Jatropha’s Rapid Developments and Future Opportunities as a Renewable Source of Biofuel—A Review
Abstract
:1. Introduction
2. Fuel Energy: An Overview
2.1. Classification of Fuels
2.2. Ongoing Sources of Energy
2.3. Dynamic Changes in Consumption of Fuels
2.4. Advantages and Disadvantages of Biofuels
- Second-generation fuels are not commercially available due to high manufacturing costs and a lack of technical proof;
- Current harvesting, storage, and transportation technologies are insufficient for processing and distributing biomass on a wide scale;
- A clear and long-term policy framework is required to guarantee the industry and confidence in financiers;
- The changing needs of the agricultural/forestry industry for biomass feedstock from residues and crops need a substantial shift in the present business model. As a result, using edible oil fuels is connected with a higher risk of food crisis in developing countries or a negative impact on consumer prices in developed ones [73,74,75,76,77]. Hence, using non-edible oils is mostly preferred.
3. Relevant Studies on Jatropha
3.1. Advantages of Jatropha over Other Biofuels
3.2. Jatropha Availability and Opportunity
3.3. Extraction Method of Jatropha
3.4. Integration Methods for Improving the Efficiency of Jatropha Fuel
3.5. Challenges in Producing Sustainable Biodiesel from Jatropha
3.6. Other Studies Related to Jatropha
4. Conclusions
- According to the general agreement on the results, Jatropha will be a successful alternate biofuel for fossil fuels in the future. The oil content of Jatropha is high, and the production time is less than other non-edible crops. The unique integrated system, including Fischer-Tropsch, hydro-processing, gasification, and reforming, will help the fuel to improve its efficiency.
- From the major observations of the researchers, a variety of Jatropha production scenarios utilizing various integration approaches such as technology integration, wastes and byproducts integration, and water, heat, and electricity integration will increase the productivity of the fuel.
- Biofuel can even be considered jet fuel as it meets the criteria. The integrated pathway mentioned in this review is believed to be an alternative for the production of JBF. Implementing this integrated approach can improve traditional process efficiency and contribute to long-term feedstock use.
- This review reveals that the properly integrated system uses whole Jatropha fruit to generate a cost-competitive, high-yielding, and performance biofuel.
- Methods like mechanical pressing are conventional and have to be modified. An introduction of suitable catalysts and enzymes to improve the reaction rate is essential.
- However, the current failure is due to the lack of excellent commercial varieties of Jatropha plant, poor yield, disease-resistant crops, lack of basic research, and general theoretical assumptions without scientific and technical support. Efficient oil extraction methods and solvent elimination must be introduced to obtain a better result.
- Methods like mechanical pressing are conventional and have to be modified. An introduction of suitable catalysts and enzymes to improve the reaction rate has to be introduced.
- By-products like seed oil cake and glycerin provide a new commercial opening to improve the profit. It will attract more people to the field.
- Genetic engineering and biotechnology are the two main aspects of crop development in the future, and they can offer improved immunity and weed resistance.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Durand, B. Introduction: The importance of fossil fuels for industrial societies. In Petroleum, Natural Gas and Coal; EDP Sciences: Les Ulis, France, 2021; pp. 13–18. [Google Scholar]
- Isenberg, G. Assessment of automotive fuels. J. Power Sources 1999, 84, 214–217. [Google Scholar] [CrossRef]
- Song, C.L. Fuel processing for low-temperature and high-temperature fuel cells: Challenges, and opportunities for sustainable development in the 21st century. Catal. Today 2002, 77, 17–49. [Google Scholar] [CrossRef]
- Logan, B.E.; Regan, J.M. Microbial Fuel Cells—Challenges and Applications; ACS Publications: Washington, DC, USA, 2006. [Google Scholar]
- Van Mierlo, J.; Maggetto, G.; Lataire, P. Which energy source for road transport in the future? A comparison of battery, hybrid and fuel cell vehicles. Energy Convers. Manag. 2006, 47, 2748–2760. [Google Scholar] [CrossRef]
- Ezzi, A.A.; Fayad, M.A.; Al Jubori, A.M.; Jaber, A.A.; Alsadawi, L.A.; Dhahad, H.A.; Chaichan, M.T.; Yusaf, T. Influence of fuel injection pressure and RME on combustion, NOx emissions and soot nanoparticles characteristics in common-rail HSDI diesel engine. Int. J. 2022, 15, 100173. [Google Scholar] [CrossRef]
- Athar, M.; Zaidi, S. A review of the feedstocks, catalysts, and intensification techniques for sustainable biodiesel production. J. Environ. Chem. Eng. 2020, 8, 104523. [Google Scholar] [CrossRef]
- Ramos, M.J.; Fernández, C.M.; Casas, A.; Rodríguez, L.; Pérez, Á. Influence of fatty acid composition of raw materials on biodiesel properties. Bioresour. Technol. 2009, 100, 261–268. [Google Scholar] [CrossRef]
- Gopinath, A.; Sairam, K.; Velraj, R.; Kumaresan, G. Effects of the properties and the structural configurations of fatty acid methyl esters on the properties of biodiesel fuel: A review. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 2015, 229, 357–390. [Google Scholar] [CrossRef]
- Agarwal, M.; Singh, K.; Chaurasia, S.P. Prediction of biodiesel properties from fatty acid composition using linear regression and ANN techniques. Indian Chem. Eng. 2010, 52, 347–361. [Google Scholar] [CrossRef]
- Biswas, S.; Sharma, D.K. Co-cracking of jatropha oil, vacuum residue and HDPE and characterization of liquid, gaseous and char products obtained. J. Anal. Appl. Pyrolysis 2013, 101, 17–27. [Google Scholar] [CrossRef]
- Alherbawi, M.; AlNouss, A.; Mckay, G.; Al-Ansari, T. Optimum utilization of Jatropha Seedcake considering the energy, water and food Nexus. In Computer Aided Chemical Engineering; Elsevier: Amsterdam, The Netherlands, 2020; Volume 48, pp. 229–234. [Google Scholar]
- Ahmad, P.; Wani, M.R. Physiological Mechanisms and Adaptation Strategies in Plants under Changing Environment; Springer Science & Business Media: Berlin, Germany, 2014; Volume 2. [Google Scholar] [CrossRef]
- Madihi, R.; Pourfallah, M.; Gholinia, M.; Armin, M.; Ghadi, A.Z. Thermofluids analysis of combustion, emissions, and energy in a biodiesel (C11H22O2)/natural gas heavy-duty engine with RCCI mode (Part II: Fuel injection time/Fuel injection rate). Int. J. Thermofluids 2022, 16, 100200. [Google Scholar] [CrossRef]
- Verma, D.; Rana, B.S.; Kumar, R.; Sibi, M.G.; Sinha, A.K. Diesel and aviation kerosene with desired aromatics from hydroprocessing of jatropha oil over hydrogenation catalysts supported on hierarchical mesoporous SAPO-11. Appl. Catal. A Gen. 2015, 490, 108–116. [Google Scholar] [CrossRef]
- Chen, H.; Wang, Q.; Zhang, X.; Wang, L. Hydroconversion of jatropha oil to alternative fuel over hierarchical ZSM-5. Ind. Eng. Chem. Res. 2014, 53, 19916–19924. [Google Scholar] [CrossRef]
- Kham-or, P.; Suwannasom, P.; Ruangviriyachai, C. Effect of agglomerated NiMo HZSM-5 catalyst for the hydrocracking reaction of Jatropha curcas oil. Energy Sources Part A Recover. Util. Environ. Eff. 2016, 38, 3694–3701. [Google Scholar] [CrossRef]
- Maiti, S.; Bapat, P.; Das, P.; Ghosh, P.K. Feasibility study of jatropha shell gasification for captive power generation in biodiesel production process from whole dry fruits. Fuel 2014, 121, 126–132. [Google Scholar] [CrossRef]
- Noor, C.W.M.; Noor, M.M.; Mamat, R. Biodiesel as alternative fuel for marine diesel engine applications: A review. Renew. Sustain. Energy Rev. 2018, 94, 127–142. [Google Scholar] [CrossRef]
- Divakara, B.N.; Upadhyaya, H.D.; Wani, S.P.; Gowda, C.L.L. Biology and genetic improvement of Jatropha curcas L.: A review. Appl. Energy 2010, 87, 732–742. [Google Scholar] [CrossRef] [Green Version]
- Edrisi, S.A.; Dubey, R.K.; Tripathi, V.; Bakshi, M.; Srivastava, P.; Jamil, S.; Singh, H.B.; Singh, N.; Abhilash, P.C. Jatropha curcas L.: A crucified plant waiting for resurgence. Renew. Sustain. Energy Rev. 2015, 41, 855–862. [Google Scholar] [CrossRef]
- Debnati, M.; Bisen, P.S. Jatropha Revolution in India. Available online: https://www.researchgate.net/profile/Prakash-Bisen/publication/281844148_Jatrtopha_Potential_Ethnomedicinal_Stress_Resistant_Biodiesel_Plant/links/55fae7d208aec948c4afa626/Jatrtopha-Potential-Ethnomedicinal-Stress-Resistant-Biodiesel-Plant.pdf (accessed on 1 October 2022).
