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Abstract: The hydrocarbon-bearing formation of Miano gas field belongs to the Early Cretaceous
and it is bounded by two shale intervals, which are considered as maximum flooding surfaces
(MFS). The hydrocarbon-bearing interval includes two reservoir units: a tight gas reservoir and its
overlying conventional reservoir. Core samples, borehole logs, and well production performance
revealed that the two reservoirs present reversed trends in reservoir quality through the gas field
without obvious barriers. The average shale volume of the tight gas reservoir changes from 24.3%
to 12.2% and the average permeability changes from 32.65 mD to 0.02 mD from the south to north.
However, the average effective porosity of the overlaying conventional reservoir increases from
20% to 26% and the average permeability increases from 10 mD to 300 mD. The reversed trends
in the two reservoirs lead to challenges in production forecast and development well proposals in
the tight gas reservoir. Therefore, reservoir characterization and a predictive reservoir model are
essential for further exploitation of Miano gas field. The geological genesis analysis integrating cores,
borehole logs, and three-dimensional (3D) seismic data reveals that the producing interval of the
tight gas reservoir is tidal-influenced shore facies deposition with intergranular pore space reduced
by mineral cementation during burial diagenesis, while the overlaying conventional reservoir is
fluvial-influenced deltaic deposition with abundant, well-connected intergranular macropores, which
leads to a better reservoir quality. A reservoir model containing both the tight gas reservoir and
the conventional reservoir is constructed considering the reservoir nature understanding, and the
accuracy of the model is confirmed by reservoir surveillance activities with the simulation model.
The study will be critical to the further reservoir development and hydrocarbon production in Miano
gas field.

Keywords: reservoir modeling; tight gas reservoir; reservoir characterization; geological genesis

1. Introduction

Reservoir characterization and modeling are considered effective methods to increase
precision in reservoir prediction and to reduce subsurface uncertainty in reservoir ex-
ploitation [1,2]. Reservoir heterogeneities can be captured through accurate reservoir
characterization integrating multiple types of data, including cores, borehole logs, seismic
volumes, and production performances, with different scales and resolutions. Reservoir
modeling realizes reservoir architectures and characters using stochastic and determined
methods in three-dimensional (3D) space. It becomes a foundation of techniques for reserve
recovery improvement [2,3].

Abundant approaches of reservoir characterization and modeling were applied to
hydrocarbon-bearing formations in Indus basin to describe reservoirs and to reduce
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surface uncertainties. In previous research, the approaches for conventional reservoirs
include two routine techniques: 1. petrophysical analysis for lithology and fluid discrimi-
nation [4–7] and 2. subsurface modeling driven by geophysical data, including seismic
attributes and stochastic inversions [6–9]. Additional aspects, including geomechanics,
geochemistry, and fracture networks, are often considered for tight reservoir characteriza-
tion and modeling [10,11]. In spite of the tremendous efforts and methods, challenges in
reservoir characterization and modeling in Indus Basin still exist because of the heavy het-
erogeneities caused by rapid lithology variations in the hydrocarbon-bearing formations.
The heavy heterogeneities lead to different reservoir quality distribution in vertical or
lateral directions and the unknown geological nature of these reservoirs brings difficulties
in reservoir characterization and modeling.

Miano gas field is located in the southwest of middle Indus Basin, with a total area of
814.02 sq. km (Figure 1) [12]. The first well drilled in the field was Miano-1 well in 1993.
The well reached a total depth of 4030 in the Sember formation [9,13]. Totally, 34 wells were
drilled at the end of 2020. Among the wells, 11 wells have completed well log series [14],
and core samples were acquired from 18 wells. The 3D seismic data were acquired in
1999 [12,15] and reprocessed in 2020.
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Figure 1. Regional structure map of Indus Basin. The whole Indus Basin is comprised by three
subbasins: upper, middle, and lower Indus Basin. Miano gas field is located in the southwest corner
of the middle Indus Basin, which is in the east of Kirthar foldbelt and the south of Sulaiman foredeep.

The hydrocarbon-bearing interval in the Miano gas field only developed in the Lower
Goru Formation, Early Cretaceous [9]. The hydrocarbon-bearing interval contains two
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reservoirs: a tight gas reservoir and its overlying conventional gas reservoir. The two
reservoirs were considered independent in early stages of the field development because of
very different reservoir qualities and thickness in the vertical direction [9]. The conventional
gas reservoir exists in the upper part of the B interval. Well tops revealed that the thickness
of the reservoir ranges from 10 to 20 m. Core samples and well logs indicated that the
average porosity of the reservoir is about 25% and the average permeability is about 10 mD.
A tight gas reservoir is overlain by the conventional reservoir. Well tops revealed that the
total thickness of the tight reservoir ranges from 50 to 100 m but the thickness of the current
producing interval in the reservoir is only approximately 15 to 20 m. Core samples and well
logs indicated that the average porosity of H reservoir is about 10% and the permeability of
the reservoir is less than 1 mD. The tight gas reservoir and the overlying conventional gas
reservoir also present inverse depositional trends in the horizontal direction, proved by
borehole logs and well production performances.

However, the absence of an observed barrier between the two reservoir units makes
the independent development of the two reservoir units incredible. A single pressure
gradient also indicates that the two reservoir units may not be isolated and the nature of
the horizontal inverse depositional trends in the two reservoir units is unclear based on
the understanding in the earlier development stages. The coexistence of the two reservoir
units brings difficulties for production forecast and development well proposals for
the two reservoir units because of unknown reservoir quality contributions in each
reservoir. The coexistence of these two reservoir units also cannot be ignored and should
be integrated in reservoir characterization and modeling for the whole hydrocarbon-
bearing interval.

