Pakistan, 1992. [Google Scholar]
- Patel, P.S.; Desai, R.G. Study of Cellulase by Isolated Fungal Culture from Natural Resources and Application in Bio-ethanol Production. Int. J. Appl. Sci. Technol. 2019, 7, 2277–2284. [Google Scholar] [CrossRef]
- Sumbhate, S.; Nayak, S.; Goupale, D.; Tiwan, A.; Jadon, R.S.S. Colorimetric Method for the Estimation of Ethanol in Alcoholic-Drinks. Anal. Methods 2012, 1, 1–6. [Google Scholar]
- Su, Z.; Yang, X.; Luli; Shao, H.; Yu, S. Cellulase immobilization properties and their catalytic effect on cellulose hydrolysis in ionic liquid. Afr. J. Microbiol. Res. 2012, 61, 64–70. [Google Scholar]
- Akkaya, B.; Sahin, F.; Demirel, G.; Tümtürk, H. Functional Polymeric Supports for Immobilization of Cholesterol Oxidase. Biochem. Eng. J. 2009, 43, 333–337. [Google Scholar] [CrossRef]
- Romo-Sánchez, S.; Camacho, C.; Ramirez, H.L.; Arévalo-Villena, M. Immobilization of Commercial Cellulase and Xylanase by Different Methods Using Two Polymeric Supports. Adv. Biosci. Biotechnol. 2014, 5, 517–526. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.H.; Yen, Y.H.; Wang, C.L.; Wang, S.L. Reversible Immobilization of Lysozyme via Coupling Reversibly Soluble Polymer. Enzym. Microb. Technol. 2003, 33, 643–649. [Google Scholar] [CrossRef]
- Esway, M.A.; Gamal, A.A.; Kamel, Z.; Ismail, A.S.; Abdel-Fattah, A.F. Evaluation of free and immobilized Aspergillus niger pectinase applicable in industrial processes. Carbohydr. Polym. 2013, 92, 1463–1469. [Google Scholar] [CrossRef]
- Zhang, D.; Hegab, H.E.; Lvov, Y.; Snow, L.D.; Palmer, J. Immobilization of cellulase on a silica gel substrate modified using a 3-APTES self-assembled monolayer. SpringerPlus 2016, 5, 48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pandey, A.; Soccol, C.R.; Mitchell, D. New developments in solid state fermentation: I-bioprocesses and products. Process. Biochem. 2000, 35, 1153–1169. [Google Scholar] [CrossRef]
- Tengerdy, R.P.; Szakacs, G. Bioconversion of lignocellulose in solid substrate fermentation. Biochem Eng. J. 2003, 13, 169–179. [Google Scholar] [CrossRef]
- Kang, S.W.; Park, Y.S.; Lee, J.S.; Hong, S.I.; Kim, S.W. Production of cellulase and hemicellulase by Aspergillus KK2 for lignocellulosic biomass. Bioresour. Technol. 2004, 91, 153–156. [Google Scholar] [CrossRef] [PubMed]
- Dutt, D.; Kumar, A. Optimization of cellulase production under solid-state fermentation by Aspergillus flavus (AT-2) and Aspergillus niger (AT-3) and its impact on stickies and ink particle size of sorted office paper. Cellulose Chem. Technol. 2012, 48, 285–298. [Google Scholar]
- Ikram-ul-Haq, M.M.J.; Khan, T.S. An innovative approach for hyper production of cellulolytic and hemicellulolytic enzymes by consortium of Aspergillus niger MSK-7 and Trichoderma viride MSK-10. Afr. J. Biotechnol. 2006, 5, 609–614. [Google Scholar]