- Roberts, J.; Florentine, S. Biology, distribution and management of the invasive Jatropha gossypiifolia (Bellyache bush): A global review of current and future management challenges and research gaps. Weed Res. 2021, 1–11. [Google Scholar] [CrossRef]
- Moniruzzaman, M.; Yaakob, Z.; Shahinuzzaman, M.; Khatun, R.; Aminul Islam, A.K.M. Jatropha biofuel industry: The challenges. Front. Bioenergy Biofuels 2017, 1, 23–256. [Google Scholar]
- Vamvuka, D.; Alexandrakis, S.; Papagiannis, I. Evaluation of municipal wastes as secondary fuels through co-combustion with woody biomass in a fluidized bed reactor. J. Energy Inst. 2020, 93, 272–280. [Google Scholar] [CrossRef]
- de Souza, L.L.P.; Lora, E.E.S.; Palacio, J.C.E.; Rocha, M.H.; Renó, M.L.G.; Venturini, O.J. Comparative environmental life cycle assessment of conventional vehicles with different fuel options, plug-in hybrid and electric vehicles for a sustainable transportation system in Brazil. J. Clean. Prod. 2018, 203, 444–468. [Google Scholar] [CrossRef]
- Hansson, J.; Månsson, S.; Brynolf, S.; Grahn, M. Alternative marine fuels: Prospects based on multi-criteria decision analysis involving Swedish stakeholders. Biomass Bioenergy 2019, 126, 159–173. [Google Scholar] [CrossRef]
- Azad, K. Advances in Eco-Fuels for a Sustainable Environment; Elsevier: Amsterdam, The Netherlands, 2019. [Google Scholar]
- Adar, E. The State of the Art of Nuclear Energy: Pros and Cons. In Proceedings of the EurAsia Waste Management Symposium, Istanbul, Turkey, 24–26 October 2020; pp. 26–28. [Google Scholar]
- Topal, E.; Shafiee, S. General overview for worldwide trend of fossil fuels. Adv. Energy Res. 2010, 1, 113–122. [Google Scholar]
- Krumdieck, S.; Page, S.; Dantas, A. Urban form and long-term fuel supply decline: A method to investigate the peak oil risks to essential activities. Transp. Res. Part A Policy Pract. 2010, 44, 306–322. [Google Scholar] [CrossRef]
- Hirsch, R.L.; Bezdek, R.; Wendling, R. Peaking of World Oil Production and Its Mitigation. In Driving Climate Change; Elsevier: Amsterdam, The Netherlands, 2007; pp. 9–27. [Google Scholar]
- Alkhalidi, A.; Alqarra, K.; Abdelkareem, M.A.; Olabi, A.G. Renewable energy curtailment practices in Jordan and proposed solutions. Int. J. Thermofluids 2022, 16, 100196. [Google Scholar] [CrossRef]
- Okoh, A.I. Biodegradation alternative in the cleanup of petroleum hydrocarbon pollutants. Biotechnol. Mol. Biol. Rev. 2006, 1, 38–50. [Google Scholar]
- Chen, R.; Teng, Y.; Chen, H.; Yue, W.; Su, X.; Liu, Y.; Zhang, Q. A coupled optimization of groundwater remediation alternatives screening under health risk assessment: An application to a petroleum-contaminated site in a typical cold industrial region in Northeastern China. J. Hazard. Mater. 2021, 407, 124796. [Google Scholar] [CrossRef]
- Manju, S.; Sagar, N. Progressing towards the development of sustainable energy: A critical review on the current status, applications, developmental barriers and prospects of solar photovoltaic systems in India. Renew. Sustain. Energy Rev. 2017, 70, 298–313. [Google Scholar] [CrossRef]
- LIM, W.; Seow, A. Biomass fuels and lung cancer. Respirology 2012, 17, 20–31. [Google Scholar] [CrossRef]
- El Bassam, N. Restructuring Future Energy Generation and Supply. In Distributed Renewable Energies for Off-Grid Communities; Elsevier: Amsterdam, The Netherlands, 2021; pp. 27–37. [Google Scholar]
- Martis, R.; Al-Othman, A.; Tawalbeh, M.; Alkasrawi, M. Energy and Economic Analysis of Date Palm Biomass Feedstock for Biofuel Production in UAE: Pyrolysis, Gasification and Fermentation. Energies 2020, 13, 5877. [Google Scholar] [CrossRef]
- Singh, L.; Bargali, S.S.; Swamy, S.L. Production practices and post-harvest management in Jatropha. In Proceedings of the Biodiesel Conference Towards Energy Independence—Focus on Jatropha Papers presented at the Conference Rashtrapati Nilayam, Bolaram, Hyderabad Editors, India, 9–10 June 2006. [Google Scholar]
- Radomska, M.M.; Ponomarenko, M.S.; Nazarkov, T.I. The assessment of ukraine’s prospects for the fossil fuels phase-out. Sci. Technol. 2020, 48, 484–495. [Google Scholar] [CrossRef]
- Das, S.K. The need for renewable energy sources. Sci. Horiz. 2020, 25, 16–18. [Google Scholar]
- Kotcher, J.; Maibach, E.; Choi, W.-T. Fossil fuels are harming our brains: Identifying key messages about the health effects of air pollution from fossil fuels. BMC Public Health 2019, 19, 1079. [Google Scholar] [CrossRef]
- Shindell, D.; Smith, C.J. Climate and air-quality benefits of a realistic phase-out of fossil fuels. Nature 2019, 573, 408–411. [Google Scholar] [CrossRef] [Green Version]
- Ağbulut, Ü.; Sarıdemir, S. A general view to converting fossil fuels to cleaner energy source by adding nanoparticles. Int. J. Ambient Energy 2019, 42, 1569–1574. [Google Scholar] [CrossRef]
- Živković, S.; Veljković, M. Environmental impacts the of production and use of biodiesel. Environ. Sci. Pollut. Res. 2018, 25, 191–199. [Google Scholar] [CrossRef]
- Ardabili, S.; Mosavi, A.; Várkonyi-Kóczy, A.R. Systematic Review of Deep Learning and Machine Learning Models in Biofuels Research. Lect. Notes Netw. Syst. 2020, 101, 19–32. [Google Scholar] [CrossRef]
- Kaletnik, H.; Pryshliak, V.; Pryshliak, N. Public policy and biofuels: Energy, environment and food trilemma. J. Environ. Manag. Tour. 2019, 10, 479–487. [Google Scholar] [CrossRef]
- Cheteni, P. Sustainability Development: Biofuels in Agriculture. Environ. Econ. 2017, 8, 83–91. [Google Scholar] [CrossRef] [Green Version]
- Zulauf, C.; Prutska, O.; Kirieieva, E.; Pryshliak, N. Assessment of the potential for a biofuels industry in Ukraine. Probl. Perspect. Manag. 2018, 16, 83–90. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, Q.; Bowyer, J.; Howe, J.; Bratkovich, S.; Groot, H.; Pepke, E.; Fernholz, K. Global Production of Second Generation Biofuels: Trends and Influences; Dovetail Partn. Inc.: Minneapolis, MN, USA, 2017. [Google Scholar]
- Stokes, L.C.; Breetz, H.L. Politics in the US energy transition: Case studies of solar, wind, biofuels and electric vehicles policy. Energy Policy 2018, 113, 76–86. [Google Scholar] [CrossRef] [Green Version]
- Koçar, G.; Civaş, N. An overview of biofuels from energy crops: Current status and future prospects. Renew. Sustain. Energy Rev. 2013, 28, 900–916. [Google Scholar] [CrossRef]
- Oumer, A.N.; Hasan, M.M.; Baheta, A.T.; Mamat, R.; Abdullah, A.A. Bio-based liquid fuels as a source of renewable energy: A review. Renew. Sustain. Energy Rev. 2018, 88, 82–98. [Google Scholar] [CrossRef]
- Saravanan, A.P.; Mathimani, T.; Deviram, G.; Rajendran, K.; Pugazhendhi, A. Biofuel policy in India: A review of policy barriers in sustainable marketing of biofuel. J. Clean. Prod. 2018, 193, 734–747. [Google Scholar] [CrossRef]
- Adewuyi, A. Challenges and prospects of renewable energy in Nigeria: A case of bioethanol and biodiesel production. Energy Rep. 2020, 6, 77–88. [Google Scholar] [CrossRef]
- Balwan, W.K.; Kour, S. A Systematic Review of Biofuels: The Cleaner Energy for Cleaner Environment. Indian J. Sci. Res. 2021, 12, 135–142. [Google Scholar] [CrossRef]
- Coufalík, P.; Matoušek, T.; Křůmal, K.; Vojtíšek-Lom, M.; Beránek, V.; Mikuška, P. Content of metals in emissions from gasoline, diesel, and alternative mixed biofuels. Environ. Sci. Pollut. Res. 2019, 26, 29012–29019. [Google Scholar] [CrossRef]
- Navas-Anguita, Z.; García-Gusano, D.; Iribarren, D. Long-term production technology mix of alternative fuels for road transport: A focus on Spain. Energy Convers. Manag. 2020, 226, 113498. [Google Scholar] [CrossRef]
- Dahab, H.A.A. El Ournal of. Asian J. Chem. 2015, 27, 3658–3662. [Google Scholar]
- Ruan, R.; Zhang, Y.; Chen, P.; Liu, S.; Fan, L.; Zhou, N.; Ding, K.; Peng, P.; Addy, M.; Cheng, Y. Biofuels: Introduction. In Biofuels: Alternative Feedstocks and Conversion Processes for the Production of Liquid and Gaseous Biofuels; Elsevier: Amsterdam, The Netherlands, 2019; pp. 3–43. [Google Scholar]
- Siddique, M.B.M.; Kashem, S.B.A.; Iqbal, A. Biofuels in Malaysian perspective: Debates and benefits. In Proceedings of the 2018 IEEE 12th International Conference on Compatibility, Power Electronics and Power Engineering (CPE-POWERENG 2018), Doha, Qatar, 10–12 April 2018; pp. 1–6. [Google Scholar]
- Mobin, S.M.A.; Alam, F. A review of microalgal biofuels, challenges and future directions. Appl. Thermo-Fluid Process. Energy Syst. 2018, 83–108. [Google Scholar] [CrossRef]
- Rathour, R.K.; Ahuja, V.; Bhatia, R.K.; Bhatt, A.K. Biobutanol: New era of biofuels. Int. J. Energy Res. 2018, 42, 4532–4545. [Google Scholar] [CrossRef]
- Pulyaeva, V.N.; Kharitonova, N.A.; Kharitonova, E.N. Advantages and Disadvantages of the Production and Using of Liquid Biofuels. IOP Conf. Ser. Mater. Sci. Eng. 2020, 976, 012031. [Google Scholar] [CrossRef]
- Alizadeh, R.; Lund, P.D.; Soltanisehat, L. Outlook on biofuels in future studies: A systematic literature review. Renew. Sustain. Energy Rev. 2020, 134, 110326. [Google Scholar] [CrossRef]
- Khan, M.I.; Shin, J.H.; Kim, J.D. The promising future of microalgae: Current status, challenges, and optimization of a sustainable and renewable industry for biofuels, feed, and other products. Microb. Cell Fact. 2018, 17, 1–21. [Google Scholar] [CrossRef]
- Lecksiwilai, N.; Gheewala, S.H. Life cycle assessment of biofuels in Thailand: Implications of environmental trade-offs for policy decisions. Sustain. Prod. Consum. 2020, 22, 177–185. [Google Scholar] [CrossRef]
- Rasool, U.; Hemalatha, S. A review on bioenergy and biofuels: Sources and their production. Braz. J. Biol. Sci. 2016, 3, 3–22. [Google Scholar] [CrossRef] [Green Version]
- Gharabaghi, M.; Amrei, H.D.; Zenooz, A.M.; Guzullo, J.S.; Ashtiani, F.Z. Biofuels: Bioethanol, biodiesel, biogas, biohydrogen from plants and microalgae. In CO2 Sequestration, Biofuels and Depollution; Springer: Berlin/Heidelberg, Germany, 2015; pp. 233–274. [Google Scholar]
- Simionescu, M.; Albu, L.-L.; Raileanu Szeles, M.; Bilan, Y. The impact of biofuels utilisation in transport on the sustainable development in the European Union. Technol. Econ. Dev. Econ. 2017, 23, 667–686. [Google Scholar] [CrossRef]
- Bettinelli, M. Atomization and Combustion of Viscous Biofuels in a Diesel Engine; Politecnico di Milano: Milan, Italy, 2017. [Google Scholar]
- Purica, I.; Sindile, M. Food Versus Biofuels–An Energy Balance Approach. ISSN 2066-8570. Available online: https://aos.ro/wp-content/anale/TVol6Nr2Art.9.pdf (accessed on 10 May 2022).
