Hygrothermal Performance Evaluation of Internally Insulated Historic Stone Building in a Cold Climate
Abstract
:1. Introduction
2. Case Study Building
2.1. Background Information
2.2. Energy Efficiency Measures
- Internal insulation of the building walls on the ground and first floor with 0.15 m of mineral wool and installation of Ruberoid as a vapor barrier between the dolomite and insulation (moisture diffusion resistance equivalent of still air (Sd) = 15 m)
- Insulation of the basement ceiling with 0.25 m of expanded clay;
- Insulation of the roof with 0.30 m of mineral wool;
- Change of windows (U = 1.26 W/m2K);
- Installation of wood boiler and water heating system with radiators;
- Installation of a hot water supply with a heat accumulation tank;
- Installment of cold water supply and sewage system.
2.3. Energy Consumption
3. Research Methodology
3.1. Construction Material Analysis
3.2. Energy Consumption Simulation
- The baseline: the building before both renovations;
- The building with internal insulation on the walls of the ground and 1st floor;
- The building with additional energy-saving measures (insulation of basement ceiling and roof, replacement of windows).
3.3. In Situ Measurements
3.4. Hygrothermal Calculations
4. Results
4.1. Construction Material Analysis
4.2. Energy Consumption
- Poor quality of construction works;
- Inaccurate assumption of indoor temperature and relative humidity;
- An inaccurate pattern of heat gain schedule in the calculation model;
- Inaccurate climatic input data in the model;
- Inaccurate assumptions about the volume and moisture content of firewood;
- Inaccurate assumption of efficiency of the biomass boiler.
4.3. In Situ Measurement Results
4.3.1. Measured Climatic Conditions
4.3.2. Measured Conditions in the Wall
4.4. Hygrothermal Calculation Results
4.4.1. Measured and Simulated Conditions in the Wall
4.4.2. Measured and Simulated Conditions in the Wall
4.4.3. Comparison of Experimental and Hygrothermal Simulation Results
5. Discussions and Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Directive (EU) 2018/844 of the European Parliament and the Council of 30 May 2018 amending Directive 2010/31/EU on the energy performance of buildings and Directive 2012/27/EU on energy efficiency. Off. J. Eur. Union 2018, 156, 75–91.
- European Commission. A Clean Planet for All—A European Strategic Long-Term Vision for a Prosperous, Modern, Competitive and Climate Neutral Economy, COM; European Commission: Brussels, Belgium, 2018. [Google Scholar]
- Factsheet: Energy Performance in Buildings Directive. European Commission, January 2019. Available online: https://ec.europa.eu/energy/content/factsheet-energy-performance-buildings-directive_en?redir=1 (accessed on 2 December 2022).
- Gynther, L.; Lapillonne, B.; Pollier, K. Energy Efficiency Trends and Policies in the Household and Tertiary Sectors—An Analysis Based on the ODYSSEE and MURE Databases. Available online: http://www.odyssee-mure.eu/publications/br/energy-efficiency-trends-policies-buildings.pdf (accessed on 2 December 2022).
- Communication from the Commission: The European Green Deal. Brussels 11.12.2019. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?qid=1576150542719&uri=COM%3A2019%3A640%3AFIN#footnote6 (accessed on 2 December 2022).
- La Fleur, L.; Rodin, P.; Moshfegh, B. Energy renovation versus demolition and construction of a new building—A comparative analysis of a Swedish multi-family building. Energies 2019, 12, 2218. [Google Scholar] [CrossRef] [Green Version]
- Gaspar, P.L.; Santos, A.L. Embodied energy on refurbishment vs. demolition: A southern Europe case study. Energy Build. 2015, 87, 386–394. [Google Scholar] [CrossRef]
- Berg, F.; Fuglseth, M. Life cycle assessment and historic buildings: Energy-efficiency refurbishment versus new construction in Norway. Archit. Conserv. 2018, 24, 152–167. [Google Scholar] [CrossRef] [Green Version]
- Economidou, M.; Laustsen, J.; Ruyssevelt, P.; Staniaszek, D. Europe’s Buildings under the Microscope. Available online: http://bpie.eu/publication/europes-buildings-under-the-microscope/ (accessed on 2 December 2022).
