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Abstract: The leakage inductance of the transformer in a dual active bridge (DAB) dc–dc converter
directly impacts the ac current waveforms and the power factor; thus, it can be considered a design
requirement for the transformer. In the existing literature, a choice is made to either ensure soft
switching in nominal power or to minimize the RMS current of the transformer. The inductance
is typically obtained using optimization procedures. Implementing these optimizations is time-
consuming, which can be avoided if a closed-form equation is derived for the optimum leakage
inductance. In this paper, analytical formulas are derived to estimate the desired leakage inductance
such that the highest RMS value of the current in the operation region of a DAB is kept to its minimum
value. The accuracy and sensitivity of the analytical solutions are evaluated. It is shown that in
a large design domain, the solution for the YY-connected MFT has a less than 3% error compared
to the results obtained from an optimization engine. As an example of the importance of selecting
the leakage inductance correctly, it is shown that for 11% deviations in the dc link voltages, a 10%
deviation from the desired leakage inductance value can cause 2% higher RMS currents in the
converter.

Keywords: dc–dc power conversion; dual active bridge (DAB); modular multilevel converter (MMC);
leakage inductance; optimization

1. Introduction

A dual active bridge (DAB) dc–dc converter is formed by two active bridges connected
in a front-to-front configuration with a transformer in between [1]. As the ac-link is confined
between two inverters, the fundamental frequency can be increased. The increase in the
frequency reduces the size of the transformer, which is then referred to as a medium-
frequency transformer (MFT). The MFT provides galvanic isolation between the primary
and the secondary side dc-links. This makes the DAB suitable for applications like dc
offshore wind farms and high-power traction where galvanic isolation and a high voltage
transformation ratio are system requirements [2,3]. The conventional DAB is suitable for
low-voltage applications. However, it requires a serial connection of semiconductors for
higher voltages. This makes it unsuitable for medium- and high-voltage applications [4,5].
For these voltages, multilevel converter topologies are more suitable [2,6–11].

Two important factors in the design of a DAB converter are power density and ef-
ficiency. The power density can be improved drastically by reducing the size of passive
components like the transformer and capacitors (in the case of a multilevel converter).
The size of capacitors can be reduced by selecting the modulation technique (e.g., quasi-
two-level (Q2L) modulation [10,11]); selecting the transformer winding connection [12];
and selecting the converter topology [13]. On the other hand, the MFT is not an off-the-shelf
product and should be designed for the specific application to have high power density
and efficiency. The design optimization of the MFT can be combined with the converter
design [14] or performed stand-alone with the specifications imposed from the converter
side [15–22].
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The MFT’s leakage inductance directly impacts the current waveforms, the power
factor, and the converter’s performance [1]. Therefore, it can be considered to be a design
requirement for MFT optimization [15–26]. The value of desired leakage inductance is used
as an input for the optimization of an MFT in [15–20]. Its value is selected such that all of the
switches achieve turn-on ZVS at the nominal power of the converter for a given deviation
from the nominal dc-link voltages [16,17]. This method is suitable for applications where
the switching losses make up a substantial part of the converter’s losses.

If the leakage inductance is selected inappropriately, a small deviation in the dc-link
voltages will give huge reactive currents through the converter [23,24,27]. This is important
in designing multilevel converters, as the submodule capacitors should be overrated to
handle excessive currents. It also is crucial in applications where conduction losses are
the main loss component and variable dc-link voltages are required. The required dc-link
voltage ranges change based on the application and characteristics of the connected loads
or sources. In automotive applications, the deviations from the nominal point can be up to
34% [28,29]. In [14], a DAB with a wide input range of 100–700 V (75% deviation) is studied
for microgrid applications. Therefore, it is important to select the inductance such that the
RMS currents (thus, the copper losses) are kept to a minimum in the whole operating range.

In [30], leakage inductance optimization of a 1φ conventional DAB is studied for
vehicular applications. The phase shift between the two bridges, the leakage inductance,
and the dc conversion ratio are swept to find an optimum value of the leakage inductance
that minimizes the RMS current. A similar approach is taken in [31] to select the optimum
leakage inductance of a 3φ multilevel DAB for wind turbine applications. A brute-force
optimization method is used in [30,31], which is computationally demanding and time-
consuming.

A leakage inductance optimization methodology is presented in [27] for a 3φ conven-
tional DAB and utility applications. It uses the analytical power and current formulas of the
3φ DAB with a numerical solver to find the optimum value. Even though the method used
in [27] gives the optimum leakage inductance value faster than the brute-force method used
in [30,31], it does not provide a holistic view of the dependency of the leakage inductance on
the design parameters. Moreover, if the topologies of the inverters are altered, the method
should be adapted to the new topology.

An interesting approach is taken in [23] for a 1φ DAB. A closed-form formula is derived
for the desired leakage inductance, which results in the minimum RMS current for a given
variation in the dc-link voltage. This is the fastest method possible that also gives a holistic
view of the dependency of the leakage inductance on the converter parameters. Optimized
designs with this method can be found in [25,26]. Nevertheless, [23] only considers a
variation in one of the dc-link voltages and can not be used for applications where both
dc-link voltages are variable.