- Behera, S.; Singh, R.; Arora, R.; Sharma, N.K.; Shukla, M.; Kumar, S. Scope of algae as third generation biofuels. Front. Bioeng. Biotechnol. 2015, 2, 90. [Google Scholar] [CrossRef]
- Shahare, V.V.; Kumar, B.; Singh, P. Biofuels for sustainable development: A global perspective. In Green Technologies and Environmental Sustainability; Springer: Berlin/Heidelberg, Germany, 2017; pp. 67–89. [Google Scholar]
- Salian, K.; Strezov, V. Biofuels from Microalgae. In Encyclopedia of Sustainable Technologies; Elsevier: Amsterdam, The Netherlands, 2017; pp. 107–120. [Google Scholar]
- Guo, M.; Song, W.; Buhain, J. Bioenergy and biofuels: History, status, and perspective. Renew. Sustain. Energy Rev. 2015, 42, 712–725. [Google Scholar] [CrossRef]
- Viesturs, D.; Melece, L. Advantages and disadvantages of biofuels: Observations in Latvia. Latv. Univ. Agric. 2014, 29, 210–215. [Google Scholar]
- Rittle, A.; Economic Advantages and Disadvantages of Biofuels: A Pathway to Success in Poverty-Stricken Pakistan and Afghanistan. World Food Prize. 2007. Available online: http//www.worldfoodprize.org/assets/YouthInstitute/07proceedings/Conrad_Weiser_%20Rittle.pdf (accessed on 8 March 2009).
- Evangelia, A.T.; Karagkiozidis, P.S. Climate change and biofuels. J. Env. Prot. Ecol. 2012, 13, 781. [Google Scholar]
- Cepгeeвa, Г.B.; Cтpeльникoва, Д.B. Advantages and disadvantages of biofuels in aviation. Иннoвациoнная наука 2020, 4, 57–59. [Google Scholar]
- Luque, R.; Herrero-Davila, L.; Campelo, J.M.; Clark, J.H.; Hidalgo, J.M.; Luna, D.; Marinas, J.M.; Romero, A.A. Biofuels: A technological perspective. Energy Environ. Sci. 2008, 1, 542–564. [Google Scholar] [CrossRef]
- Pankin, K.E.; Ivanova, Y.V.; Kuz’Mina, R.I.; Shtykov, S.N. Comparison of the physicochemical characteristics of biofuels and petroleum fuels. Chem. Technol. Fuels Oils 2011, 47, 7–11. [Google Scholar] [CrossRef]
- Bucksch, S.; Egebäck, K.-E. The Swedish program for investigations concerning biofuels. Sci. Total Environ. 1999, 235, 293–303. [Google Scholar] [CrossRef]
- His, S. Biofuels in Europe; 2005; Available online: http://nopr.niscpr.res.in/handle/123456789/5390 (accessed on 10 May 2022).
- Balat, M. Potential alternatives to edible oils for biodiesel production—A review of current work. Energy Convers. Manag. 2011, 52, 1479–1492. [Google Scholar] [CrossRef]
- Karmee, S.K.; Chadha, A. Preparation of biodiesel from crude oil of Pongamia pinnata. Bioresour. Technol. 2005, 96, 1425–1429. [Google Scholar] [CrossRef]
- Janaun, J.; Ellis, N. Perspectives on biodiesel as a sustainable fuel. Renew. Sustain. Energy Rev. 2010, 14, 1312–1320. [Google Scholar] [CrossRef]
- Kafuku, G.; Mbarawa, M. Biodiesel production from Croton megalocarpus oil and its process optimization. Fuel 2010, 89, 2556–2560. [Google Scholar] [CrossRef]
- Sharma, Y.C.; Singh, B. Development of biodiesel: Current scenario. Renew. Sustain. Energy Rev. 2009, 13, 1646–1651. [Google Scholar] [CrossRef]
- Mofijur, M.; Masjuki, H.H.; Kalam, M.A.; Hazrat, M.A.; Liaquat, A.M.; Shahabuddin, M.; Varman, M. Prospects of biodiesel from Jatropha in Malaysia. Renew. Sustain. Energy Rev. 2012, 16, 5007–5020. [Google Scholar] [CrossRef]
- Bezergianni, S.; Kalogianni, A.; Vasalos, I.A. Hydrocracking of vacuum gas oil-vegetable oil mixtures for biofuels production. Bioresour. Technol. 2009, 100, 3036–3042. [Google Scholar] [CrossRef]
- Chhetri, A.B.; Watts, K.C.; Islam, M.R. Waste cooking oil as an alternate feedstock for biodiesel production. Energies 2008, 1, 3–18. [Google Scholar] [CrossRef] [Green Version]
- Karmakar, B.; Halder, G. Progress and future of biodiesel synthesis: Advancements in oil extraction and conversion technologies. Energy Convers. Manag. 2019, 182, 307–339. [Google Scholar] [CrossRef]
- Fonseca, J.M.; Teleken, J.G.; de Cinque Almeida, V.; da Silva, C. Biodiesel from waste frying oils: Methods of production and purification. Energy Convers. Manag. 2019, 184, 205–218. [Google Scholar] [CrossRef]
- Banković-Ilić, I.B.; Stamenković, O.S.; Veljković, V.B. Biodiesel production from non-edible plant oils. Renew. Sustain. Energy Rev. 2012, 16, 3621–3647. [Google Scholar] [CrossRef]
- Ahmad, A.L.; Yasin, N.H.M.; Derek, C.J.C.; Lim, J.K. Microalgae as a sustainable energy source for biodiesel production: A review. Renew. Sustain. Energy Rev. 2011, 15, 584–593. [Google Scholar] [CrossRef]
- Aransiola, E.; Betiku, E.; Layokun, S.; Solomon, B. Production of biodiesel by transesterification of refined soybean oil. Int. J. Biol. Chem. Sci. 2010, 4. [Google Scholar] [CrossRef]
- Atabani, A.E.; Silitonga, A.S.; Badruddin, I.A.; Mahlia, T.M.I.I.; Masjuki, H.H.; Mekhilef, S. A comprehensive review on biodiesel as an alternative energy resource and its characteristics. Renew. Sustain. Energy Rev. 2012, 16, 2070–2093. [Google Scholar] [CrossRef]
- Tiwari, A.K.; Kumar, A.; Raheman, H. Biodiesel production from jatropha oil (Jatropha curcas) with high free fatty acids: An optimized process. Biomass Bioenergy 2007, 31, 569–575. [Google Scholar] [CrossRef]
- Berchmans, H.J.; Hirata, S. Biodiesel production from crude Jatropha curcas L. seed oil with a high content of free fatty acids. Bioresour. Technol. 2008, 99, 1716–1721. [Google Scholar] [CrossRef] [PubMed]
- Bahadur, S.; Goyal, P.; Sudhakar, K.; Bijarniya, J.P. A comparative study of ultrasonic and conventional methods of biodiesel production from mahua oil. Biofuels 2015, 6, 107–113. [Google Scholar] [CrossRef]
- Karmakar, A.; Karmakar, S.; Mukherjee, S. Properties of various plants and animals feedstocks for biodiesel production. Bioresour. Technol. 2010, 101, 7201–7210. [Google Scholar] [CrossRef] [PubMed]
- Francis, G.; Oliver, J.; Sujatha, M. Non-toxic jatropha plants as a potential multipurpose multi-use oilseed crop. Ind. Crops Prod. 2013, 42, 397–401. [Google Scholar] [CrossRef]
- Atabani, A.E.; Silitonga, A.S.; Ong, H.C.; Mahlia, T.M.I.; Masjuki, H.H.; Badruddin, I.A.; Fayaz, H. Non-edible vegetable oils: A critical evaluation of oil extraction, fatty acid compositions, biodiesel production, characteristics, engine performance and emissions production. Renew. Sustain. Energy Rev. 2013, 18, 211–245. [Google Scholar] [CrossRef]
- Lim, B.Y.; Shamsudin, R.; Baharudin, B.T.H.T.; Yunus, R. A review of processing and machinery for Jatropha curcas L. fruits and seeds in biodiesel production: Harvesting, shelling, pretreatment and storage. Renew. Sustain. Energy Rev. 2015, 52, 991–1002. [Google Scholar] [CrossRef] [Green Version]
- Mazumdar, P.; Singh, P.; Babu, S.; Siva, R.; Harikrishna, J.A. An update on biological advancement of Jatropha curcas L.: New insight and challenges. Renew. Sustain. Energy Rev. 2018, 91, 903–917. [Google Scholar] [CrossRef]
- Alherbawi, M.; McKay, G.; Mackey, H.R.; Al-Ansari, T. A novel integrated pathway for Jet Biofuel production from whole energy crops: A Jatropha curcas case study. Energy Convers. Manag. 2021, 229, 113662. [Google Scholar] [CrossRef]
- Meher, L.C.; Churamani, C.P.; Arif, M.; Ahmed, Z.; Naik, S.N. Jatropha curcas as a renewable source for bio-fuels—A review. Renew. Sustain. Energy Rev. 2013, 26, 397–407. [Google Scholar] [CrossRef]
- Romijn, H.A.; Caniëls, M.C.J. The Jatropha biofuels sector in Tanzania 2005–2009: Evolution towards sustainability? Res. Policy 2011, 40, 618–636. [Google Scholar] [CrossRef] [Green Version]
- Hunsberger, C. The politics of Jatropha-based biofuels in Kenya: Convergence and divergence among NGOs, donors, government officials and farmers. J. Peasant Stud. 2010, 37, 939–962. [Google Scholar] [CrossRef]
- Chamdimba, O.Y.; Ortmann, G.F.; Wale, E. Biofuels and rural livelihoods: Empirical evidence on the welfare impacts of jatropha cultivation in southern malawi. J. Agric. Rural Dev. Trop. Subtrop. 2019, 120, 129–140. [Google Scholar] [CrossRef]
- Eng, C. Archive of SID The Viability of Biofuels in Developing Countries: Successes, Failures, and Challenges. Iran. J. Chem. Chem. Eng. 2019, 38, 173–182. [Google Scholar]