In this study, a geological genesis analysis is applied to the reservoir development in
Miano gas field using data of cores, borehole logs, full-bore micro-scan imager (FMI) logs,
and seismic data. The analysis intends to reveal the geological origins, having implications
to the reversed trend in reservoir quality of the two reservoirs, in aspects of sequence,
deposition, and postdeposition diagenesis. The distribution of reservoirs and petrophysical
features are also included in the analysis. Then, a static reservoir model is built following
the geological genesis analysis. The model presents obvious geologic features that are in
accordance with the understanding of the geological nature of the reservoir. The hydraulic
fractures were also compiled into the model. The reliability of the reservoir model is
confirmed by the wells and reservoir performance.

2. Geological Settings

The Great Indus Basin initiated in the Precambrian. Contemporary structural fea-
tures of the basin are a result of multiple evolution stages related to plate rifting and
collision [16,17]. The Greater Indus Basin includes three sub-basins, known as upper In-
dus Basin, middle Indus Basin, and lower Indus Basin [17,18]. Middle Indus Basin, which
is gas-prolific, is bounded by the Indian shield in the east; Kirthar Ranges, Sulaiman Fold,
and Thrust Belt in the west; Sargodha High in the north; and Jacobabad–Khairpur High in
the south [17]. Multiple formations deposited in the middle Indus Basin from the Permian
to the Neogene. Among these formations, a complete petroleum system developed in the
Cretaceous. Marine shale in Sembar Formation at the bottom of the Lower Cretaceous
is the main hydrocarbon source rock, which is about 600–800 m thick [4]. The overly-
ing Goru Formation is divided into two intervals. Shale dominating the Upper Goru
Formation is considered as a regional sealing [4,17]. Shore to neritic facies depositions
composited by sandstone, siltstone, inter-bedded shale, and thin limestone developed in
the Lower Goru Formation [19,20]. Three stratigraphic intervals, named as A, B, and C,
are divided in the Lower Goru Formation (Figure 2) [5].
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Figure 2. Stratigraphic column of Indus Basin. The tight gas reservoir and the conventional gas
reservoir both develop in the B sand in Lower Goru, Cretaceous (cited from [5]).

3. Methodology

The tight and the conventional reservoir units both developed in the hydrocarbon-
bearing interval of Miano gas field. The different depositional backgrounds of the two
reservoirs brought high heterogeneities in both vertical and horizontal directions. The
heterogeneities cannot be neglected in reservoir modeling and the following numerical
simulation. Therefore, there is no predictivity in reservoir characterization and modeling
without an understanding on the origins of the two reservoirs. Therefore, an integrated
method aiming at the heavy heterogeneity is adopted to make predictive reservoir charac-
terization and modeling. The method contains two major steps: geological genesis analysis
for the reservoir and reservoir modeling guided by the analysis (Figure 3).

Geological genesis analysis has been proven an effective method to improve predic-
tivity in reservoir characterization and modeling for different types of reservoirs [21–24].
In this study, the geological genesis analysis is applied to the reservoirs before reservoir
modeling for the two reservoirs. Wells with complete series of conventional logs (GR,
resistivity, acoustic logs, etc.), core data (core description, thin sections, and SEM), and FMI
logs covering the two reservoirs are selected for the analysis. Shore and delta-front facies
are identified in the two reservoirs, respectively, integrating direct proofs in core data and
curve features of well logs. Then, a sequence framework is formed using a high-resolution
sequence stratigraphy theory [25,26]. The whole hydrocarbon-bearing interval is divided
into five geologic units based on the framework. Then, the depositional process of Unit 4
and 5, which contains the tight gas reservoir and the conventional reservoir, respectively,
was restored, integrating proofs from stratigraphic isopach maps generated from seismic



Energies 2023, 16, 856 5 of 24

interpretation. Finally, a postdeposition diagenesis study using core thin section and SEM
photos is conducted and its implication to reservoir quality is revealed. The geological anal-
ysis casts an interpretation for the origins of the two different reservoirs and the reversed
trend depositional trends in the two reservoir units.
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Figure 3. A general workflow of this study. The workflow includes two major parts: geological
genesis analysis, and structural and property modeling. The structural and property modeling is
guided by the geological genesis analysis.

The reservoir model of the tight and the conventional reservoir units is built under
the guidance of the geological genesis analysis. The structure framework of the model
is built based on the geologic unit division and faults interpretation from seismic data.
The 3D cellular system of the reservoir model is generated, honoring well tops, seismic
interpretation results, and the model computation efficiency (total cell numbers). The
reservoir property models, including shale volume (Vsh), porosity (ϕ), rock type (RT),
and permeability (k), are propagated by facies-constrained stochastic algorithms to realize
geologic characters recognized by the geological genesis analysis. A water saturation (Sw)
model is calculated by saturation height function (SHF) [27] and a net-to-gross ratio (NTG)
model is calculated by given cutoffs in porosity and Vsh from petrophysical interpretation
results. The hydraulic fractures in the tight gas reservoir are also complied into the model.
The reliability of the model is verified by history-matching performance of producers.