Missing in the available literature is a closed-form equation that provides satisfactory
results for the desired leakage inductance of a 1φ and 3φ MFT that results in the minimum
RMS current for arbitrary variations in both dc-link voltages. This paper provides closed-
form formulas to calculate the optimum leakage inductance of a two- or multilevel DAB
dc–dc converter for both 1φ and 3φ variants. The accuracy of such a formula is evaluated,
and the impact of voltage spans on the RMS currents and the leakage inductance is studied.
Additionally, the effect of neglecting the ac resistance of the MFT on the optimization results
is quantified.

2. AC-Link Current and Voltage Derivations

Figure 1 shows the topology of a DAB dc–dc converter with a 3φ MFT. In this paper,
YY, ∆∆, and Y∆ winding configurations are considered and studied. As can be seen,
the nodes of the primary and secondary sides are marked with capital and lowercase letters,
respectively.
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Figure 1. Topology of a 3φ DAB dc–dc converter with different transformer winding configurations.
(a) YY configuration. (b) ∆∆ configuration. (c) Y∆ configuration.

Figure 2 shows the phase-to-ground (phase to mid-point of the dc-link) voltage wave-
forms of a multilevel DAB converter. The waveforms of this figure are used as a reference
for later derivations in the article. This approach is taken to derive equations independent
of the converter’s topologies and the winding configuration. One can modify the final
equations accordingly to obtain relationships with the physical parameters of the inverters
(as an example, the parameter U in Figure 2 is equivalent to the submodule voltage of an
MMC converter).

Figure 2. Phase-to-ground voltage waveforms of a 3φ multilevel DAB converter.

2.1. AC-Link Voltages of the 3φ DAB

It is assumed that the 3φ system is balanced. Therefore, only phase A is analyzed
hereafter. Using the Fourier series [11,32], the phase-to-ground (P2G) voltages (vxG, x ∈
{A,B,C}) can be calculated as

vxG =
∞

∑
H=1

(
4UH,p

Hπ
sin(H(ωt + α))

)
, α ∈ {0,−2π/3, 2π/3} (1)

where ω = 2π fsw, fsw is the switching frequency, and UH,m is defined as

UH,m ≡ UH,m(Mm, Um, θk,m) ,
Mm−1

∑
k=0

(1− 0.5δj(θk,m))Um cos(Hθk,m) (2)

where H ∈ {2h− 1|h ∈ N} is the harmonic order, U is the amplitude of each level in the
voltage waveform (see Figure 2), δj is Kronecker delta [33] (not to be confused with Dirac
delta), M is the number of levels in the P2G voltage (defined as the number of steps from
V = 0 to the peak of the voltage waveform), and θk is the duration of each level as depicted
in Figure 2. Moreover, m ∈ {p, s}, where p refers to the primary bridge parameters and s
refers to the secondary bridge parameters. In some multilevel converters, the amplitude
of the first step (for θ0 = 0) is half of the others. To account for this, the Kronecker delta
is included in (2). If it is not the case, the term 0.5δj(θk) must be excluded from (2). As an
example, the conventional DAB does not have this characteristic, therefore, 0.5δj(θk) ≡ 0.
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Phase A voltage of a Y-connected winding, vAN, can be calculated as [34]

vAN = vAG −
vAG + vBG + vCG

3
=

∞

∑
H=1

(
4UH,p

Hπ
sin(Hωt)

)
(3)

where H ∈ {2h− 1|h ∈ N, 3 6 | 2h− 1}. Similarly, phase A voltage of a ∆-connected wind-
ing, vAB, can be derived as [34]

vAB = vAG − vBG =
∞

∑
H=1

(
4UH,p

Hπ

(
sin(Hωt)− sin

(
Hωt− 2Hπ

3

)))
(4)

where H ∈ {2h− 1|h ∈ N, 3 6 | 2h− 1}.

2.2. AC-Link Currents for a YY-Connected 3φ MFT

The primary side phase A current of a YY-connected MFT, ILA, can be calculated as

ILA(ωt) =
∞

∑
H=1

4UH,p

πH|ZH |
sin(Hωt−∠ZH)−

∞

∑
H=1

4NpUH,s

πNsH|ZH |
sin(H(ωt− ϕ)−∠ZH) (5)

where H ∈ {2h− 1|h ∈ N, 3 6 | 2h− 1}, Z is the series impedance of the MFT, ϕ is the phase-
shift between the primary side and the secondary side voltages, Np is the number of turns
of the primary winding, and Ns is the number of turns of the secondary winding. Moreover,

|ZH | =
√

R2 + (HωLσ)
2

∠ZH = tan−1(HωLσ/Rac)
(6)

where Lσ and Rac are the primary-side-referred leakage inductance and ac resistance of the
transformer, respectively. The RMS of the current in (5) can be calculated as

IRMS
LA =

√√√√√√8
∞

∑
H=1

U2
H,p +

(
NpUH,s

Ns

)2
−

2NpUH,pUH,s

Ns
cos(Hϕ)

π2H2|ZH |2
(7)

and the active power of the converter, P̄3φ, can be calculated as

P̄3φ =
∞

∑
H=1

24UH,p

π2H2|ZH |

(
UH,p cos(∠ZH)−

NpUH,s

Ns
cos(Hϕ +∠ZH)

)
. (8)

Figure 3 shows the dependency of sin(∠ZH) and cos(∠ZH) on the ratio of ωLσ to Rac.
With an increase in ωLσ/Rac, the value of sin(∠ZH) quickly approaches unity. The rate of
decrease of cos(∠ZH) is much lower compared with sin(∠ZH), and for ωLσ/Rac ≥ 50, it
can be approximated to be zero.