- Arndt, C.; Benfica, R.; Tarp, F.; Thurlow, J.; Uaiene, R. Biofuels, poverty, and growth: A computable general equilibrium analysis of Mozambique. Environ. Dev. Econ. 2010, 15, 81–105. [Google Scholar] [CrossRef] [Green Version]
- Axelsson, L.; Franzén, M.; Ostwald, M.; Berndes, G.; Lakshmi, G.; Ravindranath, N.H. Jatropha cultivation in southern India: Assessing farmers’ experiences. Biofuels Bioprod. Biorefining 2012, 6, 246–256. [Google Scholar] [CrossRef]
- de Souza, L.M.; Mendes, P.A.S.; Aranda, D.A.G. Oleaginous feedstocks for hydro-processed esters and fatty acids (HEFA) biojet production in southeastern Brazil: A multi-criteria decision analysis. Renew. Energy 2020, 149, 1339–1351. [Google Scholar] [CrossRef]
- Silitonga, A.S.; Masjuki, H.H.; Mahlia, T.M.I.; Ong, H.C.; Atabani, A.E.; Chong, W.T. A global comparative review of biodiesel production from jatropha curcas using different homogeneous acid and alkaline catalysts: Study of physical and chemical properties. Renew. Sustain. Energy Rev. 2013, 24, 514–533. [Google Scholar] [CrossRef]
- Verma, P.; Sharma, M.P.; Dwivedi, G. Impact of alcohol on biodiesel production and properties. Renew. Sustain. Energy Rev. 2016, 56, 319–333. [Google Scholar] [CrossRef]
- Tariq, M.; Ali, S.; Khalid, N. Activity of homogeneous and heterogeneous catalysts, spectroscopic and chromatographic characterization of biodiesel: A review. Renew. Sustain. Energy Rev. 2012, 16, 6303–6316. [Google Scholar] [CrossRef]
- Aransiola, E.F.; Ojumu, T.V.; Oyekola, O.O.; Madzimbamuto, T.F.; Ikhu-Omoregbe, D.I.O. A review of current technology for biodiesel production: State of the art. Biomass Bioenergy 2014, 61, 276–297. [Google Scholar] [CrossRef]
- Pandey, V.C.; Singh, K.; Singh, J.S.; Kumar, A.; Singh, B.; Singh, R.P. Jatropha curcas: A potential biofuel plant for sustainable environmental development. Renew. Sustain. Energy Rev. 2012, 16, 2870–2883. [Google Scholar] [CrossRef]
- Basili, M.; Fontini, F. Biofuel from Jatropha curcas: Environmental sustainability and option value. Ecol. Econ. 2012, 78, 1–8. [Google Scholar] [CrossRef]
- Vásquez, M.C.; Silva, E.E.; Castillo, E.F. Hydrotreatment of vegetable oils: A review of the technologies and its developments for jet biofuel production. Biomass Bioenergy 2017, 105, 197–206. [Google Scholar] [CrossRef]
- Castro Gonzáles, N.F.; Gonzales, N.F.C.; Castro Gonzáles, N.F. International experiences with the cultivation of Jatropha curcas for biodiesel production. Energy 2016, 112, 1245–1258. [Google Scholar] [CrossRef]
- Kumar, S.; Chaube, A.; Jain, S.K. Sustainability issues for promotion of Jatropha biodiesel in Indian scenario: A review. Renew. Sustain. Energy Rev. 2012, 16, 1089–1098. [Google Scholar] [CrossRef]
- Yue, G.H.; Sun, F.; Liu, P. Status of molecular breeding for improving Jatropha curcas and biodiesel. Renew. Sustain. Energy Rev. 2013, 26, 332–343. [Google Scholar] [CrossRef]
- Grimsby, L.K.; Aune, J.B.; Johnsen, F.H. Human energy requirements in Jatropha oil production for rural electrification in Tanzania. Energy Sustain. Dev. 2012, 16, 297–302. [Google Scholar] [CrossRef] [Green Version]
- Ewunie, G.A.; Morken, J.; Lekang, O.I.; Yigezu, Z.D. Factors affecting the potential of Jatropha curcas for sustainable biodiesel production: A critical review. Renew. Sustain. Energy Rev. 2021, 137, 110500. [Google Scholar] [CrossRef]
- Raheman, H.; Mondal, S. Biogas production potential of jatropha seed cake. Biomass Bioenergy 2012, 37, 25–30. [Google Scholar] [CrossRef]
- Eckart, K.; Henshaw, P. Jatropha curcas L. and multifunctional platforms for the development of rural sub-Saharan Africa. Energy Sustain. Dev. 2012, 16, 303–311. [Google Scholar] [CrossRef]
- Soto, I.; Ellison, C.; Kenis, M.; Diaz, B.; Muys, B.; Mathijs, E. Why do farmers abandon jatropha cultivation? The case of Chiapas, Mexico. Energy Sustain. Dev. 2018, 42, 77–86. [Google Scholar] [CrossRef]
- Massimo, V.; Steluta, R.; Mario, B. Evaluation of genetic diversity between toxic and non toxic Jatropha curcas L. accessions using a set of simple sequence repeat (SSR) markers. Afr. J. Biotechnol. 2013, 12, 265–274. [Google Scholar] [CrossRef]
- Corral, S.; Legna-de La Nuez, D.; Romero-Manrique De Lara, D. Integrated assessment of biofuel production in arid lands: Jatropha cultivation on the island of Fuerteventura. Renew. Sustain. Energy Rev. 2015, 52, 41–53. [Google Scholar] [CrossRef]
- Shah, S.; Sharma, A.; Gupta, M.N. Extraction of oil from Jatropha curcas L. seed kernels by combination of ultrasonication and aqueous enzymatic oil extraction. Bioresour. Technol. 2005, 96, 121–123. [Google Scholar] [CrossRef]
- Lim, S.; Lee, K.T. Process intensification for biodiesel production from Jatropha curcas L. seeds: Supercritical reactive extraction process parameters study. Appl. Energy 2013, 103, 712–720. [Google Scholar] [CrossRef]
- Lim, S.; Lee, K.-T. Influences of different co-solvents in simultaneous supercritical extraction and transesterification of Jatropha curcas L. seeds for the production of biodiesel. Chem. Eng. J. 2013, 221, 436–445. [Google Scholar] [CrossRef]
- Mouahid, A.; Bouanga, H.; Crampon, C.; Badens, E. Supercritical CO2 extraction of oil from Jatropha curcas: An experimental and modelling study. J. Supercrit. Fluids 2018, 141, 2–11. [Google Scholar] [CrossRef] [Green Version]
- Farahani, G.T.; Azari, P.Y. Improving the oil yield of Iranian Jatropha curcas seeds by optimising ultrasound-assisted ethanolic extraction process: A response surface method. Qual. Assur. Saf. Crop. Foods 2016, 8, 95–104. [Google Scholar] [CrossRef]
- Yang, C.Y.; Fang, Z.; Li, B.; Long, Y.F. Review and prospects of Jatropha biodiesel industry in China. Renew. Sustain. Energy Rev. 2012, 16, 2178–2190. [Google Scholar] [CrossRef]
- Azam, M.M.; Waris, A.; Nahar, N.M. Prospects and potential of fatty acid methyl esters of some non-traditional seed oils for use as biodiesel in India. Biomass Bioenergy 2005, 29, 293–302. [Google Scholar]
- Asif, S.; Ahmad, M.; Zafar, M.; Ali, N. Prospects and potential of fatty acid methyl esters of some non-edible seed oils for use as biodiesel in Pakistan. Renew. Sustain. Energy Rev. 2017, 74, 687–702. [Google Scholar]
- Akubude, V.C.; Nwaigwe, K.N.; Dintwa, E. Production of biodiesel from microalgae via nanocatalyzed transesterification process: A review. Mater. Sci. Energy Technol. 2019, 2, 216–225. [Google Scholar] [CrossRef]
- Rezania, S.; Oryani, B.; Park, J.; Hashemi, B.; Yadav, K.K.; Kwon, E.E.; Hur, J.; Cho, J. Review on transesterification of non-edible sources for biodiesel production with a focus on economic aspects, fuel properties and by-product applications. Energy Convers. Manag. 2019, 201, 112155. [Google Scholar] [CrossRef]
- Moazeni, F.; Chen, Y.-C.; Zhang, G. Enzymatic transesterification for biodiesel production from used cooking oil, a review. J. Clean. Prod. 2019, 216, 117–128. [Google Scholar] [CrossRef]
- Tan, S.X.; Lim, S.; Ong, H.C.; Pang, Y.L. State of the art review on development of ultrasound-assisted catalytic transesterification process for biodiesel production. Fuel 2019, 235, 886–907. [Google Scholar] [CrossRef]
- Mofijur, M.; Siddiki, S.Y.A.; Ahmed, M.B.; Djavanroodi, F.; Fattah, I.M.R.; Ong, H.C.; Chowdhury, M.A.; Mahlia, T.M.I. Effect of nanocatalysts on the transesterification reaction of first, second and third generation biodiesel sources-A mini-review. Chemosphere 2020, 270, 128642. [Google Scholar] [CrossRef]
- Norjannah, B.; Ong, H.C.; Masjuki, H.H.; Juan, J.C.; Chong, W.T. Enzymatic transesterification for biodiesel production: A comprehensive review. RSC Adv. 2016, 6, 60034–60055. [Google Scholar] [CrossRef]
- Van Eijck, J.; Romijn, H. Prospects for Jatropha Biofuels in Tanzania: An Analysis with Strategic Niche Management. In Sectoral Systems of Innovation and Production in Developing Countries; Edward Elgar Publishing: Cheltenham, UK, 2009. [Google Scholar]