4. Geologic Genesis Analysis
4.1. Sequence Framework and Deposition

The aim of sequence framework is to define geologic units for the hydrocarbon-bearing
formation in H field. The whole hydrocarbon-bearing formations is defined as a composite
sequence bounded by two regional shale intervals as MSFs (MFS1 and MFS2), which are
on the top and at the bottom of the hydrocarbon-bearing formation (Figure 4). The small
layer thickness under the resolution of seismic data and rapid lithology changes in wells
bring a difficulty in sequence division at a higher order [4,9]. Therefore, the high-resolution
sequence stratigraphy theory considering base-level cycles [25,26] is applied to build the
sequence framework. The composite sequence is divided into two middle-term sequences
based on the observation from cores and the GR curve features. Then, the two middle-
frequency cycles are furtherly divided into five to seven short-term sequences depending
on core and FMI log observations, which are an effective tool in the recognition of short-
term sequences [25,28]. Five geologic units are defined as Unit 1 to Unit 5 according to the
base-level cycle divisions (Table 1). The tight reservoir unit is in Unit 4 and the overlying
conventional reservoir is in the lower part of Unit 5.
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Figure 4. The sequence framework of the hydrocarbon-bearing interval of Miano gas field. Two
middle-term sequences and five to seven short-term sequences were identified based on cores and
well log data. Five geologic units are divided based on cycles. The conventional gas reservoir
develops in the lower part of Unit 5 and the overlain tight gas reservoir develops in Unit 4. Some
minor gas layers developed in Units 1–3.

Table 1. Lithologies of the geologic units divided in the hydrocarbon interval of Miano gas field and
their positions in middle-term sequence.

Geologic Unit Reservoir Unit Lithology Description Middle-Term Sequence

Unit 5 conventional gas
reservoir

Dominated by light grey, medium- to coarse-grained
sandstone with massive bedding and cross bedding at

the lower part where the conventional gas reservoir
develops. Quartz cements and rip-up shale crests are

observed in this part. However, the lithology switched to
dark grey shaly siltstone in the upper of the geologic unit

a late descending half cycle to an
early ascending half cycle

(including a switch surface)

Unit 4 tight gas reservoir

Dominated by light grey to grey fine-grained sandstone
with low-angle cross beddings and parallel beddings.
Mud layers and thin coarse-grained sand occasionally

develop. Erosional surfaces and storm layers (reworked
fragments) exist

in a middle to late stage of
descending half cycle

Unit 3 non-reservoir
Grey fine- to medium-grained sandstone to siltstone with

lamination and cross bedding. Shale, burrow,
bioturbation, and mud draped are observed

in an early to middle stage of
descending half cycle

Unit 2 non-reservoir

Light grey to grey fine-grained sandstone and dark shole
with single coarser quartz grains. Connected lenses or
slightly wavy beddings occasionally develop. Pyrite

nodules are visible within the shale

in a late period of ascending cycle
to a very early stage of

descending cycle

Unit 1 non-reservoir
Dark to dark green shale or siltstone. Considerable

quantities of glauconite, elliptical concretions of siderites,
and single pyrite nodules are visible.

a nearly complete
descending–ascending cycle

Deposition of the hydrocarbon-bearing formation is a response to sequences in Indus
Basin [29]. Previous research proved that the hydrocarbon-bearing formation in H field is a
shore to marginal marine facies in the regional scale [8,9,29,30]. However, base-level cycles
bring different deposition features in each unit. Deltaic features developed in half cycles
when the base-level descended, while tidal-influenced shore facies and storm deposition
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developed in half cycles when the base-level ascended. Figure 5 [31] illustrate a deposition
scheme of the formation in H field.
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Figure 5. A diagram showing the depositional environments during periods of base level ascending
and descending. Overall, H field is in a coastal shoreface environment but it presents different
features depending on base level variations. Deltaic features developed in the period of base level
descending (the red arrow), while tidal-influenced shore facies and storm deposition developed in
the period of base level ascending (the blue arrow). Cited from [31].

Unit 4, where the tight gas reservoir develops, locates at the early to middle period
of a middle-term sequence. Core data reveal that the unit includes a nearly complete
base-level cycle in short-term sequence. Siltstones with hummocky cross bedding and
storm deposition at the bottom of the unit indicate the ascending half cycle, while fine
sandstone with erosive surface, parallel bedding, and ball-pillow structure developed in
the descending period (Figure 6). The unit presents a tidal-influenced shore facies. The GR
curve in funnel shapes indicates existences of sand bars cut by tidal channels. Cores from
different wells also prove that more severe local tidal erosion develops in the south of H
field. The overlying Unit 5 contains the conventional gas reservoir. It is at a late descending
to early ascending stage in the middle-term sequence. The unit contains a complete base-
level cycle in the short-term sequence. The cycle was proved by variations in the lithologies
and depositional structures. The lower part where the conventional reservoir develops is
light grey, medium to fine sandstone with abundant crossing beddings. The FMI log also
presents light, high-resistance features of sandstones. The GR log in a bell shape indicates
developments of sand bars. The subzone is interpreted as fluvial-influenced delta front.
Dark grey, shaly siltstones with burrows and bioturbations developing in the upper part of
the unit indicate the ascending half cycle in the short-term sequence (Figure 6).
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Figure 6. The core samples and MFI logs in three coring wells in the Miano gas field. The main coring
intervals concentrate in Unit 4 and Unit 5. The lithology in Unit 4 is light grey to grey fine-grained
sandstone to siltstone with shale layers. The depositional structures in this unit indicate possible
local tidal affect. The lithology in Unit 5 presents a trend of deepening upward. Grey coarse-grained
sandstone develops at the lower part of the unit and dark grey shaly siltstones with burrows and
bioturbations develop in the upper part of the unit.