Figure 3. Dependencies of sin(∠ZH) and cos(∠ZH) on the ratio of ωLσ to R for four harmonics.
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Therefore, MFT’s impedance can be approximated with the leakage inductance, as-
suming ωLσ/Rac ≥ 50. Considering this, (7) can be approximated with

IRMS
LA ≈

√√√√√√8
∞

∑
H=1

U2
H,p +

(
NpUH,s

Ns

)2
−

2NpUH,pUH,s

Ns
cos(Hϕ)

(πωLσ)
2H4

(9)

and (8) can be rewritten as

P̄3φ ≈
24Np

Nsπ2ωLσ

∞

∑
H=1

(
UH,pUH,s

H3 sin(Hϕ)

)
. (10)

2.3. AC-Link Currents for a ∆∆-Connected 3φ MFT

By defining L∆∆
σ , 3Lσ and applying the Y-∆ transformation to the equivalent circuit

of the ∆∆-connected MFT, one can get the same equivalent circuit as the YY-connected MFT.
Consequently, (9) and (10) can also be used to model a ∆∆-connected MFT. Therefore, only
a YY-connected MFT is analyzed hereafter.

2.4. AC-Link Currents for a Y∆-Connected 3φ MFT

If ωLσ/Rac is large enough, the RMS value of the primary side phase A current, ILA,
can be calculated as

IRMS
LA ≈

√√√√√√8
∞

∑
H=1

U2
H,p + 3

(
NpUH,s

Ns

)2
−

4NpUH,pUH,s

Ns
sin
(

Hπ

3

)
sin
(

Hπ

2

)
cos(Hϕ)

(πωLσ)
2H4

(11)

where H ∈ {2h− 1|h ∈ N, 3 6 | 2h− 1}. Moreover, the transmitted active power can be
calculated as

P̄3φ ≈
48Np

Nsπ2ωLσ

∞

∑
H=1

UH,pUH,s

H3 sin
(

Hπ

3

)
sin
(

Hπ

2

)
sin(Hϕ) (12)

2.5. AC-Link Voltages and Currents for a 1φ MFT

The Fourier series of the phase voltage of a 1φ multilevel DAB converter, vϕ, can be
written as

vϕ = vAG(ωt)− vAG(ωt− π) =
∞

∑
H=1

(
8UH,p

Hπ
sin(Hωt)

)
(13)

where H ∈ {2h− 1|h ∈ N}. If ωLσ/Rac is large enough, then the RMS value of the primary
side phase current, IRMS

Lϕ , can be approximated as

IRMS
Lϕ ≈

√√√√√√√ ∞

∑
H=1

U2
H,p +

(
NpUH,s

Ns

)2
−

2NpUH,pUH,s

Ns
cos(Hϕ)(

πωLσ/
√

32
)2

H4
. (14)

where H ∈ {2h− 1|h ∈ N}. Also, the active power, P̄1φ, can be approximated as

P̄1φ =
32Np

Nsπ2ωLσ

∞

∑
H=1

(
UH,pUH,s

H3 sin(Hϕ)

)
. (15)

It is important to note that for a 1φ DAB converter, all the odd harmonics are present
in the phase current and voltage waveforms.
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3. Study of the Leakage Inductance

Figure 4 depicts the dependency of the RMS currents of a 3φ DAB, IRMS, on the leakage
inductance for different percentages of deviation from the primary nominal dc-link voltage,
σpri, while the active power is kept constant at its nominal value. As can be seen, for the
operation with fixed dc-link voltage, the smaller the value of Lσ, the lower the value of IRMS.
Moreover, for any Lσ ∈ (0, 0.6) pu, the converter can transfer the nominal power without a
large increase in the RMS value of the current. However, for the slightest deviation in the
dc-link voltage, huge currents are required to transfer the nominal power if Lσ is below 0.1
pu. Similarly, if Lσ is too large (e.g., larger than 0.6 pu for σpri < −40%), the converter must
be derated, as the maximum phase shift, ϕ, is the limiting factor.

For the case shown in Figure 4, Lσ can be easily selected because deviations exist only
on one of the dc-links. As an example, if a deviation of a maximum 30% is expected on
the primary side dc-link voltage, the selection of Lσ = 0.5 pu will ensure that the currents
will be kept below one pu (as shown in Figure 4). Finding an optimum Lσ becomes more
complicated for the cases where deviations higher and lower than the nominal dc-link
voltage exist on both sides. Therefore, it is necessary to formulate an optimization problem
to find the optimum leakage inductance value.