- Najafi, F.; Sedaghat, A.; Mostafaeipour, A.; Issakhov, A. Location assessment for producing biodiesel fuel from Jatropha Curcas in Iran. Energy 2021, 236, 121446. [Google Scholar] [CrossRef]
- Gasparatos, A.; Mudombi, S.; Balde, B.S.; von Maltitz, G.P.; Johnson, F.X.; Romeu-Dalmau, C.; Jumbe, C.; Ochieng, C.; Luhanga, D.; Nyambane, A. Local food security impacts of biofuel crop production in southern Africa. Renew. Sustain. Energy Rev. 2022, 154, 111875. [Google Scholar] [CrossRef]
- Dyer, J.C.; Stringer, L.C.; Dougill, A.J. Jatropha curcas: Sowing local seeds of success in Malawi?. In response to Achten et al. (2010). J. Arid. Environ. 2012, 79, 107–110. [Google Scholar] [CrossRef]
- Qin, S.; Miao, Q.; Feng, W.-W.; Wang, Y.; Zhu, X.; Xing, K.; Jiang, J.-H. Biodiversity and plant growth promoting traits of culturable endophytic actinobacteria associated with Jatropha curcas L. growing in Panxi dry-hot valley soil. Appl. Soil Ecol. 2015, 93, 47–55. [Google Scholar] [CrossRef]
- Forson, F.K.; Oduro, E.K.; Hammond-Donkoh, E. Performance of jatropha oil blends in a diesel engine. Renew. Energy 2004, 29, 1135–1145. [Google Scholar] [CrossRef]
- Souza, S.P.; Seabra, J.E.A.; Nogueira, L.A.H. Feedstocks for biodiesel production: Brazilian and global perspectives. Biofuels 2018, 9, 455–478. [Google Scholar] [CrossRef]
- Tapanes, N.C.O.; Aranda, D.A.G.; de Mesquita Carneiro, J.W.; Antunes, O.A.C. Transesterification of Jatropha curcas oil glycerides: Theoretical and experimental studies of biodiesel reaction. Fuel 2008, 87, 2286–2295. [Google Scholar] [CrossRef]
- Gui, M.M.; Lee, K.T.; Bhatia, S. Feasibility of edible oil vs. non-edible oil vs. waste edible oil as biodiesel feedstock. Energy 2008, 33, 1646–1653. [Google Scholar] [CrossRef]
- Liu, G.; Mai, J. Habitat shifts of Jatropha curcas L. in the Asia-Pacific region under climate change scenarios. Energy 2022, 251, 123885. [Google Scholar] [CrossRef]
- Nayab, R.; Imran, M.; Ramzan, M.; Tariq, M.; Taj, M.B.; Akhtar, M.N.; Iqbal, H.M.N. Sustainable biodiesel production via catalytic and non-catalytic transesterification of feedstock materials—A review. Fuel 2022, 328, 125254. [Google Scholar] [CrossRef]
- Makkar, H.P.S.; Aderibigbe, A.O.; Becker, K. Comparative evaluation of non-toxic and toxic varieties of Jatropha curcas for chemical composition, digestibility, protein degradability and toxic factors. Food Chem. 1998, 62, 207–215. [Google Scholar] [CrossRef]
- Warra, A.A. A report on soap making in Nigeria using indigenous technology and raw materials. Afr. J. Pure Appl. Chem. 2013, 7, 139–145. [Google Scholar] [CrossRef] [Green Version]
- Demirbas, A. Biodiesel production via rapid transesterification. Energy Sources Part A 2008, 30, 1830–1834. [Google Scholar] [CrossRef]
- Ayoob, A.K.; Fadhil, A.B. Valorization of waste tires in the synthesis of an effective carbon based catalyst for biodiesel production from a mixture of non-edible oils. Fuel 2020, 264, 116754. [Google Scholar] [CrossRef]
- Ma, F.; Hanna, M.A. Biodiesel production: A review. Bioresour. Technol. 1999, 70, 1–15. [Google Scholar] [CrossRef]
- Fukuda, H.; Kondo, A.; Noda, H. Biodiesel fuel production by transesterification of oils. J. Biosci. Bioeng. 2001, 92, 405–416. [Google Scholar] [CrossRef] [PubMed]
- Musa, I.A. The effects of alcohol to oil molar ratios and the type of alcohol on biodiesel production using transesterification process. Egypt. J. Pet. 2016, 25, 21–31. [Google Scholar] [CrossRef] [Green Version]
- Demirbas, A. Biodiesel production from vegetable oils via catalytic and non-catalytic supercritical methanol transesterification methods. Prog. Energy Combust. Sci. 2005, 31, 466–487. [Google Scholar] [CrossRef]
- Yusuf, N.; Kamarudin, S.K.; Yaakub, Z. Overview on the current trends in biodiesel production. Energy Convers. Manag. 2011, 52, 2741–2751. [Google Scholar] [CrossRef]
- Wang, X.; Liu, X.; Zhao, C.; Ding, Y.; Xu, P. Biodiesel production in packed-bed reactors using lipase–nanoparticle biocomposite. Bioresour. Technol. 2011, 102, 6352–6355. [Google Scholar] [CrossRef]
- Ghadge, S.V.; Raheman, H. Biodiesel production from mahua (Madhuca indica) oil having high free fatty acids. Biomass Bioenergy 2005, 28, 601–605. [Google Scholar] [CrossRef]
- Jain, S.; Sharma, M.P. Kinetics of acid base catalyzed transesterification of Jatropha curcas oil. Bioresour. Technol. 2010, 101, 7701–7706. [Google Scholar] [CrossRef]
- Romero-Ibarra, I.C.; Escuela, A.M.P.; Zúñiga, G.E.M.; Muñoz, W.E.M. Direct Transesterification: From Seeds to Biodiesel in One-Step Using Homogeneous and Heterogeneous Catalyst. Adv. Biodiesel 2022. [Google Scholar] [CrossRef]
- Juan, J.C.; Kartika, D.A.; Wu, T.Y.; Hin, T.-Y.Y. Biodiesel production from jatropha oil by catalytic and non-catalytic approaches: An overview. Bioresour. Technol. 2011, 102, 452–460. [Google Scholar] [CrossRef]
- Berchmans, H.J.; Morishita, K.; Takarada, T. Kinetic study of hydroxide-catalyzed methanolysis of Jatropha curcas–waste food oil mixture for biodiesel production. Fuel 2013, 104, 46–52. [Google Scholar] [CrossRef]
- Gandhi, B.S.; Chelladurai, S.S.; Kumaran, D.S. Process optimization for biodiesel synthesis from jatropha curcas oil. Distrib. Gener. Altern. Energy J. 2011, 26, 6–16. [Google Scholar]
- Deng, X.; Fang, Z.; Liu, Y. Ultrasonic transesterification of Jatropha curcas L. oil to biodiesel by a two-step process. Energy Convers. Manag. 2010, 51, 2802–2807. [Google Scholar] [CrossRef]
- Hincapié, G.; Mondragón, F.; López, D. Conventional and in situ transesterification of castor seed oil for biodiesel production. Fuel 2011, 90, 1618–1623. [Google Scholar] [CrossRef]
- Asikin-Mijan, N.; Lee, H.V.; Abdulkareem-Alsultan, G.; Afandi, A.; Taufiq-Yap, Y.H. Production of green diesel via cleaner catalytic deoxygenation of Jatropha curcas oil. J. Clean. Prod. 2017, 167, 1048–1059. [Google Scholar] [CrossRef]
- Amin, A. Review of diesel production from renewable resources: Catalysis, process kinetics and technologies. Ain Shams Eng. J. 2019, 10, 821–839. [Google Scholar] [CrossRef]
- Eevera, T.; Rajendran, K.; Saradha, S. Biodiesel production process optimization and characterization to assess the suitability of the product for varied environmental conditions. Renew. Energy 2009, 34, 762–765. [Google Scholar] [CrossRef]
- Kywe, T.T.; Oo, M.M. Production of biodiesel from Jatropha oil (Jatropha curcas) in pilot plant. Proc. World Acad. Sci. Eng. Technol. 2009, 38, 481–487. [Google Scholar]
- Singh, R.K.; Padhi, S.K. Characterization of jatropha oil for the preparation of biodiesel. 2009, 2005. Nat. Prod. Rad. 2009, 8, 127–132. [Google Scholar]
- Akbar, E.; Yaakob, Z.; Kamarudin, S.K.; Ismail, M.; Salimon, J. Characteristic and composition of Jatropha curcas oil seed from Malaysia and its potential as biodiesel feedstock feedstock. Eur. J. Sci. Res. 2009, 29, 396–403. [Google Scholar]
- Bringi, N.V. Non-Traditional Oilseeds and Oils in India; Oxford and IBH Pub. Co.: Delhi, India, 1987. [Google Scholar]
- Becker, K.; Makkar, H.P.S. Jatropha curcas: A potential source for tomorrow’s oil and biodiesel. Lipid Technol. 2008, 20, 104–107. [Google Scholar] [CrossRef]
- Sinha, A.K.; Anand, M.; Rana, B.S.; Kumar, R.; Farooqui, S.A.; Sibi, M.G.; Joshi, R.K. Development of hydroprocessing route to transportation fuels from non-edible plant-oils. Catal. Surv. Asia 2013, 17, 1–13. [Google Scholar] [CrossRef]
- Huaping, Z.H.U.; Zongbin, W.U.; Yuanxiong, C.; Zhang, P.; Shijie, D.; Xiaohua, L.I.U.; Zongqiang, M.A.O. Preparation of biodiesel catalyzed by solid super base of calcium oxide and its refining process. Chin. J. Catal. 2006, 27, 391–396. [Google Scholar]
- Kumar, R.; Das, N. Survey and selection of Jatropha curcas L. germplasm: Assessment of genetic variability and divergence studies on the seed traits and oil content. Ind. Crops Prod. 2018, 118, 125–130. [Google Scholar] [CrossRef]