- Han, Y.W.; Callihan, C.D. Cellulose fermentation: Effect of substrate pretreatment on microbial growth. Appl. Microbiol. 1974, 1, 159–165. [Google Scholar] [CrossRef]
- Wonoputri, V.; Subiantoro, S.; Kresnowati, M.T.A.P.; Purwadi, R. Solid state fermentation parameters effect on cellulase production from empty fruit bunch. Bull. Chem. React. Eng. Catal. 2018, 13, 553–559. [Google Scholar] [CrossRef]
- Hu, Y.; Du, C.; Pensupa, N.; Lin, C.S.K. Optimization of fungal cellulase production from textile waste using experimental design. Process. Saf. Environ. Prot. 2018, 118, 133–142. [Google Scholar] [CrossRef] [Green Version]
- Krishna, C. Solid-state fermentation systems-an overview. Crit. Rev. Biotechnol. 2005, 25, 49–70. [Google Scholar] [CrossRef]
- Solis-Pereira, S.; Favela-Torres, E.; Viniegra-Gonzalez, G. Effects of different carbon sources on the synthesis of pectinase by Aspergillus niger in submerged and solid-state fermentation. Appl. Microbiol. Technol. 1993, 39, 36–41. [Google Scholar] [CrossRef]
- Navaneethapandian, U.; Kumar, A.G.; Liduja, K.; Jayachithra, R.; Gopakumaran, N. Biocatalyst: Cellulase production in solid state fermentation (SSF) using rice bran as substrate. Biointerface Res. Appl. Chem. 2020, 11, 7689–7699. [Google Scholar]
- Li, C.X.; Zhao, S.; Luo, X.M.; Feng, J.X. Weighted Gene Co-expression Network Analysis Identifies Critical Genes for the Production of Cellulase and Xylanase in Penicillium oxalicum. Front. Microbiol. 2020, 11, 520. [Google Scholar] [CrossRef] [Green Version]
- Kocher, G.; Kalra, K.; Banta, G. Optimization of cellulase production by submerged fermentation of rice straw by Trichoderma harzianum Rut-C 8230. Internet. J. Microbiol. 2008, 5, 2–8. [Google Scholar]
- Gokhale, D.V.; Patil, S.G.; Bastawde, K.B. Optimization of cellulase production by Aspergillus niger NCIM 1207. Appl. Biochem. Biotechnol. 1991, 30, 99–109. [Google Scholar] [CrossRef]
- Abdullah, B.; Maftukhah, S.; Listyaningrum, E.; Faradhiba, F. Effect of some variable in cellulase production by Aspergillus niger ITBCC L74 using solid state fermentation. In IOP Conference Series: Materials Science and Engineering, Proceedings of the Quality in Research: International Symposium on Materials, Metallurgy, and Chemical Engineering, Bali, Indonesia, 24–27 July 2017; IOP: Bristol, UK, 2018; Volume 316, p. 316. [Google Scholar]
- Vu, V.H.; Pham, T.A.; Kim, K. Improvement of fungal cellulase production by mutation and optimization of solid-state fermentation. Mycobiology 2011, 39, 20–25. [Google Scholar] [CrossRef] [Green Version]