- European Commission, An EU Strategy on Heating and Cooling, COM. 2016. Available online: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=COM:2016:0051:FIN:EN:PDF (accessed on 2 December 2022).
- Mazzarella, L. Energy retrofit of historic and existing buildings. The legislative and regulatory point of view. Energy Build. 2015, 95, 23–31. [Google Scholar] [CrossRef]
- Murgul, V.; Pukhkal, V. Saving the Architectural Appearance of the Historical Buildings due to Heat Insulation of their External Walls. Procedia Eng. 2015, 117, 891–899. [Google Scholar] [CrossRef] [Green Version]
- Claude, S.; Ginestet, S.; Bonhomme, M.; Escadeillas, G.; Taylor, J.; Marincioni, V.; Korolija, I.; Altamirano, H. Evaluating retrofit options in a historical city center: Relevance of bio-based insulation and the need to consider complex urban form in decision-making. Energy Build. 2019, 182, 196–204. [Google Scholar] [CrossRef] [Green Version]
- Johansson, P.B.; Adl-Zarrabi, A.S. Kalagasidis, Evaluation of 5 years’ performance of VIPs in a retrofitted building façade. Energy Build. 2016, 130, 488–494. [Google Scholar] [CrossRef]
- Blumberga, A.; Kašs, K.; Kamendere, E. A review on Latvian historical building stock with heavy walls. Energy Procedia 2016, 95, 17–21. [Google Scholar] [CrossRef] [Green Version]
- Ozel, M. Thermal performance and the optimum insulation thickness of building walls with different structure materials. Appl. Therm. Eng. 2011, 31, 3854–3863. [Google Scholar] [CrossRef]
- Salvalai, G.; Sesana, M.M.; Iannaccone, G. Deep renovation of multi-story multi-owner existing residential buildings: A pilot case study in Italy. Energy Build. 2017, 148, 23–36. [Google Scholar] [CrossRef]
- Pasichnyi, O.; Levin, F.; Shahrokni, H.; Wallin, J.; Kordas, O. Data-driven strategic planning of building energy retrofitting: The case of Stockholm. J. Clean. Prod. 2019, 233, 546–560. [Google Scholar] [CrossRef]
- Belaïd, F.; Ranjbar, Z.; Massié, C. Exploring the cost-effectiveness of energy efficiency implementation measures in the residential sector. Energy Policy 2021, 150, 112112. [Google Scholar] [CrossRef]
- van den Brom, P.; Meijer, A.; Visscher, H. Actual energy saving effects of thermal renovations in dwellings—Longitudinal data analysis including building and occupant characteristics. Energy Build. 2019, 182, 251–263. [Google Scholar] [CrossRef]
- Cholewa, T.; Balaras, C.A.; Nižetić, S.; Siuta-Olcha, A. On calculated and actual energy savings from thermal building renovations—Long term field evaluation of multifamily buildings. Energy Build. 2020, 223, 110–145. [Google Scholar] [CrossRef]
- Walker, R.; Pavía, S. Thermal performance of a selection of insulation materials suitable for historic buildings. Build. Environ. 2015, 94, 155–165. [Google Scholar] [CrossRef]
- Odgaard, T.; Bjarløv, S.P.; Rode, C. Interior insulation—Characterisation of the historic, solid masonry building segment and analysis of the heat saving potential by 1d, 2d, and 3d simulation. Energy Build. 2018, 162, 1–11. [Google Scholar] [CrossRef] [Green Version]
- De Mets, T.; Tilmans, A.; Loncour, X. Hygrothermal assessment of internal insulation systems of brick walls through numerical simulation and full-scale laboratory testing. Energy Procedia 2017, 132, 753–758. [Google Scholar] [CrossRef]