- Wang, R.; Hanna, M.A.; Zhou, W.-W.; Bhadury, P.S.; Chen, Q.; Song, B.-A.; Yang, S. Production and selected fuel properties of biodiesel from promising non-edible oils: Euphorbia lathyris L., Sapium sebiferum L. and Jatropha curcas L. Bioresour. Technol. 2011, 102, 1194–1199. [Google Scholar] [CrossRef]
- Derkyi, N.S.A.; Sekyere, D.; Oduro, K.A. Variations in oil content and biodiesel yield of Jatropha curcas from different agro-ecological zones of Ghana. Int. J. Renew. Sustain. Energy 2014, 3, 76–81. [Google Scholar]
- Aboubakar, X.; Bébé, Y.; Goudoum, A.; Mbofung, C.M.F. Optimization of Jatropha curcas pure vegetable oil production parameters for cooking energy. south african J. Chem. Eng. 2017, 24, 196–212. [Google Scholar] [CrossRef]
- Liu, J.; Chen, P.; He, J.; Deng, L.; Wang, L.; Lei, J.; Rong, L. Extraction of oil from Jatropha curcas seeds by subcritical fluid extraction. Ind. Crops Prod. 2014, 62, 235–241. [Google Scholar] [CrossRef]
- Makkar, H.P.S.; Kumar, V.; Oyeleye, O.O.; Akinleye, A.O.; Angulo-Escalante, M.A.; Becker, K. Jatropha platyphylla, a new non-toxic Jatropha species: Physical properties and chemical constituents including toxic and antinutritional factors of seeds. Food Chem. 2011, 125, 63–71. [Google Scholar] [CrossRef]
- de Oliveira, J.S.; Leite, P.M.; de Souza, L.B.; Mello, V.M.; Silva, E.C.; Rubim, J.C.; Meneghetti, S.M.P.; Suarez, P.A.Z. Characteristics and composition of Jatropha gossypiifoliaand Jatropha curcas L. oils and application for biodiesel production. Biomass Bioenergy 2009, 33, 449–453. [Google Scholar] [CrossRef]
- Chen, W.-H.; Chen, C.-H.; Chang, C.-M.J.; Chiu, Y.-H.; Hsiang, D. Supercritical carbon dioxide extraction of triglycerides from Jatropha curcas L. seeds. J. Supercrit. Fluids 2009, 51, 174–180. [Google Scholar] [CrossRef]
- Zhou, Q.; Zhang, H.; Chang, F.; Li, H.; Pan, H.; Xue, W.; Hu, D.-Y.; Yang, S. Nano La2O3 as a heterogeneous catalyst for biodiesel synthesis by transesterification of Jatropha curcas L. oil. J. Ind. Eng. Chem. 2015, 31, 385–392. [Google Scholar] [CrossRef]
- Lim, S.; Hoong, S.S.; Teong, L.K.; Bhatia, S. Supercritical fluid reactive extraction of Jatropha curcas L. seeds with methanol: A novel biodiesel production method. Bioresour. Technol. 2010, 101, 7169–7172. [Google Scholar] [CrossRef] [PubMed]
- Baral, N.R.; Neupane, P.; Ale, B.B.; Quiroz-Arita, C.; Manandhar, S.; Bradley, T.H. Stochastic economic and environmental footprints of biodiesel production from Jatropha curcas Linnaeus in the different federal states of Nepal. Renew. Sustain. Energy Rev. 2020, 120, 109619. [Google Scholar] [CrossRef]
- Lahijani, P.; Mohammadi, M.; Mohamed, A.R.; Ismail, F.; Lee, K.T.; Amini, G. Upgrading biomass-derived pyrolysis bio-oil to bio-jet fuel through catalytic cracking and hydrodeoxygenation: A review of recent progress. Energy Convers. Manag. 2022, 268, 115956. [Google Scholar] [CrossRef]
- Hussain, M.H.; Biradar, C.H. Production of hydroprocessed renewable diesel from Jatropha oil and evaluation of its properties. Mater. Today Proc. 2022. [Google Scholar] [CrossRef]
- Ramos, P.A.R.; Pérez, I.T.; Suárez-Hernández, J.; Piloto-Rodríguez, R.; Pohl, S. On the environmental and economic issues associated with the Jatropha curcas shell gasification to heat and electricity for biodiesel production. Afinidad 2022, 79. [Google Scholar] [CrossRef]
- Elkhalifa, S.; AlNouss, A.; Al-Ansari, T.; Mackey, H.R.; Parthasarathy, P.; Mckay, G. Simulation of Food Waste Pyrolysis for the Production of Biochar: A Qatar Case Study. In Computer Aided Chemical Engineering; Elsevier: Amsterdam, The Netherlands, 2019; Volume 46, pp. 901–906. [Google Scholar]
- Elkhalifa, S.; Al-Ansari, T.; Mackey, H.R.; McKay, G. Food waste to biochars through pyrolysis: A review. Resour. Conserv. Recycl. 2019, 144, 310–320. [Google Scholar] [CrossRef]
- Al-Ansari, T.; AlNouss, A.; Al-Thani, N.; Parthasarathy, P.; ElKhalifa, S.; Mckay, G.; Alherbawi, M. Optimising multi biomass feedstock utilisation considering a multi technology approach. In Computer Aided Chemical Engineering; Elsevier: Amsterdam, The Netherlands, 2020; Volume 48, pp. 1633–1638. ISBN 1570-7946. [Google Scholar]
- Wang, W.-C. Techno-economic analysis of a bio-refinery process for producing Hydro-processed Renewable Jet fuel from Jatropha. Renew. Energy 2016, 95, 63–73. [Google Scholar] [CrossRef]
- Bridgwater, A.V. Renewable fuels and chemicals by thermal processing of biomass. Chem. Eng. J. 2003, 91, 87–102. [Google Scholar] [CrossRef]
- dos Santos, R.G.; Alencar, A.C. Biomass-derived syngas production via gasification process and its catalytic conversion into fuels by Fischer Tropsch synthesis: A review. Int. J. Hydrog. Energy 2020, 45, 18114–18132. [Google Scholar] [CrossRef]
- AlNouss, A.; McKay, G.; Al-Ansari, T. A comparison of steam and oxygen fed biomass gasification through a techno-economic-environmental study. Energy Convers. Manag. 2020, 208, 112612. [Google Scholar] [CrossRef]
- Shayan, E.; Zare, V.; Mirzaee, I. Hydrogen production from biomass gasification; a theoretical comparison of using different gasification agents. Energy Convers. Manag. 2018, 159, 30–41. [Google Scholar] [CrossRef]
- Zhang, W. Automotive fuels from biomass via gasification. Fuel Process. Technol. 2010, 91, 866–876. [Google Scholar] [CrossRef]
- AlNouss, A.; McKay, G.; Al-Ansari, T. Production of syngas via gasification using optimum blends of biomass. J. Clean. Prod. 2020, 242, 118499. [Google Scholar] [CrossRef]
- by Indirect, T.P. Process design and economics for conversion of lignocellulosic biomass to ethanol. Contract 2011, 303, 275–3000. [Google Scholar]
- Elliott, D.C. Relation of Reaction Time and Temperature to Chemical Composition of Pyrolysis Oils; ACS Publication: Washington, DC, USA, 1988. [Google Scholar]
- De Lasa, H.; Salaices, E.; Mazumder, J.; Lucky, R. Catalytic steam gasification of biomass: Catalysts, thermodynamics and kinetics. Chem. Rev. 2011, 111, 5404–5433. [Google Scholar] [CrossRef]
- Abbas, S.Z.; Dupont, V.; Mahmud, T. Kinetics study and modelling of steam methane reforming process over a NiO/Al2O3 catalyst in an adiabatic packed bed reactor. Int. J. Hydrog. Energy 2017, 42, 2889–2903. [Google Scholar] [CrossRef]
- Alherbawi, M.; McKay, G.; Mackey, H.R.; Al-Ansari, T. Jatropha curcas for jet biofuel production: Current status and future prospects. Renew. Sustain. Energy Rev. 2021, 135, 110396. [Google Scholar] [CrossRef]
- Wei-Cheng, W.; Ling, T. Bio-jet fuel conversion technologies. Renew. Sustain. Energy Rev. 2016, 53, 801–822. [Google Scholar]
- Li, X.; Chen, Y.; Hao, Y.; Zhang, X.; Du, J.; Zhang, A. Optimization of aviation kerosene from one-step hydrotreatment of catalytic Jatropha oil over SDBS-Pt/SAPO-11 by response surface methodology. Renew. Energy 2019, 139, 551–559. [Google Scholar] [CrossRef]
- Dhar, A.; Vekariya, R.L.; Sharma, P. Kinetics and mechanistic study of n-alkane hydroisomerization reaction on Pt-doped γ-alumina catalyst. Petroleum 2017, 3, 489–495. [Google Scholar] [CrossRef]
- Doherty, W.; Reynolds, A.; Kennedy, D. Aspen plus Simulation of Biomass Gasification in a Steam Blown Dual Fluidised Bed; Formatex Research Centre: Badajoz, Spain, 2013. [Google Scholar]
- Trivedi, P.; Olcay, H.; Staples, M.D.; Withers, M.R.; Malina, R.; Barrett, S.R.H. Energy return on investment for alternative jet fuels. Appl. Energy 2015, 141, 167–174. [Google Scholar] [CrossRef]
- Santos, O.N.A.; de Sousa Andrade, I.P.; Lena, B.P.; Folegatti, M.V.; Diotto, A.V.; Romanelli, T.L. Impact of irrigation and nitrogen fertilization on the energy balance and energy return on investment of Jatropha production. Rev. Bras. Agric. Irrig. 2017, 11, 1738. [Google Scholar] [CrossRef] [Green Version]
- Balat, M.; Balat, H. Progress in biodiesel processing. Appl. Energy 2010, 87, 1815–1835. [Google Scholar] [CrossRef]
- Mischler, P. Mapping and Modeling of Neglected Tropical Diseases in Brazil and Bolivia. Ph.D. Thesis, Louisiana State University and Agricultural and Mechanical College, Baton Rouge, LA, USA, 2011. [Google Scholar]