Tidal erosive surfaces identified from cores in Unit 4 in the south of the field can also
be proved in a thickness map derived from seismic data. The thickness map of Unit 4 shows
that thick depositions developed in the north of the field, while thinner depositions are in
the south (Figure 7a). However, the thickness map of Unit 5 shows an inverse thickness
trend (Figure 7b). To interpret the reason of the inverse thickness trends in Unit 4 and Unit
5, formation thickness maps using the method of flattening the lower MFS (MFS2) at the
bottom of the hydrocarbon-bearing interval are generated. This method reflects probable
palaeogeomorphy features prior to the deposition of each unit and renders a probable
transition in depositional preferences during the deposition of Unit 4 to Unit 5.
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The thickness from the MFS to Unit 3 (prior to Unit 4) is larger in the south and it
becomes smaller to the north (Figure 8a). The larger depositional thickness caused a smaller
accommodation space in the south before Unit 4 deposition. Then, in the period of Unit 4
deposition, the local transgressions (tidal affection) that happened in the descending half
cycle eroded deposition in the south, while the sediments filled the accommodation space
and made a possible height of palaeogeomorphy in the north prior to the Unit 5 period.
During the deposition period of Unit 5, the height of palaeogeomorphy in the north is
probably near the proximal, while the distal is in the south of the field. Therefore, during
the depositional period of Unit 5, thick sediments prefer to exist in the north, while the
deposition is thinner in the south (Figure 8b).
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Figure 8. Thickness maps using the MSF flattening method. The thickness map from Unit 3 to MFS
2 (a) reflects the palaeogeomorphy prior to Unit 4 deposition. The possible height of palaeogeo-
morphy located in the south of the field where less accommodation space developed. The lower
accommodation space makes the sediments in the south easier to be eroded by tidal affection during
the ascending half cycle (transgression) in Unit 4. The thickness map from Unit 4 to MFS 2 (b) reflects
the palaeogeomorphy post Unit 4 deposition (prior to Unit 5). Comparing with (a), the depositions in
the north become thicker (a northward trend of the possible height of palaeogeomorphy) and tidal
channel features appear. The coring wells where tidal erosional surfaces were found are also in the
tidal channels. The north is where the possible height of palaeogeomorphy is near the proximal and
the south is the distal in the deposition of Unit 5.

4.2. Postdeposition Diagenesis

Postdeposition diagenesis of clay mineral cementations widely occurs in Unit 4 and
Unit 5. Core samples reveal that minerals include chlorite, ripidolite, and glauconite
(Table 2). The clay mineral cementations reduced intergranular pores in reservoir rocks
and left abundant micropores, which are unconnected. Four rock types are identified
based on degrees of mineral cementation and pore throat structures (Table 3). Type 1 only
exists in Unit 5 and it widely distributes in the north of H field. The pore radius with a
unimodal distribution ranging from 10 to 100 nm reveals that intergranular pores exist in
the type of rock and a displacement pressure of 10 psi suggests that these pores are well
connected. The SEM photo also indicates there is nearly no clay mineral cementation in
this type.
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Table 2. Percentage of clay minerals in rock samples acquired from geological Unit 4 and Unit 5.

Sample Glauconite Ripidolite Chamosite Grains Iron Chlorite Siderite Depth

1 / / 2.3% 16.7% / 3358.34

2 / / 8% 13.7% 7.3% 3359.83

3 / / 5.3% 8% 5.3% 3360.4

4 / / 7.3% 21.3% 4% 3362.76

5 / / 5.3% 16.7% / 3366.99

6 0.33% 2.31% / 10.23% / 3316.6

7 0.33% 2% / 8.67% / 3323.56

8 0.33% 3.96% / 12.21% / 3324.46

9 / 2.33% / 21.59% / 3327.34

Table 3. The rock types defined in Miano gas field with their injection curve, throat size distribution,
and representative photos of thin sections and SEM. Rock type 1 has the best quality and only exists
in the conventional gas reservoir. Rock types 2 to 4 distribute in the tight gas reservoir.

Injection Curve Throat Distribution Thin Section SEM Rock Typing
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Type 1 

Geologic Unit 5 

Porosity: 14%~27%, 

Permeability: 14 mD~3,000 Md,  

Throat radius: 10–50 um. 

No clay mineral cementation 

  

  

Type 2 

Geologic Unit 3–4 

Porosity: 14%~24%, 

Permeability: 1 mD~100 mD, 
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Type 3 
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Porosity: 7%~20%, Permeability: 

0.1 mD~1 mD, 

Throat radius: 0.15–1 um. 
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Type 1 

Geologic Unit 5 

Porosity: 14%~27%, 
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Type 2 
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Clay mineral cementation 

  

  

Type 3 

Geologic Unit 1–4 

Porosity: 7%~20%, Permeability: 

0.1 mD~1 mD, 

Throat radius: 0.15–1 um. 

Type 3
Geologic Unit 1–4
Porosity: 7%~20%,

Permeability: 0.1 mD~1 mD,
Throat radius: 0.15–1 um.

Heavy clay mineral cementation
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Porosity:5%~20%,

Permeability: <0.1 mD,
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Through clay mineral cementation

Bimodal distributions of pore throat radius exist in type 2 to type 4. The increasing
portion of micropores and SEM photos indicate that the degree of cementations become
stronger from type 2 to type 4. The higher displacement pressures on the capillary pressure
curve prove that the micropores are isolated.