- Vereecken, E.; Van Gelder, L.; Janssen, H.; Roels, S. Interior insulation for wall retrofitting—A probabilistic analysis of energy savings and hygrothermal risks. Energy Build 2015, 89, 231–244. [Google Scholar] [CrossRef] [Green Version]
- Webb, A.L. Energy retrofits in historic and traditional buildings: A review of problems and methods, Renewable and Sustainable. Energy Rev. 2017, 77, 748–759. [Google Scholar]
- Vereecken, E.; Roels, S. A comparison of the hygric performance of interior insulation systems: A hot box–cold box experiment. Energy Build. 2014, 80, 37–44. [Google Scholar] [CrossRef]
- van Aarle, M.; Schellen, H.; van Schijndel, J. Hygro Thermal Simulation to Predict the Risk of Frost Damage in Masonry; Effects of Climate Change. Energy Procedia 2015, 78, 2536–2541. [Google Scholar] [CrossRef]
- Bjarløv, S.P.; Finken, G.R.; Odgaard, T. Retrofit with interior insulation on solid masonry walls in cool temperate climates—An evaluation of the influence of interior insulation materials on moisture condition in the building envelope. Energy Procedia 2015, 78, 1461–1466. [Google Scholar] [CrossRef] [Green Version]
- Zhao, J.; Meissner, F. Experimental investigation of moisture properties of historic building material with hydrophobization treatment. Energy Procedia 2017, 132, 261–266. [Google Scholar] [CrossRef]
- Harrestrup, M.; Svendsen, S. Full-scale test of an old heritage multi-story building undergoing energy retrofitting with focus on internal insulation and moisture. Build. Environ. 2015, 85, 123–133. [Google Scholar] [CrossRef]
- Bottino-Leone, D.; Larcher, M.; Herrera-Avellanosa, D.; Haas, F.; Troi, A. Evaluation of natural-based internal insulation systems in historic buildings through a holistic approach. Energy 2019, 181, 521–531. [Google Scholar] [CrossRef]
- Tijskens, A.; Janssen, H.; Roels, S. A simplified dynamic zone model for a probabilistic assessment of hygrothermal risks in building components hygrothermal risks in building components. Energy Procedia 2017, 132, 717–722. [Google Scholar] [CrossRef]
- Cuce, E.; Cuce, P.M. The impact of internal aerogel retrofitting on the thermal bridges of residential buildings: An experimental and statistical research. Energy Build. 2016, 116, 449–454. [Google Scholar] [CrossRef]
- Cueto, N.D.; Benavente, J.; Martínez-Martínez, M.A. García-del-Cura, Rock fabric, pore geometry and mineralogy effects on water transport in fractured dolostones. Eng. Geol. 2009, 107, 1–15. [Google Scholar] [CrossRef]
- Vázquez, P.; Alonso, F.J.; Carrizo, L.; Molina, E.; Cultrone, G.; Blanco, M.; Zamora, I. Evaluation of the petrophysical properties of sedimentary building stones intostablish quality criteria. Constr. Build. Mater. 2013, 41, 868–878. [Google Scholar] [CrossRef]
- Lucchi, E. Thermal transmittance of historical stone masonries: A comparison among standard, calculated and measured data. Energy Build. 2017, 151, 393–405. [Google Scholar] [CrossRef]
- Varas-Muriel, M.J.; Pérez-Monserrat, E.M.; Vázquez-Calvo, C.; Fort, R. Effect of conservation treatments on heritage stone. CCharacterizationof decay processes in a case study. Constr. Build. Mater. 2015, 95, 611–622. [Google Scholar] [CrossRef]
- Benavente, D.; Martínez-Martínez, J.; Cueto, N.; García-del-Cura, M.A. Salt weathering in dual-porosity building dolostones. Eng. Geol. 2007, 94, 215–226. [Google Scholar] [CrossRef]