- Sushma, B. Analysis of oil content of Jatropha curcas seeds under storage conditions. J. Environ. Biol. 2014, 35, 571–575. [Google Scholar]
- Ahmed, A.; Campion, B.B.; Gasparatos, A. Biofuel development in Ghana: Policies of expansion and drivers of failure in the jatropha sector. Renew. Sustain. Energy Rev. 2017, 70, 133–149. [Google Scholar] [CrossRef] [Green Version]
- Openshaw, K. A review of Jatropha curcas: An oil plant of unfulfilled promise. Biomass Bioenergy 2000, 19, 1–15. [Google Scholar] [CrossRef]
- Bryant, S.T.; Romijn, H.A. Not quite the end for Jatropha? Assessing the financial viability of biodiesel production from Jatropha in Tanzania. Energy Sustain. Dev. 2014, 23, 212–219. [Google Scholar] [CrossRef]
- Abdullah, B.M.; Yusop, R.M.; Salimon, J.; Yousif, E.; Salih, N. Physical and chemical properties analysis of Jatropha Curcas seed oil for industrial applications. Int. J. Chem. Mol. Nucl. Mater. Metall. Eng. 2013, 7, 548–551. [Google Scholar]
- Nygaard, I.; Bolwig, S. The rise and fall of foreign private investment in the jatropha biofuel value chain in Ghana. Environ. Sci. Policy 2018, 84, 224–234. [Google Scholar] [CrossRef] [Green Version]
- Naresh, B.; Reddy, M.S.; Vijayalakshmi, P.; Reddy, V.; Devi, P. Physico-chemical screening of accessions of Jatropha curcas for biodiesel production. Biomass Bioenergy 2012, 40, 155–161. [Google Scholar] [CrossRef]
- No, S.-Y. Inedible vegetable oils and their derivatives for alternative diesel fuels in CI engines: A review. Renew. Sustain. Energy Rev. 2011, 15, 131–149. [Google Scholar] [CrossRef]
- Mengistu, M.G.; Simane, B.; Eshete, G.; Workneh, T.S. A review on biogas technology and its contributions to sustainable rural livelihood in Ethiopia. Renew. Sustain. Energy Rev. 2015, 48, 306–316. [Google Scholar] [CrossRef]
- Portner, B.; Ehrensperger, A.; Nezir, Z.; Breu, T.; Hurni, H. Biofuels for a greener economy? Insights from Jatropha production in Northeastern Ethiopia. Sustainability 2014, 6, 6188–6202. [Google Scholar] [CrossRef] [Green Version]
- Ntaribi, T.; Paul, D.I. Status of Jatropha plants farming for biodiesel production in Rwanda. Energy Sustain. Dev. 2018, 47, 133–142. [Google Scholar] [CrossRef]
- Ntaribi, T.; Paul, D.I. The economic feasibility of Jatropha cultivation for biodiesel production in Rwanda: A case study of Kirehe district. Energy Sustain. Dev. 2019, 50, 27–37. [Google Scholar] [CrossRef]
- Shahinuzzaman, M.; Yaakob, Z.; Moniruzzaman, M. Medicinal and cosmetics soap production from Jatropha oil. J. Cosmet. Dermatol. 2016, 15, 185–193. [Google Scholar] [CrossRef]
- Adebowale, K.O.; Adedire, C.O. Chemical composition and insecticidal properties of the underutilized Jatropha curcas seed oil. Afr. J. Biotechnol. 2006, 5, 901. [Google Scholar]
- Warra, A.A. Cosmetic potentials of physic nut (Jatropha curcas Linn.) seed oil: A review. Am. J. Sci. Ind. Res. 2012, 3, 358–366. [Google Scholar] [CrossRef]
- Becker, L.C.; Bergfeld, W.F.; Belsito, D.V.; Hill, R.A.; Klaassen, C.D.; Liebler, D.C.; Marks, J.G., Jr.; Shank, R.C.; Slaga, T.J.; Snyder, P.W. Safety assessment of glycerin as used in cosmetics. Int. J. Toxicol. 2019, 38, 6S–22S. [Google Scholar] [CrossRef] [PubMed]
- Verma, K.C.; Juneja, N. Jatropha curcas L.: Multipurpose biofuel plant—A review. Agric. Rev. 2012, 33, 165–169. [Google Scholar]
- Verma, Y.; Rawat, H.; Parveen, R.; Saini, N.; Negi, N.; Mishra, A.; Tomar, H.; Singhal, M.; Khan, A.; Gaurav, N. Potentials and cultivation of bubble bush (Jatropha curcas Linn.) in human welfare: A review. Int. J. Bot. Stud. 2021, 6, 367–376. [Google Scholar]
- Abobatta, W.F. Jatropha curcas, a Novel Crop for Developing the Marginal Lands. In Biofuels and Biodiesel; Springer: Berlin/Heidelberg, Germany, 2021; pp. 79–100. [Google Scholar]
- Vega-Quirós, N.; Arnáez-Serrano, E.; Moreira-González, I.M.; Muñoz-Arrieta, R.; Borbon, L.; Orozco-Ortiz, C.; Vargas-Hernández, G.; Herrera, F.; Araya-Valverde, E. Single nucleotide polymorphism (SNP) of Jatropha curcas associated with the content of phorbol ester. J. Plant Biochem. Biotechnol. 2021, 31, 446–452. [Google Scholar] [CrossRef]
- Alqahtani, M.S.; Al-Yousef, H.M.; Alqahtani, A.S.; Rehman, M.T.; AlAjmi, M.F.; Almarfidi, O.; Amina, M.; Alshememry, A.; Syed, R. Preparation, characterization, and in vitro-in silico biological activities of Jatropha pelargoniifolia extract loaded chitosan nanoparticles. Int. J. Pharm. 2021, 606, 120867. [Google Scholar] [CrossRef]
Fuel Type | Primary Fuels | Secondary Fuels |
---|---|---|
Solid Fuels | wood, coal, peat, dung, sugarcane, charcoal, etc. | coke, charcoal |
Liquid fuels | Petroleum, Biodiesel, Bio alcohols, Vegetable oil | diesel, gasoline, kerosene, LPG, coal tar, naphtha, ethanol |
Gaseous fuels | Natural gas, Biogas | hydrogen, propane, methane, coal gas, water gas, blast furnace gas, coke oven gas, CNG |
Advantages | Description |
---|---|
Efficient Fuel | Compared to fossil diesel, biofuel is generated from renewable resources and is less combustible. It has far superior lubricating qualities. |
Cost-Benefit | They are producing high-value biomass products and lowering the cost of creating biopower. |
Durability of machinery | Biofuels may be easily adapted to contemporary engine layouts and operate without hassles. Higher cetane number and greater lubrication advantages. In addition, biodiesel improves the engine’s durability. |
Easy to Source | Biofuels may be generated from various sources, including manure, agricultural waste, other wastes, algae, and plants cultivated expressly. |
Renewable | Crops cultivation is cyclic. |
Reduce Greenhouse Gases | Burning coal and oil contributes to global warming. People worldwide use biofuels to minimize the impact of greenhouse emissions. |
Economic Security | The demand for appropriate biofuel crops rises due to biofuel production, giving the agriculture business a boost. Biofuels are less costly than fossil fuels for powering homes, businesses, and automobiles. With a rising biofuel business, more employment will be generated, ensuring the economy’s stability. |
Reduce reliance on imported oil | Alternate solution for fossil fuel. |
Lower Levels of Pollution | Although carbon dioxide is produced as a byproduct of biofuel production, it helps plants with photosynthesis. |
Disadvantages | Description |
---|---|
High Cost of Production | Mass production is expensive |
Monoculture | Monoculture might be economically attractive; however, the soil quality will be affected; hence there is a possibility of a decrease in the yield rates |
Fertilizers | Chemicals from the fertilizers risk both soil and water pollution |
Food Shortage | The use of feedstocks increases the food process |
Industrial Pollution | Large-scale industries meant for churning out biofuel are known to emit large amounts of emissions and cause small-scale water pollution as well |
Water Consumption | Irrigation of biofuel crops throughout the year is challenging owing to water scarcity. Water management is necessary to handle the water issue |
Future Price Hike | Fluctuation of the commodity prices may risk the biodiesel production cost |
Reference No. | Reference Outcomes | Objectives | Year | |||||
---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | |||
[108] | A study on different integration techniques to improve the efficiency of Jatropha to utilize it as a biofuel | × | × | × | 2021 | |||
[109] | Study the chemical composition of Jatropha oil, techniques for synthesis of biodiesel using a homogeneous catalyst, heterogeneous catalyst, enzymes (lipases), and non-catalytic supercritical process to obtain Jatropha-based biodiesel satisfying ASTM 6751, EN 14214, and IS 15607 specifications. | × | × | × | 2013 | |||
[110] | Study the development of a Jatropha biofuels sector; Conflicts reflect opposing views and interests among parties about sustainability. | × | × | 2009 | ||||