4.3. Implication to Reservoirs

The distributions of tight reservoir and the conventional reservoir in H field are
controlled by the depositions of geologic units where they exist. In Unit 4, where the tight
reservoir develops, thicker sediments prefer to deposit in the north of the field, while
sediments became thinner in the south. More sediment accumulation in the south leads to
development of a thicker reservoir and the reservoir becomes thinner to the north due to less
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accumulation. The deposition preference reverses in Unit 5 where the convention reservoir
exists. A thicker reservoir develops in the north and it becomes thinner in the south.

Qualities of the tight reservoir and the conventional reservoir are influenced by the
postdepositional diagenesis because strong clay cementation can destroy intergranular
pores and heavily reduce pore connectivity in the reservoir. Trends of clay cementation
degree in Unit 4 and Unit 5 are inverse. In Unit 4, the degree of cementations become
stronger from the south to north, while the degree trend reverses in Unit 5. The permeability
of the reservoir reduces from 32.65 mD to 0.02 mD from south to north in Unit 4, while the
permeability decreases from 3190 mD to 91.3 mD from north to south in Unit 5 (Figure 9).
The trend is proven by rock typing based on thin section, SEM, and pore radius analysis.
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Figure 9. Reservoir quality variation trends in Unit 4 (a) and Unit 5 (b). In Unit 4, where the tight
reservoir develops, the sediments experienced clay mineral cementation. The degree of cementation
tends to be heavier from south to north. The reservoir quality of Unit 4 becomes worse from south to
north. However, regarding the reservoir quality of Unit 5 where the conventional reservoir develops,
the clay mineral cementation is slit in the unit but the variation in cementation can still be identified.
The degree of cementation becomes heavier from north to south in Unit 5 and the reservoir quality
tends to be worse in the same direction.
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5. Static Reservoir Model
5.1. Structural Framework and Grid System

The whole gas-bearing interval, including the conventional and the tight gas reservoir,
is compiled into the static reservoir model. Therefore, a structural framework contains
top surfaces of each geologic unit and faults developed in these units. The structural
framework adopts faults, which are derived from seismic data, and fault contacts are tested
in 3D space to eliminate unnatural anomalies, including fault proximity, discontinuous
fault interaction, and acute-angled intersections (Figure 10a). Iterations between contact
test and seismic interpretation are applied to obtain expected fault planes in the structural
framework (Figure 10b).
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Figure 10. Fault sticks from seismic interpretation (colored sticks) and fault break points (red points)
identified in wells (a) and fault planes (colored bands) finally adopted in the structural framework (b).
The red points and red lines attached on the fault sticks indicate probable unreasonable fault contacts.
After multiple fault contact test–seismic iterations, the unreasonable fault contacts are eliminated.
The green arrow indicates the north direction.

An orthometric grid system is established in the structural model considering the
trends of strike faults, reservoir development, and computing efficiency. Cells in the grid
system have a rotation of 20 degrees, which are approximately parallel to the trend of
major strike faults in the field (Figure 11). The cell rotation will reduce cell mutation at the
intersections between the fault and the grid system. Vertical zonation of the grid system
five zones, which correspond to the five geologic units defined in the geological analysis
and vertical layering of each zone, are based on the thickness and reservoir development
of each unit. The Unit 4 (Zone 4) and Unit 5 (Zone 5), where gas reservoirs develop, have
the most layers among the five geologic units in the model. Subzones are further divided
in these two units, honoring small layer tops in wells. The vertical resolution of these
units is approximately 0.5 m, while other zones, where there are no proved gas intervals,
have fewer vertical layers, which means lower vertical resolutions (Table 4). Different
vertical layering not only captures heterogeneities of zones where reservoirs develop but
also satisfies the efficiency of model computation. The 100 m × 100 m horizontal resolution
is adopted in the model.

5.2. Property Model

Reservoir property modeling in H field has challenges. These challenges are (1) the
sparse and irregular well coverage in the field, (2) high horizontal reservoir heterogeneity
away from wells [32], and (3) the inverse quality trends exist in the conventional and the
tight reservoirs. Therefore, property modeling exclusively using geostatistical simulation
makes the static model unpredictive [33]. Considering the limitation of geostatistical
simulation method and the geologic nature of the two reservoir units, the property models,
including shale volume (Vsh), porosity (ϕ), permeability (k), and rock type (RT), are built by
using a geologic genesis rule-based modeling method. There are three benefits of using the
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static model by using the method. The most important one is that the geologic genesis rule-
based method can distinguish the tight reservoir in Unit 4 and the conventional reservoir
in Unit 5 based on depositional processes in temporal sequence [32]. Then, the reverse
reservoir variation depositional trends in the two reservoirs can be compiled into the static
model. The second benefit is that the method can render reservoir distributions constrained
by sedimentary facies. Thus, the static model can realize the lateral heterogeneity of
reservoirs, especially for the area without well coverage, and it can be more predictive
for the following numerical simulations. The last benefit of the modeling method is
that sensitive subsurface uncertainties can be captured more easily beyond singly using
geostatistical methods.
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Figure 11. Degree of cells in the orthometric grid system and the direction of the faults. The degree of
the cells is set to 20 to make the cells parallel to the fault direction. This will effectively eliminate cell
mutation in the grid system. The color lines are the outlines of fault planes and the red lines represent
the fault positions in 2D plane view.