Figure 4. Dependency of the RMS value of the phase currents on the leakage inductance for different
percentages of deviation in the primary side nominal dc-link voltage, σpri, while the active power is
kept constant at its nominal value.

3.1. Formulating the Optimization

Let us assume the converter’s primary and secondary side voltages have variations
in a range of UpN[(1− σp1), (1 + σp2)] and UsN[(1− σs1), (1 + σs2)], respectively; where
UpN and UsN are the nominal values of Up and Us; and σp1 and σp2 are the percentages
of deviation in the primary dc-link voltage. Similarly, σs1 and σs2 are the percentages of
deviation in the secondary dc-link voltage.

The operation region of the converter is illustrated with a gray-shaded area in Figure 5.
This rectangular domain,Rd, can be formulated as∣∣∣∣∣Up −UpM

σpUpM
+

Us −UsM

σsUsM

∣∣∣∣∣+
∣∣∣∣∣Up −UpM

σpUpM
− Us −UsM

σsUsM

∣∣∣∣∣ ≤ 2. (16)

where (UpM, UsM) is the center of the rectangular domain and σp and σs are the deviations
from the center given as

UpM =
UpN

2
(
2 + σp2 − σp1

)
UsM = UsN

2 (2 + σs2 − σs1)

,


σp =

σp2+σp1
2+σp2−σp1

σs =
σs2+σs1

2+σs2−σs1

. (17)
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Figure 5. The operation region of the converter with the nominal point shown by (UpN, UsN).

The aim is to find a leakage inductance value that minimizes the RMS currents in the
operation domainRd while transferring the nominal power of the converter, Pn. Therefore
the optimization can be formulated as

arg min
Lσ∈R+

(
max
Up,Us

(
IRMS
LA

))
subject to:

(
Up, Us

)
∈ Rd,

P̄3φ = Pn.

(18)

3.2. Leakage Inductance Calculation for the 3φ Topology

Solving (18) analytically becomes impossible if all of the harmonics are considered.
However, a first harmonic approximation can be used since the current and power are
inversely proportional to H4 and H3, respectively. The first harmonic approximation for
the YY connection results in

IRMS
LA,1 ≈

√
8

√√√√U2
1,p +

(
NpU1,s

Ns

)2
−

√(
2NpU1,pU1,s

Ns

)2

− (
π2ωLσPn

12
)2

πωLσ
. (19)

For the Y∆, it yields

IRMS
LA,1 ≈

√
8

√√√√√U2
1,p +

(√
3NpU1,s

Ns

)2

−

√√√√(2
√

3NpU1,pU1,s

Ns

)2

− (
π2ωLσPn

12
)2

πωLσ
. (20)

Therefore, (18) can be simplified as

arg min
Lσ∈R+

(
max
Up,Us

(
IRMS
LA,1

))
subject to:

(
Up, Us

)
∈ Rd.

(21)

The process of solving (21) is provided in Appendix A. Using the following definitions

U1,p,M ,
(2)

U1,p(Mp, UpM, θk,p) and U1,s,M ,
(2)

NpU1,s(Ms, UsM, θk,s)

Ns
for YY (22a)

U1,p,M ,
(2)

U1,p(Mp, UpM, θk,p) and U1,s,M ,
(2)

√
3NpU1,s(Ms, UsM, θk,s)

Ns
for Y∆ (22b)
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assuming that U1,p,M ≈ U1,s,M. The solution of (21) is given as

Lσ,opt =
24U2

1,p,M

π2ωPn
× GLσ (23)

where GLσ is a gain, defined as

GLσ =

{
GLσ

(
σs, σp

)
∀
(
σp, σs

)
∈ I

GLσ

(
σp, σs

)
∀
(
σp, σs

)
∈ J

(24)

and GLσ (σ1, σ2) =
√

σ1
√

2− σ1

√
1− 2σ1 + σ2

1 − σ2
2 . The subsets I and J are defined as

I = {
(
σp, σs

)
| 0 ≤ σp, σp ≤ σs, σp + σs ≤ 1, σs +

√
σp ≤ 1} (25a)

J = {
(
σp, σs

)
| 0 ≤ σs, σs ≤ σp, σp + σs ≤ 1, σp +

√
σs ≤ 1}. (25b)

By analyzing GLσ , one can see that σ2
2 can be neglected compared to the other terms for

small values of σ1. Therefore, Lσ,opt depends mainly on σ1 if σ1 is small. However, the term
σ2

2 can not be neglected for large values of σ1. Therefore, Lσ,opt will have a dependency on
both σ1 and σ2 for large values of σ1.

Figure 6a illustrates the value of GLσ as a function of σp and σs. The sets I and J
are depicted with green and orange dashed lines, respectively. There is symmetry in the
value of GLσ along the identity line (σp = σs). A zoomed version of Figure 6a is depicted in
Figure 6b. In this region, the iso-lines are almost parallel with the axes, meaning that GLσ

and consequently Lσ,opt depend mainly on max(σp, σs).