- Sohail, M.; Sidiqi, R.; Ahmad, A.; Khan, S. Cellulase production from Aspergillus niger MS82: Effect of temperature and pH. New Biotechnol. 2009, 25, 437–442. [Google Scholar] [CrossRef]
- Ahmad, F.; Jameel, A.T.; Kamarudin, M.H.; Mel, M. Study of growth kinetics and modeling of ethanol production by Saccharomyces cerevisiae. Afr. J. Biotechnol. 2011, 16, 18842–18846. [Google Scholar]
- Dash, I.; Barik, J.; Nayak, A.; Sahoo, M.; Dethose, A.; Johnson, E.M.; Kumar, S.; Rasu Jayabalan, R. Comparative Studies Of Ethanol Production And Cell Viability: Free Cells Versus Immobilized Cells. Res. J. Pharm. Biol. Chem. Sci. 2015, 6, 1708. [Google Scholar]
- Sembiring, K.C.; Mulyani, H.; Fitria, A.I.; Dahnum, D.; Sudiyani, Y. Rice flour and white glutinous rice flour for use on immobilization of yeast cell in ethanol production. Energy Procedia 2014, 32, 99–104. [Google Scholar] [CrossRef] [Green Version]
- Nikolić, S.S.; Mojović, L.; Pejin, D.; Rakin, M.; Vukašinović, M. Production of bioethanol from corn meal hydrolyzates by free and immobilized cells of Saccharomyces cerevisiae var ellipsoideus. Biomass Bioenergy 2010, 34, 1449–1456. [Google Scholar] [CrossRef]
- Kirdponpattara, S.; Phisalaphong, M. Bacterial cellulose-alginate composite sponge as a yeast cell carrier for ethanol production. Biochem. Eng. J. 2013, 77, 103–109. [Google Scholar] [CrossRef]
- Behera, S.; Mohanty, R.C.; Ray, R.C. Ethanol production from mahula (Madhuca latifolia L.) flowers with immobilized cells of Saccharomyces cerevisiae in Luffa cylindrica L. sponge discs. Appl. Energy 2011, 88, 212–215. [Google Scholar] [CrossRef]
- Razmovski, R.; Vučurović, V. Ethanol production from sugar beet molasses by S. cerevisiae entrapped in an alginate-maize stem ground tissue matrix. Enzym. Microb. Technol. 2011, 48, 378–385. [Google Scholar] [CrossRef]
- Karagoz, P.; Ozkan, M. Ethanol production from wheat straw by Saccharomyces cerevisiae and Scheffersomyces stipitis co-culture in batch and continuous system. Bioresour. Technol. 2014, 158, 286–293. [Google Scholar] [CrossRef]
- Manavalan, T.; Manavalan, A.; Heese, K. Characterization of Lignocellulolytic Enzymes from White-Rot Fungi. Curr. Microbiol. 2015, 70, 485–498. [Google Scholar] [CrossRef]
Temperature | Enzyme Activity (IU/mL) | p-Value | |
---|---|---|---|
Free Enzyme | Immobilized Enzyme | ||
Control | 1.15 ± 0.08 | 1.95 ± 0.09 | 0.003 * |
20 °C | 1.14 ± 0.01 | 1.95 ± 0.02 | <0.001 * |
30 °C | 1.13 ± 0.01 | 1.92 ± 0.02 | <0.001 * |
40 °C | 1.10 ± 0.01 | 1.90 ± 0.01 | <0.001 * |
50 °C | 1.09 ± 0.01 | 1.88 ± 0.01 | <0.001 * |
60 °C | 0.77 ± 0.01 | 1.84 ± 0.01 | <0.001 * |
70 °C | 0.71 ± 0.01 | 1.81 ± 0.03 | <0.001 * |
p-value | <0.001 | 0.154 |
pH Value | Enzyme Activity (IU/mL) | p-Value | |
---|---|---|---|
Free Enzyme | Immobilized Enzyme | ||