Table 4. Zone division in the static model of H reservoir and their vertical resolutions.

Main Zone Subzone Ave. Thickness (m) Layers Resolution (m)

Unit 5
Subzone 1 5 3 1.7

Subzone 2 6 8 0.8

Unit 4
Subzone 1 6 10 0.6

Subzone 2 9 6 1.5

The geologic genesis analysis reveals that the distributions of the tight and conven-
tional reservoirs are controlled by deposition. The reverse trends of reservoir quality are
influenced by postdeposition clay cementations. Therefore, Vsh is considered as a major
indictor to reflect reservoir qualities. The Vsh model is built under the constraint of a trend
derived from P-wave impedances (P-imp) inversion, which is confirmed to be closely re-
lated to facies in much of the previous research [34–37]. The P-imp has different probability
distribution functions (PDF) in each facies for both Unit 4 and Unit 5 (Figure 12). The trend
used for constraint is generated by a normalization processing for P-imp volume. The Vsh
of the reservoir in each well is generated from petrophysical results and it is upscaled into
the modelling cellular system by arithmetic algorithm. The upscaled Vsh is propagated
using sequential Gaussian simulation (SGS) under the constraint of P-imp trend. The
facie-constrained Vsh model has a corresponding feature to the facies distribution in both
the tight and the conventional reservoirs. In Unit 4, where the tight reservoir develops, the
Vsh distribution presents a scattered morphology cut by tidal channels which reflect the
local transgression in the southeast (Figure 13a). Because Unit 4 and Unit 5 have different
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sedimentary facies, the Vsh model has a different distribution morphology in Unit 5. Vsh
in Unit 5 presents a higher continuity, which indicates sheet-like deposition in a higher
accommodation space after the middle-scale, descending half cycle in the upper of Unit 5
(Figure 13b). A SW–NE-directed cross section generated in the model. The cross section
reveals that the Vsh decreases from north to south in Unit 4 (Figure 14a), while the trend
reverses in the lower part of Unit 5 where the conventional reservoir exists (Figure 14b).
The variation in Vsh in the two units realizes the inverse reservoir quality trends in the
tight and the conventional reservoirs.

Energies 2023, 16, x FOR PEER REVIEW 15 of 25 
 

 

 

Figure 12. PDFs of the normalized P-impedance trend in different facies in Unit 4 (a–c) and Unit 5 

(d–f). Three facies are identified in Unit 4 and Unit 5, respectively. Unit 4 presents a coastal shore 

feature, which includes tidal-influenced foreshore, shore face, and marine (from proximal to distal). 

Unit 5 has a deltaic feature, which includes estuarine sand bar, sheet sand, and pro-delta mud (from 

proximal to distal). The PDFs of P-impedance trend are different in each facies. 

 

Figure 13. The shale volume model of Unit 4 (a) and Unit 5 (b). The model presents a scattered 

morphology, which indicates tidal channels in the south of the field. In Unit 5, the model presents a 

more continuous morphology, which indicates sheet-like deposition in a higher accommodation 

space after the middle-scale, descending half cycle. The model also shows inverse variation trends 

in Unit 4 and Unit 5. 

 

Figure 14. SW–NE intersections of shale volume model of Unit 4 (a) and Unit 5 (b). The shale volume 

shows inverse variation trends in Unit 4 and Unit 5. The shale volume has an increasing trend from 

south to north in Unit 4, while it has a decreasing trend from south to north in Unit 5. 

Figure 12. PDFs of the normalized P-impedance trend in different facies in Unit 4 (a–c) and Unit 5
(d–f). Three facies are identified in Unit 4 and Unit 5, respectively. Unit 4 presents a coastal shore
feature, which includes tidal-influenced foreshore, shore face, and marine (from proximal to distal).
Unit 5 has a deltaic feature, which includes estuarine sand bar, sheet sand, and pro-delta mud (from
proximal to distal). The PDFs of P-impedance trend are different in each facies.
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Figure 13. The shale volume model of Unit 4 (a) and Unit 5 (b). The model presents a scattered
morphology, which indicates tidal channels in the south of the field. In Unit 5, the model presents
a more continuous morphology, which indicates sheet-like deposition in a higher accommodation
space after the middle-scale, descending half cycle. The model also shows inverse variation trends in
Unit 4 and Unit 5.
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Figure 14. SW–NE intersections of shale volume model of Unit 4 (a) and Unit 5 (b). The shale volume
shows inverse variation trends in Unit 4 and Unit 5. The shale volume has an increasing trend from
south to north in Unit 4, while it has a decreasing trend from south to north in Unit 5.

The Vsh gives an impact to porosities of the reservoirs. Although the total porosity of
the reservoir quality rocks has a range of 15% to 30%, clay cementations heavily reduced
intergranular pores and left abundant, unconnected micropores. The porosity models of the
reservoirs are under the constraint of Vsh in each facies. Similar to P-imp, Vsh has different
PDF in each facies. The Vsh property model in each facies is converted into a trend volume
by a normalization process (Figure 15). The porosities of reservoirs are generated from
petrophysical interpretation in each well and they are upscaled into the cellular system
by using arithmetic algorithm. The porosity model is then propagated using sequential
Gaussian simulation (SGS) under the Vsh trend constraint (Figure 16).
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porosity modeling. The PDF of the trend is shown on the left of the color bar.