(a) (b)

Figure 6. Visualization of GLσ
given in (24). The triangle with green dashed lines corresponds to the

set I given in (25a), and the one with orange dashed lines corresponds to the set J given in (25b).
(a) For σp ≤ 100% and σs ≤ 100%. (b) For σp ≤ 11% and σs ≤ 11%.

For applications with a high switching frequency, the switching losses are also detri-
mental to the efficiency of the converter. The dashed blue lines in Figure 6a show the
boundaries of the soft-switching region. For the voltage deviations inside this region,
the selection of the leakage inductance from (23) also ensures soft-switching in the whole
Rd. As shown in [11], the soft-switching range drifts toward large phase shifts with an
increase in the transition time. Therefore, the region marked with the dashed blue line will
shrink for non-zero transition time values and eventually disappear.

3.3. Leakage Inductance Calculation for 1φ Topology

Unlike the 3φ topology, the third harmonic also contributes to the power transfer in
the 1φ variant. However, its contribution to the power transfer is, approximately, 27 times
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less than the contribution of the fundamental harmonic. Therefore, similar assumptions as
for the 3φ variant can be made for the calculation of Lσ,opt, which results in

Lσ,opt =
32U2

1,p,M

π2ωPn
× GLσ (26)

where Pn is the nominal power of the 1φ converter. Finally, for clarification, Figure 7 shows
a flowchart of the optimum leakage inductance calculation process.

Figure 7. Optimum leakage inductance calculation flowchart.

3.4. Sensitivity Analysis

The presence of harmonics transmitting active power will affect the value of Lσ,opt. It
is essential to investigate the sensitivity of the current to changes in the leakage inductance
value to validate the relations derived earlier. The deviation in the Lσ,opt value, δLσ,opt , is
defined as

δLσ,opt =
∆Lσ,opt

Lσ,opt
=

Lσ,non-opt − Lσ,opt

Lσ,opt
⇒ Lσ,non-opt = (1 + δLσ,opt)Lσ,opt (27)

where Lσ,non-opt is the non-optimum value of the leakage inductance. Similarly, the devia-
tion in the RMS value of the current, δIRMS

LA,1
, is defined as

δIRMS
LA,1

=

∣∣∣∣IRMS
LA,1

∣∣∣
Lσ,non-opt

− IRMS
LA,1

∣∣∣
Lσ,opt

∣∣∣∣
IRMS
LA,1

∣∣∣
Lσ,opt

× 100%. (28)

Figure 8 shows the value of δIRMS
LA,1

for the points with the maximum current in the

operation region when δLσ,opt = ±2.5%. The maximum current occurs on points P1 or P3
for δLσ,opt = −2.5%. For these points, δIRMS

LA,1
is below 2%, as shown in Figure 8a. Similarly,

Figure 8b shows δIRMS
LA,1

for the point with maximum current when δLσ,opt = 2.5% (i.e., point

P2). Similar to the δLσ,opt = −2.5% case, the deviation stays below 2% for most (σp, σs)
pairs. However, for certain (σp, σs) pairs, the deviation increases dramatically and even
becomes a complex value (where iso-lines disappear). In that region, the phase shift
between the primary side and the secondary side bridges is close to 90 degrees. Therefore,
the converter will lose the capability to transmit the full power at point P2 for a small change
in Lσ. Additionally, for large values of ϕ, dIRMS

LA,1 /dLσ increases quickly (see Figure A1 in
Appendix A). Therefore, a small deviation in Lσ,opt will result in a large deviation in the
RMS value of the current.
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(a) (b)

Figure 8. δIRMS
LA,1

for different σp and σs values. (a) For δLσ,opt = −2.5% on points P1 or P3. (b) For
δLσ,opt = 2.5% on point P2.

4. Simulation and Verification

An analytical expression is derived for Lσ,opt in the previous section, and sensitivity
analysis is performed. However, these are done assuming that the ac resistance of the MFT
and the harmonics can be neglected. A simulation model is developed to investigate the
validity of these assumptions and to verify the analytical model.

4.1. Lσ Calculation Using Simulation Models

MATLAB models that emulate the behavior of 1φ and 3φ multilevel DAB dc–dc
converters are developed. The converters are assumed to have the same power and dc-link
voltage ratings. The rated power is assumed to be 2 MW, and both dc-link voltages are
assumed to be 5 kV. The modular-multilevel converter (MMC) topology is used for the
primary side and the secondary side inverters. The number of sub-modules per arm, NSM, is
selected to be five. The MMC with five sub-modules can produce a P2G voltage waveform
with five levels using either the complementary or the non-complementary switching
sequence [11]. It is assumed that the converter has a switching frequency of 5 kHz and
that the dwell time, tdwell, (the time spent on each level of the trapezoidal waveform before
a new sub-module is inserted or bypassed) is 2.5 µs. Therefore, the percentage of total
transition times per fundamental period (2 fswTtransition) is 10%. Table 1 summarizes the
specifications of the simulated converter.

Table 1. Specifications of the simulated dc–dc converters.