Control | 1.15 ± 0.08 | 1.95 ± 0.09 | 0.003 * |
pH 3 | 1.07 ± 0.01 | 1.88 ± 0.01 | <0.001 * |
pH 4 | 1.26 ± 0.00 | 1.92 ± 0.03 | <0.001 * |
pH 5 | 1.20 ± 0.00 | 2.09 ± 0.05 | <0.001 * |
pH 6 | 1.05 ± 0.00 | 1.90 ± 0.03 | <0.001 * |
pH 7 | 0.92 ± 0.01 | 1.88 ± 0.01 | <0.001 * |
pH 8 | 0.86 ± 0.02 | 1.85 ± 0.02 | <0.001 * |
pH 9 | 0.78 ± 0.00 | 1.83 ± 0.01 | <0.001 * |
p-value | <0.001 * | 0.010 * |
Time (Week) | Enzyme Activity (IU/mL) | p-Value | |
---|---|---|---|
Free Enzyme | Immobilized Enzyme | ||
Control | 1.15 ± 0.08 | 1.95 ± 0.09 | 0.003 * |
1 | 1.02 ± 0.02 | 2.00 ± 0.06 | <0.001 * |
2 | 0.98 ± 0.00 | 2.00 ± 0.07 | <0.001 * |
3 | 0.91 ± 0.01 | 1.91 ± 0.01 | <0.001 * |
4 | 0.84 ± 0.01 | 1.84 ± 0.01 | <0.001 * |
5 | 0.76 ± 0.01 | 1.79 ± 0.01 | <0.001 * |
6 | 0.68 ± 0.01 | 1.76 ± 0.01 | <0.001 * |
p-value | <0.001 | 0.019 |
The Substrate | CMCase Activity (IU/mL) | p-Value | |
---|---|---|---|
A. niger | A. flavus | ||
Coffee pulp | 5.09 ± 0.15 | 4.82 ± 0.18 | 0.311 * |
Wheat bran | 4.76 ± 0.07 | 3.93 ± 0.33 | 0.071 * |
Orange peel | 3.97 ± 0.02 | 3.62 ± 0.06 | 0.0070 * |
Sea algae | 1.92 ± 0.11 | 1.63 ± 0.22 | 0.301 * |
p-value | <0.001 | <0.001 |
Variation in Conditions | CMCase Activity (IU/mL/min) | |||||
---|---|---|---|---|---|---|
Wheat Bran | Coffee Pulp | |||||
A. niger | A. flavus | p-Value | A. niger | A. flavus | p-Value | |
Incubation time | ||||||
3 days | 2.5 ± 0.49 | 1.6 ± 0.37 | 0.220 * | 2.49 ± 0.31 | 2.07 ± 0.24 | 0.348 * |
5 days | 4.76 ± 0.07 | 3.93 ± 0.33 | 0.071 * | 5.09 ± 0.15 | 4.82 ± 0.18 | 0.311 * |
7 days | 7.1 ± 0.36 | 5.75 ± 0.06 | 0.021 * | 7.37 ± 0.4 | 6.38 ± 0.23 | 0.100 * |
10 days | 4.72 ± 0.26 | 3.55 ± 0.19 | 0.023 * | 4.44 ± 0.2 | 3.43 ± 0.25 | 0.033 * |
15 days | 3.08 ± 0.18 | 1.87 ± 0.23 | 0.015 * | 3.35 ± 0.26 | 2.52 ± 0.11 | 0.45 * |
p-value | <0.001 | <0.001 | <0.001 | <0.001 | ||
Carbon source | ||||||
Glucose | 7.12 ± 0.28 | 6.19 ± 0.19 | 0.049 * | 7.41 ± 0.11 | 6.33 ± 0.25 | 0.017 * |
Fructose | 6.42 ± 0.19 | 5.05 ± 0.26 | 0.014 * | 6.65 ± 0.39 | 5.14 ± 0.32 | 0.040 * |
Maltose | 5.38 ± 0.26 | 4.99 ± 0.11 | 0.236 * | 6.23 ± 0.24 | 5.29 ± 0.05 | 0.019 * |
Sucrose | 3.46 ± 0.17 | 3.1 ± 0.22 | 0.266 * | 3.7 ± 0.15 | 3.23 ± 0.25 | 0.186 * |
p-value | <0.001 | <0.001 | <0.001 | <0.001 | ||
Nitrogen source | ||||||
Peptone | 5.54 ± 0.12 | 4.38 ± 0.16 | 0.005 | 6.08 ± 0.36 | 4.53 ± 0.16 | 0.017 * |
Ammonium sulfate | 7.11 ± 0.1 | 5.94 ± 0.16 | 0.004 | 7.62 ± 0.2 | 6.47 ± 0.15 | 0.010 * |
Sodium nitrate | 4.21 ± 0.23 | 2.84 ± 0.19 | 0.011 | 4.46 ± 0.18 | 3.08 ± 0.25 | 0.011 * |
Yeast extract | 6.09 ± 0.2 | 5.01 ± 0.3 | 0.039 | 6.36 ± 0.3 | 5.59 ± 0.09 | 0.068 * |
p-value | <0.001 | <0.001 | <0.001 | <0.001 | ||
Moisture content | ||||||