The rock typing for the reservoirs in petrophysical analysis under the consideration of
degrees of mineral cementation and pore throat structures. Four rock types are identified
in wells and the quality of those rock types decreases from type 1 to type 4. The geologic
genesis analysis reveals that the main reason for rock type variation is the clay cementation.
Therefore, the rock type model can also be constrained by Vsh model. The Vsh model is
converted into a discrete trend by using a cutoff value of 40% (Figure 17). The discrete rock
types in each well are upscaled into the cellular system using “the most of” method, and
then propagated using sequential indicator simulations (SIS) under the constraint of the
discrete trend (Figure 18). The rock type distributions in the model are in accord with the
understandings in geologic genesis analysis. Type 1, which is the best quality rock, only
exists in Unit 5 where the convention reservoir develops. Type 2 to type 4 are included in
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Unit 4 where the tight reservoir exists. Type 2 in the tight reservoir mainly concentrates in
the south of the field. A SW–NE-directed cross section is generated to show the rock type
variation in these two reservoirs (Figure 19).
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Figure 16. The porosity model of Unit 4 (a) and Unit 5 (b). The porosity model presents inverse
variation trends in the units because it is constrained by the shale volume model. The porosity model
of Unit 4 has a poor continuity in the south of the field, while it becomes more continuous in Unit 5.
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Figure 18. The rock type models of Unit 4 (a) and Unit 5 (b). Four rock types exist in the model. The
rock typing criteria is in Table 3. Rock type 1 only exists in Unit 5 where the conventional gas reservoir
developed, while the other three types distribute in both the conventional and the tight reservoir.
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Figure 19. SW–NE intersections of rock type model of Unit 4 (a) and Unit 5 (b). The rock type shows
inverse variation trends in Unit 4 and Unit 5. Rock type 1, which has the best reservoir quality, only
exists in the conventional gas reservoir in Unit 5.

Different ϕ-k relations are a common indicator of different reservoir rock types [37–41].
The permeability model is calculated based on the ϕ-k relations of the four rock types
(Figure 20). The permeability model also presents the inverse trends of reservoir quality
in the conventional and the tight reservoir (Figure 21). In Unit 5, the high permeability
concentrates in the north of the field, while the permeability decreases from south to north
in Unit 4. A NW–SE-directed cross section illustrates the permeability variation trend in
the two reservoirs (Figure 22).
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Figure 20. Porosity-permeability relations of the four rock types identified in H reservoir.

Sw model is calculated by SHF of the four rock types. The Leverett-J function [27],
shown as Equation (1), is adopted in the Sw calculation.

SW = A × JB + C (1)

The free water level (FWL) is identified based on fluid interpretation result in wells.
The only well with interpreted water layers is located in the north of the field. The free
water level is defined at −3320 m SSTVD in this well (Figure 23). The water saturation
reveals that the north of the conventional gas unit has relatively lower water saturation
than the south. However, the tight reservoir unit has an inverse trend of water saturation
compared to the conventional gas unit (Figure 24).
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Figure 21. The permeability models of Unit 4 (a) and Unit 5 (b). The permeability model presents
inverse variation trends. The southern part has higher permeability in Unit 4, while the northern part
tends to be more permeable in Unit 4.
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Figure 23. The well where the free water level is identified. Well log interpretation indicates that the
top of the free water level is at −3320 m SSTVD.
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Figure 24. SW–NE intersections of water saturation model of Unit 4 (a) and Unit 5 (b). The water
saturation shows inverse variation trends in Unit 4 and Unit 5. The water saturation has an increasing
trend (gas saturation decreasing) from south to north in Unit 4, while it has a decreasing trend (gas
saturation increasing) from south to north in Unit 5.

Cut-off values from petrophysical analysis are adopted to generate the net to gross
(NTG) model. The cut-off values are from two parameters: Vsh and porosity. The NTG
model reveals that most net pay in the conventional reservoir concentrates in the north of
the field, while most net pay in the tight reservoir is in the south (Figure 25).
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Figure 25. SW–NE intersections of net to gross model of Unit 4 (a) and Unit 5 (b). More effective
reservoirs in Unit 4 exist in the south of the field, while Unit 5 has more effective reservoirs in the north.

6. Post-Modeling Analysis

Post-modeling operations aim at to test the model accuracy, to refine the model, and to
summarize the model [2]. The post-modeling operation for the static models includes model
accuracy testing using producer performance in dynamic simulation [42–44] and reservoir
property uncertainty analysis based on the static reservoir model. The reservoir properties
(porosity and permeability) were imported into a commercial numerical simulator of Eclipse
and a numerical simulation was conducted to calculate gas production rates of the two
producers. Then, comparisons were made between the calculated gas production rate
and the rate actually observed in wells (Figure 26). The gas production rates observed in
producer 1 ranges from 800 to 5400 million standard cubic feet (MSCF), with a decreasing
trend (green point in Figure 26a) from year 2016 to 2018. The simulated gas production rate
of producer 1 (red line in Figure 26a) matches the actual gas production observed in the well.
The gas production rates observed in producer 2 ranges from 1200 to 9800 MSCF from year
2010 to 2020, also with a decreasing trend (green point in Figure 26b). The simulated gas
production rate of producer 2 (red line in Figure 26b) also matches the actual gas production
observed in the well. History-matching performance for the only two producers that have
production in the tight gas reservoir in the field is good. The good history-matching results
of the producers indicate that the static model satisfies the accuracy for production forecast.
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Figure 26. The production rate history and simulation result from the dynamic model (built based on
the static reservoir model) of producer 1 (a) and producer 2 (b). The two producers are producing
from both the conventional and the tight gas reservoirs. Good history-matching results indicate the
reliability of the static reservoir model.