Parameter Value Parameter Value Parameter Value Parameter Value

VPri
dc,nom 5 kV fsw 5 kHz VSec

dc,nom 5 kV Pnom 2 MW
σp [0.02, 0.35] NSM 5 σs [0.02, 0.35] tdwell 2.5 µs

The series ac resistance is neglected for this simulation, and the method explained
in [31] is used to obtain the desired leakage inductance of the 3φ MFT. A similar approach
is taken for the 1φ case. Figure 9 shows the leakage inductance requirements of the 3φ and
the 1φ MFTs obtained from the simulations. As can be seen, they have similar patterns as
Figure 6a. However, Lσ,opt of the 1φ MFT is larger than that of the 3φ variants, which is
due to higher winding voltages of the 1φ MFT.
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(a) (b) (c)

Figure 9. Numerical solution for Lσ,opt with the converter specifications given in Table 1. (a) For the
3φ YY-connected MFT. (b) For the 3φ Y∆-connected MFT. (c) For the 1φ MFT.

4.2. Lσ Calculation Using Simulation Models

For an MMC with 5 sub-modules and dc-link voltages of 5 kV, UpN and UsN are equal
to 1 kV. Moreover, σp2 and σp1 are assumed to be equal (similarly, σs2 = σs1). Using (17), one
can obtain σp = σp2 = σp1, σs = σs2 = σs1, and UpM = UpN = UsN = UsM. Additionally,
θk = 2kπ fswTdwell for k ∈ {0, 1, 2}, and

U1,p,M = U1,s,M =

(
0.5 +

2

∑
k=1

cos(2kπ fswTdwell)

)
kV. (29)

Eventually, (23)–(26) can be used to calculate Lσ,opt. Figure 10 shows the percentage of
error in the estimation of the leakage inductance from (23)–(26), which is defined as

Lerror
σ,opt =

Lsim
σ,opt − Lcalc

σ,opt

Lsim
σ,opt

× 100% (30)

where Lsim
σ,opt is the value obtained from the simulations (shown in Figure 9) and Lcalc

σ,opt is
the value obtained from the analytical formulas (23)–(26). As can be seen, for most of the
region, Lerror

σ,opt is below 2.5% and 4% for the YY-connected 3φ and the 1φ cases, respectively.
A higher error is expected for the 1φ case, as the third harmonic also contributes to power
transfer, which is neglected in the calculations. Lerror

σ,opt increases for the Y∆ case when
deviations in the dc-links are below 10%. This is because the lower the deviations in the
dc-links, the lower the phase shift obtained from Lσ optimization. The fifth and seventh
harmonics are the dominant components of the current for low phase shift and the ∆Y
configuration as shown in [35]. This makes the first harmonic approximation invalid for
the ∆Y configuration and low phase shift values. Thus, the solution obtained from the
analytical calculations has a higher error in this region.
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(a) (b) (c)

Figure 10. The percentage of error in the estimation Lσ,opt, using analytical formulas (23)–(26), for the
dc–dc converter with the given specifications in Table 1. (a) For the 3φ YY-connected MFT . (b) For
the 3φ Y∆-connected MFT. (c) For the 1φ MFT.

Figure 11a shows Lerror
σ,opt of the YY-connected 3φ MFT for three different percentages

of the total transition times per fundamental period. For σp ≤ 2% or σs ≤ 2%, the esti-
mation error increases dramatically. However, for the rest of the region, Lerror

σ,opt is below
3%. For a given (σp, σs), an increase in 2 fswTtransition reduces the estimation error. This is
because the THD of the phase current reduces with higher transition times and, accordingly,
the accuracy of the first harmonic approximation increases.

(a) (b)

Figure 11. (a) Lerror
σ,opt of the YY-connected 3φ MFT for different percentages of total transition times

per fundamental period (2 fswTtransition). In the red-colored region, the error is higher than 3%. (b)
The deviation in the RMS value of the phase current for a 3φ YY-connected DAB at the nominal power
for different percentages of deviation from the desired leakage inductance obtained from (23).

Figure 11b visualizes the deviation in the RMS value of the phase current for a 3φ
YY-connected DAB at the nominal power for different percentages of deviation from the
desired leakage inductance obtained from (23). When the converter operates with nominal
voltages, δIRMS is larger than zero for any δLσ,opt > 0. The maximum value of δIRMS occurs at

σp = σs ≈ 23%, which is below 1% for δLσ,opt < 10%. The larger the
∣∣∣δLσ,opt

∣∣∣, the higher the∣∣δIRMS

∣∣. The effect is more pronounced when the converter operates at non-nominal points—
specifically at points Pi, i ∈ {1, 2, 3}. For these points, the higher the σp = σs, the higher the∣∣δIRMS

∣∣. For example, a 10% deviation from the desired leakage inductance value can cause
2% higher RMS currents at points P1 or P3 in the converter for σp = σs = 11%. For large
enough σp = σs, even a 5% deviation from Lσ,opt can cause more than 5% higher currents
in the converter. Therefore, it is important to choose the leakage inductance value as close
to the value given by (23) as possible to avoid extra losses and derating of the converter.
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4.3. Sensitivity Study on Rac

To calculate the phase currents of the MFT, the series ac resistance is neglected in
Section 2 provided that ωLσ/Rac is large. Measurements conducted on two MFT prototypes
and simulations presented in this section will be used to justify this assumption. The leakage
inductance and the ac resistance are measured on two shell-type MFT prototypes, one with
ferrite and the other with nanocrystalline cores. The MFTs are rated for 50 kW, 5 kHz,
and 1 kV to 3 kV. More information on the design methodology of MFTs can be found
in [17,36].