- Toman, J.; Vimmrova, A.; Cerny, R. Long-term on-site assessment of the hygrothermal performance of interior thermal insulation system without a watevaporur barrier. Energy Build 2009, 41, 51–55. [Google Scholar] [CrossRef]
- Klošeiko, P.; Arumagi, E.; Kalamees, T. Hygrothermal performance of internally insulated brick wall in a cold climate: A case study in a historic school building. Build. Phys. 2015, 38, 444–464. [Google Scholar] [CrossRef]
- Wójcik, R.; Kosiński, P. On the rehabilitation of buildings with historical facades On the rehabilitation of buildings with historical façades. Energy Procedia 2017, 132, 927–932. [Google Scholar]
- Hansen, T.K.; Bjarløv, S.P.; Peuhkuri, R.H.; Harrestrup, M. Long term in situ measurements of hygrothermal conditions at critical points in four cases of internally insulated historic solid masonry walls. Energy Build. 2018, 172, 235–248. [Google Scholar] [CrossRef]
- Biseniece, E.; Žogla, G.; Kamenders, A.; Purviņš, R.; Kašs, K.; Vanga, R.; Blumberga, A. Thermal performance of internally insulated historic brick building in cold climate: A long term case study. Energy Build. 2017, 152, 577–586. [Google Scholar] [CrossRef]
- Hodireva, V.; Sidraba, I.; Purviņš, E. Augšdevona dolomīta litoloģiski morfoloģiskie tipi Rīgas Kultūrvēsturiskajos pieminekļos [Lithological morphological types of Upper Devonian dolomite in Riga Cultural Heritage Monuments]. Mater. Sci. Appl. Chem. 2010, 22, 105–113. [Google Scholar]
- Simulation Tool DELPHIN. Available online: http://bauklimatik-dresden.de/delphin/index.php?aLa=en (accessed on 4 December 2022).
- EN 772-13:2000; Methods of Test for Masonry Units. Determination of Net and Gross Dry Density of Masonry Units (Except for Natural Stone). BSI: London, UK, 2000.
- EN 772-3:1998; Methods of Test for Masonry Units. Determination of Net Volume and Percentage of Voids of Clay Masonry Units by Hydrostatic Weighing. BSI: London, UK, 1998.
- EN ISO 12572:2001; Hygrothermal Performance of Building Materials and Products—Determination of Water Vapour Transmission Properties. ISO: Geneva, Switzerland, 2001.
- EN ISO 12571:2013; Hygrothermal Performance of Building Materials and Products—Determination of Hygroscopic Sorption Properties. ISO: Geneva, Switzerland, 2013.
- ISO 15148:2002; Hygrothermal Performance of Building Materials and Products—Determination of Wa ter Absorption Coefficient by Partial Immersion. ISO: Geneva, Switzerland, 2002.
- Project RIBuild. Available online: https://www.ribuild.eu/research-measurements/#10 (accessed on 4 December 2022).
- Project RIBuild Deliverable D2.1 Report on the Material Properties. 2018. Available online: https://static1.squarespace.com/static/5e8c2889b5462512e400d1e2/t/5e9db81f43530a16d2f3fecf/1587394609561/RIBuild_D2.1_v1.0.pdf (accessed on 2 December 2022).
- Simulation tool TRNSYS. Available online: http://www.trnsys.com (accessed on 4 December 2022).
- EN ISO 13790:2008; Energy Performance of Buildings—Calculation of Energy Use for Space Heating and Cooling. ISO: Geneva, Switzerland, 2008.
- State limited Liability Company Latvian Environment, Geology and Meteorology Centre. Available online: https://meteo.lv/meteorologija-datu-meklesana/?nid=461 (accessed on 2 December 2022).