The reservoir properties are analyzed by an integration of the reservoir model and
understandings from geologic genesis analysis. The geologic genesis analysis reveals that the
conventional and the tight reservoirs are both controlled by deposition and postdeposition
diagenesis. Therefore, the biggest subsurface uncertainty is the variation in Vsh. The porosity
is impacted by Vsh because the clay cementations heavily reduced intergranular pores. The
porosity is also considered as a reservoir property uncertainty. The Sw, which directly relates
to GIIP of a reservoir, is decided by free water level (FWL) depth. The FWL variations
should be regarded to be another reservoir property uncertainty. A Monte Carlo simulation
is conducted on the static model. In the simulation, Vsh and porosity both have a variation
range of ±10%. The FWL is set to a variation of ±10 m. The simulation results show that
Vsh with ±10% variation range caused the gas initial in place (GIIP) variation range from
7.4 × 1010 standard cubic meters (sm3) to 8.35 × 1010 sm3. However, FWL with ±10%
variation range only caused a variation range in GIIP from 7.95 × 1010 sm3 to 8.75 × 1010 sm3.
The porosity with ±10% variation range caused the smallest variation range in GIIP, with
values from 7.95 × 1010 sm3 to 8.35 × 1010 sm3. The different GIIP variation ranges caused
by changes in these properties (Vsh, porosity, and FWL) are a quantitative way to measure
their contribution to uncertainties in reservoir modeling. The shale volume has the largest
contribution to the uncertainty in the reservoir model, while the porosity and FWL contribute
to the uncertainty of the reservoir model not as much as Vsh (Figure 27).
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7. Conclusions

The greatest challenge in the reservoir characterization and modeling for the hydrocar-
bon-bearing interval of Miano gas field is the reversed trend in reservoir quality of the
tight reservoir and the overlying conventional reservoir. The geologic genesis analysis
mainly depending on observations from cores and borehole logs of 11 wells is performed to
understand the depositional process of the two reservoirs in Miano gas field. Core data and
the thickness map suggest multiple depositional facies exist in the hydrocarbon-bearing
intervals compared to previous research, which only described single facies, based on
seismic attribute analysis [14,15,45–47]. The tight gas reservoir is tidal-influenced shore
facies and it experienced a local transgression in the southern area, which has a small
accommodation space. The local transgression leads to a smaller reservoir thickness of
the tight gas reservoir in the south and a switch in palaeogeomorphy height before the
deposition of the conventional reservoir, which is fluvial-influenced delta front facies,
also proven by core data and well logs. Therefore, during the depositional period of the
convention reservoir, thicker sediments prefer to exist in the north, while the deposition
is thinner in the south. The conventional and the tight gas reservoir both experience
postdeposition diagenesis. Thin sections, SEM, and pore radius analysis reveal that trends
in clay cementation degree in the conventional and the tight reservoir are inverse.

The geologic genesis analysis reveals that the reversed reservoir quality trends in the
conventional and the tight gas reservoirs are controlled by the deposition and the postde-
position genesis jointly. The static reservoir model is built following the understanding
from the geologic genesis analysis. Compared to the previous studies that mainly relied
on 2D seismic data [12,48], the structure framework of the model integrates the faults and
formation horizons from the latest 3D seismic interpretation. The property models realize
the reversed quality trend in the two reservoir units. The average shale volume in the
conventional reservoir changes from 10% to 30 % from northwest to southeast through
the Miano gas field, while it changes from 50% to 20% from northwest to southeast. The
reversed trend also developed in the porosities and permeabilities of the two reservoirs.
The average porosity increased from 5% to 25% from northwest to southeast through
the gas field in the conventional reservoirs but it decreased from 10% to 30% in the tight
reservoir in the same direction. The average permeability increased from 1 mD to 50 mD
from northwest to southeast through the gas field in the conventional reservoirs and it
decreased from 10 mD to 0.1 mD in the tight gas reservoir in the same direction.

The accuracy of the static model is tested by history-matching performance for current
producers in numerical simulation. The gas production rate of two producers were simu-
lated using the reservoir model. The actual observed gas production rate of one producer
varies from 800 to 5400 MSCF and the other one ranges from 1200 to 9800 MSCF. The
simulated gas production has a good match with actual observed gas production rate in
wells. The good history-matching result of the two current producers indicates that the
model can reach the accuracy for production forecast.

The geologic genesis analysis and the static model reveals that the greatest uncertainty
for reservoir GIIP is the Vsh variation. Variations of ±10% in shale volume cause the GIIP
changes from 7.4 × 1010 sm3 to 8.35 × 1010 sm3. The variations in porosity and FWL also
render an impact to the GIIP uncertainty. FWL with ±10 m variations only caused a change
in GIIP from 7.95 × 1010 sm3 to 8.75 × 1010 sm3. The average porosity with ±10% variation
range caused the smallest variation range in GIIP, with values from 7.95 × 1010 sm3 to
8.35 × 1010 sm3. The gas contribution of each reservoir can also be inferred. In the south of
the field, the tight gas reservoir probably contributes more gas, while minor gas may exist
in the conventional reservoir due to the poor reservoir quality. However, the conventional
reservoir could contribute more gas in the north and nearly no gas contribution in the tight
gas reservoir in the same area.
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