The leakage inductance and the ac resistance are measured from the secondary side
while the primary side is short-circuited, as shown in Figure 12a. The measurements
are performed in the frequency range of 1 kHz to 40 kHz using an Agilent E4980A RLC
meter. Figure 12b shows the measured leakage inductance and ac resistance of both MFTs.
The ratio of the leakage reactance to the ac resistance is calculated from these measurements
and is shown in Figure 12c. For the fundamental component and operation with 5 kHz,
the ratio is 51 and 43 for ferrite and nanocrystalline MFTs, respectively. The ratio is above
80 for transformers and the 3rd, 5th, and 7th harmonics. This justifies the assumption made
in Section 2.2 for the dominant harmonics (i.e., ωLσ/Rac ≥ 50).

(a)

(b)

(c)

Figure 12. (a) Test setup for measuring the leakage inductance and the ac resistance of two MFTs. (b)
The leakage inductance and ac resistance. (c) The ratio of the leakage reactance to the ac resistance.

In order to include the series ac resistance in the simulation, the first-order differential
equation

Lσ
dIL(ωt)

dt
+ Rac IL(ωt) = vxN(ωt)− v′yn(ωt− ϕ) (31)

should be solved while ensuring that P̄3φ(IL(ωt)) = Pn holds (for the 3φ case). The initial
condition for the current in (31) is unknown. Additionally, Lσ should be selected such
that the RMS value of IL is minimized for a certain range of variations in the amplitudes
of vxN(ωt) and v′yn(ωt− ϕ). Overall, the problem becomes time-consuming to solve.
Therefore, the simulation with the ac resistance is performed only for the 3φ MFT and
a single design where (σp, σs) = (0.1, 0.1). The converter is assumed to have the same
specifications as presented in Table 1. Rac is varied such that the ωLσ/Rac ratio is kept close
to or higher than the values shown in Figure 12c for a fundamental frequency of 5 kHz.

Figure 13 depicts the maximum of the currents in the operation domain as a function
of leakage inductance for different ωLσ/Rac values obtained from the simulation model.
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Here, ωLσ/Rac = ∞ means that the ac resistance is neglected in the simulation. The current
and the leakage inductance are normalized with respect to the case where Rac = 0. When
ωLσ/Rac reduces, the error in the Lσ,opt value increases. For ωLσ/Rac = 43, the value of
Lσ,opt is 4.8% higher compared with the case without resistance.

Figure 13. The maximum of the currents in the operation domain as a function of the leakage
inductance for different ωLσ/Rac values obtained from the simulation model for (σp, σs) = (0.1, 0.1).
The dashed blue line marks the value of Lσ,opt from the analytical formula (Lcalc

σ,opt).

As seen, a 4.8% error in Lσ,opt will cause a less than 1% error in the RMS value of the
current. The value of Lσ,opt from the analytical formula is depicted with a dashed blue line.
The error between the Lcalc

σ,opt and Lsim
σ,opt|Rac=0 is 2.2%, which is the same value as shown in

Figure 10a for (σp, σs) = (0.1, 0.1).

5. Discussion

Analytical formulas are derived to estimate the desired leakage inductance value of
the MFT for a DAB dc–dc converter. The estimated leakage inductance minimizes the
RMS current for deviations in the dc-link voltages. This ensures minimum conduction
losses under nominal power operation. The formulas are derived for converters with either
single-phase or three-phase ac-links. They are independent of the converter topology and
can be used for multilevel or conventional DAB converters.

The methods used in existing literature depend on solving optimization problems
to determine leakage inductance. These methods are time-consuming and depend on an
engineer with optimization-solving skills. On the other hand, the method proposed in this
article uses a set of equations to determine the leakage inductance value (see Figure 7). This
saves plenty of time for engineers interested in using the inductance value as an input to
their MFT design optimization models.

The derived formulas are validated with MATLAB simulation models. It is shown
that, in a broad design range, the error in the estimation of the leakage inductance can be
less than 2.5% and 4% for the YY-connected three-phase MFT and the single-phase MFT,
respectively. It is also highlighted that soft-switching can be ensured for specific converter
designs using the presented equations (see Figure 6a).

The importance of selecting the leakage inductance correctly for a given voltage span
is quantified. As an example, it is shown that for 11% deviations in the dc-link voltages,
a 10% deviation from the desired leakage inductance value can cause 2% higher currents in
the converter. In addition, the effect of neglecting the MFT’s ac resistance on the leakage
inductance’s optimum value (and also the RMS current) is quantified. It is demonstrated
that including an ac resistance close to its actual value in the optimization can cause a 5%
difference in the value of the obtained optimum leakage inductance.