- Purviņš, R.; Kamendere, E.; Blumberga, A. Laboratory investigation of Latvian historic brick and measurements of water movement in historic masonry walls. Energy Procedia 2017, 113, 327–332. [Google Scholar] [CrossRef]
- Kamendere, E.; Grava, L.; Zvaigznitis, K.; Kamenders, A.; Blumberga, A. Properties of bricks and masonry of historical buildings as a background for safe renovation measures. Energy Procedia 2016, 95, 119–123. [Google Scholar] [CrossRef] [Green Version]
- Robertu, F.; Oberegger, U.F.; Gasparella, A. Calibrating historic building energy models to hourly indoor air and surface temperatures: Methodology and case study. Energy Build. 2015, 108, 236–243. [Google Scholar] [CrossRef] [Green Version]
- Coelho, G.B.A.; Silva, H.E.; Henriques, F.M.A. Calibrated hygrothermal simulation models for historical buildings. Build. Environ. 2018, 142, 439–450. [Google Scholar] [CrossRef]
- Biseniece, E.; Freimanis, R.; Purviņš, R.; Graveslins, A.; Pumpurs, A.; Blumberga, A. Study of Hygrothermal Processes in External Walls with Internal Insulation. Environ. Clim. Technol. 2018, 22, 22–41. [Google Scholar] [CrossRef]
- Isaksson, T.; Thelandersson, S.; Ekstrand-Tobin, A.; Johansson, P. Critical conditions for onset of mould growth under varying climate conditions. Build. Environ. 2010, 45, 1712–1721. [Google Scholar] [CrossRef]
- Litti, G.; Khoshdel, S.; Audenaert, A.; Braet, J. Hygrothermal performance evaluation of traditional brick masonry in historic buildings. Energy Build. 2015, 105, 393–411. [Google Scholar] [CrossRef]
Material | Thickness (mm) | Thermal Conductivity (λ, W/mK) | Density (kg/m3) | Area (m2) | Heat Transfer Coefficient (U, W/m2K) |
---|---|---|---|---|---|
Dolomite | 600 | 2.2 | 2400 | 149.54 | 0.208 |
Existing plaster | 20 | 0.87 | 1800 | ||
Mineral wool | 200 | 0.035 | 60 | ||
Vapor barrier | |||||
Plasterboard | 12.5 | 0.21 | 680 | ||
Interior decoration |
Material | Thickness (mm) | Thermal Conductivity (λ, W/mK) | Density (kg/m3) | Area (m2) | Heat Transfer Coefficient (U, W/m2K) |
---|---|---|---|---|---|
Dolomite | 600 | 2.2 | 2400 | 149.54 | 0.211 |
Existing plaster | 20 | 0.87 | 1800 | ||
Mineral wool | 150 | 0.035 | 60 | ||
Vapor barrier | |||||
Plasterboard | 12.5 | 0.21 | 680 | ||
Interior decoration—painted wallpaper |
Material | Thickness (mm) | Thermal Conductivity (λ, W/mK) | Density (kg/m3) | Area (m2) | Heat Transfer Coefficient (U, W/m2K) |
---|---|---|---|---|---|
Dolomite | 450 | 2.2 | 2400 | 29.62 | 0.212 |
Existing plaster | 20 | 0.87 | 1800 | ||
Mineral wool | 150 | 0.035 | 60 | ||
Vapor barrier | |||||
Plasterboard | 12.5 | 0.21 | 680 | ||
Interior decoration—painted wallpaper |
Material | Thickness (mm) | Thermal Conductivity (λ, W/mK) | Density (kg/m3) | Area (m2) | Heat Transfer Coefficient (U, W/m2K) |
---|---|---|---|---|---|
Wood planks | 25 | 0.2 | 22.78 | 0.215 | |
Mineral wool | 150 | 0.035 | 60 | ||
Vapor barrier | |||||
Plasterboard | 12.5 | 0.21 | 680 | ||
Interior decoration—painted wallpaper |
Name of the Material Property | Name of the Corresponding Experiment |
---|---|
Bulk density | Via dimensions and weight of the sample [41] |
Open porosity | Calculated from density [48,52] |