[111] | A case study of Jatropha in Kenya showing climatic variations and effects | × | × | × | 2010 | |||
[112] | Feedstock production and biofuel projects | × | × | × | 2019 | |||
[113] | Lack of Jatropha seed cultivation to produce biodiesel. Advantages of Jatropha as the source. | × | × | × | 2019 | |||
[114] | Implications of large-scale investments in biofuels for growth and income distribution. Its advantages and effects. | × | × | 2010 | ||||
[115] | Problems experienced by the farmers, efforts needed to improve yield levels and stability through genetic improvements and drought tolerance | × | × | 2012 | ||||
[116] | Bio jet production using vegetable oils and non-edible oils | × | × | 2019 | ||||
[117] | Production of biodiesel from Jatropha via homogenous acid and alkaline catalyst | × | × | × | 2013 | |||
[118] | Impact of alcohol on biodiesel production and properties | × | × | 2016 | ||||
[119] | Activities of homogenous and heterogeneous catalysts in the transesterification process | × | × | 2012 | ||||
[120] | Current technologies for the production of biodiesel | × | × | 2014 | ||||
[121] | A potential biofuel plant, Jatropha its properties | × | × | × | × | 2012 | ||
[122] | Production of biofuel from Jatropha | × | × | × | × | × | 2012 | |
[123] | Jet biofuel production using non-edible oils | × | × | 2017 | ||||
[124] | Discussion about methods of cultivating Jatropha | × | × | × | 2016 | |||
[106] | A mechanical process like harvesting and shelling for the production of Jatropha | × | × | 2015 | ||||
[125] | Sustainability of Jatropha biodiesel in India | × | × | 2012 | ||||
[126] | Status of molecular breeding for improving Jatropha curcas | × | × | × | 2013 | |||
[127] | Human requirements in Jatropha oil production for rural electrification | × | 2012 | |||||
[128] | Factors affecting the potential of Jatropha for sustainable biodiesel production | × | × | 2021 | ||||
[129] | Biogas production from Jatropha seed cake | × | × | × | × | 2012 | ||
[130] | Different platforms for Jatropha cultivation in the sub-Saharan African region | × | 2012 | |||||
[131] | Challenges in Jatropha cultivation | × | 2018 | |||||
[132] | Evaluation of genetic diversity of toxic and non-toxic Jatropha plant | 2013 | ||||||
[133] | Integrated assessment of biofuel production in arid lands and Jatropha cultivation on islands | 2015 | ||||||
[134] | Extraction of oil from Jatropha curcas seedbed combination of ultrasonication and aqueous enzymatic process | × | 2005 | |||||
[135] | The supercritical reactive extraction process for Jatropha | × | × | 2013 | ||||
[136] | Study regarding the influence of co-solvents in both supercritical extraction and transesterification | × | × | × | 2013 | |||
[137] | CO2 extraction from Jatropha oil | × | × | × | 2018 | |||
[138] | Improving the oil yield by ethanolic extraction | × | × | × | 2016 | |||
[139] | Study on seed propagation, plantation management, oil extraction, and biodiesel processing in China | × | × | × | × | × | 2012 |
Lipase | Free Pseudomonas Cepacia | Pseudomonas Cepacia on Celite | Candida Antarctica Lipase (Novozym 435) | Thermomyces Lanuginosus (Lipozyme) | Rhizomucor Miehei (Lipozyme RMIM) | Enterobacter Aerogenes on Activated Silica 48 55 4:1 68 t | Rhizopus Oryzae on Polyurethane Foam | Candida Antarctica Lipase B (Novozym 435) | |
---|---|---|---|---|---|---|---|---|---|
Reaction temp (oC) | 40 | 50 | 40 | 45 | 45 | 45 | 55 | 30 | 30 |
Time (h) | 24 | 8 | 24 | 24 | 24 | 24 | 48 | 60 | 90 |
Alcohol/oil molar ratio | 4:1 | 4:1 | 4:1 | 5:1 | 5:1 | 5:1 | 4:1 | 3:1 | 3:1 |
Conv (%) | 65 | 98 | 91 | 98 | 77 | 78 | 68 | 80 | 75 |
Remarks | No solvent | Addition of 50 g/kgof water | No solvent | A mixture of 25% pentanol and 75% iso-octane were used as a solvent | t-Butanol was used as solvent | No solvent |
Sl. No. | Reference | Properties | |||
---|---|---|---|---|---|
Free Fatty Acid (as Oleic, %) | Iodine Value (gI2/100 g) | Saponification Value (mgKOH/g) | Unsaponifiable Matter (%) | ||
1 | [180] | 22.6 | 100.1 | 208.27 | – |
2 | [181] | 2.67 | 96–105 | 196–200 | – |
3 | [182] | 2.23 | 103.62 | 193.55 | – |
4 | [183] | 1.5–19 | 93–107 | 188–196 | 0.4–1.1 |
5 | [184] | 0.62 | 102 | 197 | 0.4 |
6 | [109] | 5.1–6.3 | 103.6 | 193.0 | – |
7 | [139] | 55.9 | – | 191.7 | – |
SI No | Reference | Located Sites | Oil Extraction Methods | Estimated Oil Yield (wt%) (Range) |
---|---|---|---|---|
1 | [10,129,134,137] | India | Supercritical CO2 extraction, Aqueous enzymatic extractions, Solvent extraction, Mechanical extraction | 13.7–60 |
2 | [187,188,189] | China | Solvent extraction, Supercritical CO2 extraction | 38.9–40.3 |
3 | [190] | Tanzania | Mechanical extraction, Traditional extraction | 22.02–26.15 |
4 | [138,191,192,193,194] | Others (Ghana, Mexico, Brazil, Indonesia, Iranian) | Ultra-sound-assisted solvent extraction, Solvent extraction, Supercritical CO2 extraction | 31.6–59.3 |
Process | Temperature (°C) | Pressure (Bar) | Hydrogen Load (wt% of Feed) | Catalyst | Liquid Hourly Velocity (LHSV) kg/hr.kg Catalyst |
---|---|---|---|---|---|
Deoxygenation | 300 | 45 | 1 | Ni/Al2O3 | 2 |
Hydrocracking | 350 | 80 | 1 | Ni/ZSM-5 | 1.84 |
Isomerization | 180 | 20 | - | Pt/γAl2O3 | 1.2 |
Hydro process (Decomposition, Oxidation, and Reduction) | 1000 | 1 | - | - | - |
Fischer-Tropsch | 240 | 25 | - | Co/Al2O3 | - |
Reforming | 900 | 15 | - | Ni/Al2O3 | - |
Gasification Reactions | Process |
---|---|
Biomass → Char + Tar + NH3 + H2S + H2 + CO + CO2 | Pyrolysis |
CO + ½ O2 ←→ CO2 | Oxidation |
CH4 + H2O ←→ CO + 3H2 | Methane reforming |
C + 2H2 ←→ CH4 | Methanation |
H2 + ½ O2 ←→ H2O | Production of stream |
C + H2O ←→ CO + H2 | Gasification of steam |
C + CO2 ←→ 2CO | Boudouard reaction |
C + O2 ←→ CO2 | Char combustion (Complete) |
C + ½ O2 ←→ CO | Char combustion (Incomplete) |
CO + H2O ←→ CO2 + H2 | Water-gas shift reaction |
Chemical Reactions | Process |
---|---|
nCO + (2n + 1)H2 ←→ CnH(2n + 2) + nH2O | Paraffin synthesis |
nCO + (2n)H2 ←→ CnH(2n) + nH2O | Olefins synthesis |
nCO + (2n)H2 ←→ CnH(2n + 1)OH + (n − 1)H2O | Alcohol synthesis |
(a) Hydrogenation | (b) Deoxygenation | (C) Decarboxylation | (d) Decarbonylation |
---|---|---|---|
C18H32O2 + H2 → C18H34O2 C18H32O2 + 2 H2 → C18H36O2 C18H34O2 + H2 → C18H36O2 | C18H36O2 + 3 H2 → C18H38 + 2 H2O C16H32O2 + 3 H2 → C16H34 + 2 H2O C18H34O2 + 3 H2 → C18H36 + 2 H2O | C18H36O2 → C17H36 + CO2 C16H32O2 → C15H32 + CO2 C18H34O2 → C17H34 + CO2 | C18H36O2 + H2 → C17H36 + CO + H2O C16H32O2 + H2 → C15H32 + CO + H2O C18H34O2 + H2 → C17H34 + CO + H2O |
Fatty Acid | Jatropha Curcas Oil (Jatropha curcas) |
---|---|
Oleic 18:1 | 44.70 |
Monounsaturated | 45.40 |
Saturated | 21.60 |
Polyunsaturated | 33.00 |
Margaric 17:0 | 0.10 |
Heptadecenoic 17:1 | - |
Stearic 18:0 | 7.00 |
Linoleic 18:2 | 32.80 |
Acid values (g/kgKOH) | 35.80 |
Palmitic 16:0 | 14.20 |
Myristic 14:0 | 0.10 |
Linolenic 18:3 | 0.20 |
Arachidic 20:0 | 0.20 |
Palmitoleic 16:1 | 0.70 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdudeen, A.; Selim, M.Y.E.; Sekar, M.; Elgendi, M. Jatropha’s Rapid Developments and Future Opportunities as a Renewable Source of Biofuel—A Review. Energies 2023, 16, 828. https://doi.org/10.3390/en16020828
Abdudeen A, Selim MYE, Sekar M, Elgendi M. Jatropha’s Rapid Developments and Future Opportunities as a Renewable Source of Biofuel—A Review. Energies. 2023; 16(2):828. https://doi.org/10.3390/en16020828
Chicago/Turabian StyleAbdudeen, Asarudheen, Mohamed Y. E. Selim, Manigandan Sekar, and Mahmoud Elgendi. 2023. "Jatropha’s Rapid Developments and Future Opportunities as a Renewable Source of Biofuel—A Review" Energies 16, no. 2: 828. https://doi.org/10.3390/en16020828
APA StyleAbdudeen, A., Selim, M. Y. E., Sekar, M., & Elgendi, M. (2023). Jatropha’s Rapid Developments and Future Opportunities as a Renewable Source of Biofuel—A Review. Energies, 16(2), 828. https://doi.org/10.3390/en16020828