The main limitation of the proposed method is the high estimation error when a small
deviation (σ < 2%) is expected in only one of the dc-links (see Figure 11a). Moreover, it is
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also shown that the estimation error is high for the Y∆ connection when deviations less than
10% in the dc-links are expected. This is attributed to the first harmonic approximation.

Improving the model’s accuracy for the cases with a small deviation (σ < 2%) in
one of the dc-links can be valuable future work. Similarly, the accuracy of the model can
be improved for the Y∆ connection of the windings and deviations less than 10% in the
dc-links. Moreover, an interesting future study is using the leakage inductance of this
paper as an input to the design and optimization of an MFT. Furthermore, evaluating the
converter’s performance at different applied voltages is suggested.
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Appendix A. Solving Optimization Problem (21)

Appendix A.1. Solving Inner Optimization

Problem (21) contains the sub-problem max
Up,Us

(
IRMS
LA,1

)
, which should be solved first. If all

of the local extrema of IRMS
LA,1 are identified, the global maximum should be among these

local extrema. Since the set Rd is a convex set and IRMS
LA,1 is a continuously differentiable

function, the potential local maxima of IRMS
LA,1 are the stationary points of the function. It

will be shown here that all of the points in setRd except Pi where i ∈ {1, 2, 3, 4} are either
non-stationary or, if they are stationary points, they are not the global maximum.

A point inRd—excluding its vertices and edges—is stationary if ∇IRMS
LA,1 = 0, where

∇IRMS
LA,1 =

(
∂IRMS

LA,1

∂Up
,

∂IRMS
LA,1

∂Us

)T

. (A1)

Solving∇IRMS
LA,1 = 0 results in π2ωLσPn = 0, which is an invalid expression. Therefore,

IRMS
LA,1 has no stationary point insideRd. For the edges, a point is stationary if the gradient
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is perpendicular to the edge and pointing outwards fromRd. For the edges parallel with
the Us-axis, this means

∂IRMS
LA,1

∂Us
= 0⇒ Us1 =

√√√√U2
p1 +

(
π2ωLσPn

24Up1

)2

=⇒
∂IRMS

LA,1

∂Up
< 0. (A2)

This means that there are no stationary points on the edge connecting vertices P3
and P4, whereas for a given Lσ, there is a single stationary point on the edge connecting
vertices P1 and P2. For a given Lσ, comparing the value of the current on P2 with the value
of the current on this stationary point reveals that the current value in point P2 is higher
irrespective of the Lσ value. Therefore, there are no stationary points with the potential of
being the global maximum on the edges parallel to the Us-axis. With a similar approach,
it can be shown that there are no stationary points with the potential of being the global
maximum on the edges parallel to the Up-axis. Finally, the only points with the potential to
be the global maximum are the points Pi where i ∈ {1, 2, 3, 4}.

Appendix A.2. Solving Outer Optimization

It is shown that the potential extrema of IRMS
LA,1 subject to constraint (16) are points Pi

where i ∈ {1, 2, 3, 4} (see Figure 5). Therefore, the value of Lσ that minimizes the maximum
value of IRMS

LA,1 on points Pi is the solution to the problem (21). For clarification, Figure A1
shows the phase currents of the MFT on the points Pi as a function of the leakage inductance.
The dashed green curve is the maximum of the currents on the operation domain (shown
in Figure 5). The value of Lσ that minimizes this curve will ensure that the phase currents
in the whole operation domain will be kept to their minimum possible values. To solve
(21), the intersections of the currents at the points Pi and Pj where {i, j} ∈ {1, 2, 3, 4} and
i 6= j are identified. Subsequently, an analytical expression is derived at each identified
interval. The total number of intersections is equal to the number of 2-combinations of
{P1, P2, P3, P4}, which is six.

To get a comprehensible analytical expression for the leakage inductance, it is assumed

that U1,p,M ≈ U1,s,M where U1,p,M and U1,s,M are given in (22). Solving either IRMS
LA,1

∣∣∣
P1

=

IRMS
LA,1

∣∣∣
P4

or IRMS
LA,1

∣∣∣
P3

= IRMS
LA,1

∣∣∣
P4

results in an invalid expression, meaning that there is no

real-valued Lσ satisfying these equations. Similarly, solving IRMS
LA,1

∣∣∣
P2

= IRMS
LA,1

∣∣∣
P4

will result

in Lσ = 0. This means that there is no Lσ ∈ R+ where the currents in the points {P1, P2, P3}
intersect with the current in the point P4. These can also be seen in Figure A1 where there

is no intersection of currents for these points. Likewise, IRMS
LA,1

∣∣∣
P1

= IRMS
LA,1

∣∣∣
P3

results in an

unacceptable solution. On the other hand, there exists Lσ ∈ R+ such that IRMS
LA,1

∣∣∣
P1

= IRMS
LA,1

∣∣∣
P2

or IRMS
LA,1

∣∣∣
P3

= IRMS
LA,1

∣∣∣
P2

. Lσ,opt is calculated by solving these two equations and identifying

the regions where each solution is valid.
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Figure A1. The phase currents of the MFT on the points Pi, i ∈ {1, 2, 3, 4} as a function of the leakage
inductance. The dashed green curve shows the maximum of the currents on the operation domain.
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