50% | 4.18 ± 0.12 | 2.74 ± 0.26 | 0.007 * | 4.37 ± 0.38 | 3.46 ± 0.17 | 0.094 * |
60% | 5.31 ± 0.28 | 4.18 ± 0.16 | 0.024 * | 5.87 ± 0.06 | 4.78 ± 0.08 | 0.000 * |
70% | 6.52 ± 0.17 | 5.07 ± 0.18 | 0.004 * | 6.73 ± 0.1 | 5.24 ± 0.25 | 0.005 * |
80% | 7.24 ± 0.05 | 6.12 ± 0.08 | 0.000 * | 7.84 ± 0.05 | 6.69 ± 0.13 | 0.001 * |
90% | 6.45 ± 0.06 | 4.38 ± 0.32 | 0.003 * | 6.85 ± 0.16 | 4.86 ± 0.52 | 0.022 * |
p-value | <0.001 | <0.001 | <0.001 | <0.001 |
Wheat Bran | Coffee Pulp | |||||
---|---|---|---|---|---|---|
Incubation Period (Hour) | Free S. cerevisiae | Immobilized S. cerevisiae | p-Value | Free S. cerevisiae | Immobilized S. cerevisiae | p-Value |
A. niger | ||||||
24 h | 4.04 ± 0.61 | 12.08 ± 0.67 | 0.001 * | 15.26 ± 0.72 | 16.0 ± 0.20 | 0.378 * |
48 h | 52.19 ± 1.2 | 64.34 ± 1.89 | 0.006 * | 41.26 ± 2.46 | 58.21 ± 4.19 | 0.025 * |
72 h | 57.41 ± 5.71 | 68.91 ± 0.3 | 0.115 * | 61.94 ± 2.48 | 71.39 ± 3.59 | 0.096 * |
p-value | <0.001 | <0.001 | <0.001 | <0.001 | ||
A. flavus | ||||||
24 h | 0 ± 0 | 0.84 ± 0.14 | 0.004 * | 1.26 ± 0.54 | 2.4 ± 1.06 | 0.392 * |
48 h | 4.8 ± 0.46 | 6.21 ± 1.85 | 0.500 * | 6.06 ± 0.17 | 8.99 ± 1.36 | 0.099 * |
72 h | 5.65 ± 0.57 | 7.81 ± 0.76 | 0.085 * | 7.58 ± 0.1 | 11.73 ± 1.33 | 0.036 * |
p-value | <0.001 | 0.012 | <0.001 | 0.005 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alabdalall, A.H.; Almutari, A.A.; Aldakeel, S.A.; Albarrag, A.M.; Aldakheel, L.A.; Alsoufi, M.H.; Alfuraih, L.Y.; Elkomy, H.M. Bioethanol Production from Lignocellulosic Biomass Using Aspergillus niger and Aspergillus flavus Hydrolysis Enzymes through Immobilized S. cerevisiae. Energies 2023, 16, 823. https://doi.org/10.3390/en16020823
Alabdalall AH, Almutari AA, Aldakeel SA, Albarrag AM, Aldakheel LA, Alsoufi MH, Alfuraih LY, Elkomy HM. Bioethanol Production from Lignocellulosic Biomass Using Aspergillus niger and Aspergillus flavus Hydrolysis Enzymes through Immobilized S. cerevisiae. Energies. 2023; 16(2):823. https://doi.org/10.3390/en16020823
Chicago/Turabian StyleAlabdalall, Amira H., Asma A. Almutari, Sumayh A. Aldakeel, Ahmed M. Albarrag, Lena A. Aldakheel, Maryam H. Alsoufi, Lulwah Y. Alfuraih, and Hesham M. Elkomy. 2023. "Bioethanol Production from Lignocellulosic Biomass Using Aspergillus niger and Aspergillus flavus Hydrolysis Enzymes through Immobilized S. cerevisiae" Energies 16, no. 2: 823. https://doi.org/10.3390/en16020823
APA StyleAlabdalall, A. H., Almutari, A. A., Aldakeel, S. A., Albarrag, A. M., Aldakheel, L. A., Alsoufi, M. H., Alfuraih, L. Y., & Elkomy, H. M. (2023). Bioethanol Production from Lignocellulosic Biomass Using Aspergillus niger and Aspergillus flavus Hydrolysis Enzymes through Immobilized S. cerevisiae. Energies, 16(2), 823. https://doi.org/10.3390/en16020823