Thermal conductivity | Heat flux measurement (plate apparatus) [52] |
Heat storage capacity | Calorimeter experiment [52] |
Dry-cup vapor diffusion | µ dry-cup measurement [49] |
Wet-cup vapor diffusion | µ wet-cup measurement [49] |
Water uptake coefficient | Water uptake experiment [51] |
Capillary saturation moisture content | The final value of the water uptake experiment [52] |
Sorption moisture content | Exicator/desiccator [52] |
Orientation | Heat Transfer Coefficient U, W/m2K | |||||
---|---|---|---|---|---|---|
North | East | West | South | Before Renovation | After Renovation | |
Facade walls (m2) | ||||||
Basement | 9.14 | 18.9 | - | 5.08 | 2.259 | 2.259 |
Basement in contact with soil | - | 15.12 | 34.02 | 4.06 | ||
Ground floor | 32.4 | 56.7 | 56.7 | 32.4 | 2.147 | 0.208 |
1st floor (3rd type) | 17.28 | - | - | 17.28 | 2.515 | 0.211 |
1st floor (4th type) | 4.32 | 8.47 | 8.47 | 4.32 | - | 0.215 |
Windows (m2) | ||||||
Basement | - | 1.68 | - | 1.12 | 2.83 | 2.83 |
Ground floor | 1.68 | 8.4 | 8.4 | 3.36 | 2.83 | 1.26 |
1st floor (3rd type) | 2.47 | - | - | 2.47 | 2.83 | 1.26 |
1st floor (4th type) | - | 1.24 | 1.57 | - | - | 1.26 |
Doors (m2) | ||||||
Basement | 1.44 | - | - | - | 2.83 | 2.83 |
Ground floor | 1.98 | 1.98 | 2.86 | - | 2.83 | 2.83 |
Floor area on the ground | 108.11 | 2.395 | 2.395 | |||
Basement ceiling | 96.01 | 0.668 | 0.34 | |||
Roof area | - | 141.4 | 141.4 | - | 1.087 | 0.110 |
Name of the Material Property | Symbol (Unit) | Mean Value | Standard Deviation | Min Value | Max Value | Coefficient of Variance |
---|---|---|---|---|---|---|
Bulk density | ρb () | 2346.5 | 447.8 | 1696.8 | 2949.5 | 0.191 |
Open porosity | Θpor () | 0.1602 | 0.0224 | 0.1299 | 0.2008 | 0.140 |
Thermal conductivity | λdry (W/mK) | 2.0478 | 0.0108 | 2.0362 | 2.0574 | 0.005 |
Heat storage capacity | c (J/kgK) | 779.2842 | 5.1457 | 774.3023 | 784.5794 | 0.007 |
Dry-cup vapor diffusion | μdry (-) | 44.14 | 29.18 | 26.67 | 77.83 | 0.661 |
Wet-cup vapour diffusion | μwet (-) | 2113.88 | 943.36 | 1192.82 | 3078.06 | 0.446 |
Water uptake coefficient | Aw () | 0.0599 | 0.0110 | 0.0477 | 0.0691 | 0.184 |
Capillary saturation moisture content | Θcap () | 0.1079 |
RH (%) | t (°C) | Θl (φ) (m3/m3) | |||
---|---|---|---|---|---|
Mean Value | Standard Deviation | Min Value | Max Value | ||
84.7 | 23 | 0.009524 | 0.000570 | 0.008907 | 0.01026 |
53.5 | 23 | 0.004830 | 0.000284 | 0.004553 | 0.00514 |
32.9 | 23 | 0.001787 | 0.003670 | −9.982 × 10−5 | 0.00926 |
Temperature, °C | Relative Humidity, % | |
---|---|---|
Indoor | 20 | 50 |
Outdoor | 0 | 80 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Blumberga, A.; Freimanis, R.; Biseniece, E.; Kamenders, A. Hygrothermal Performance Evaluation of Internally Insulated Historic Stone Building in a Cold Climate. Energies 2023, 16, 866. https://doi.org/10.3390/en16020866
Blumberga A, Freimanis R, Biseniece E, Kamenders A. Hygrothermal Performance Evaluation of Internally Insulated Historic Stone Building in a Cold Climate. Energies. 2023; 16(2):866. https://doi.org/10.3390/en16020866
Chicago/Turabian StyleBlumberga, Andra, Ritvars Freimanis, Edite Biseniece, and Agris Kamenders. 2023. "Hygrothermal Performance Evaluation of Internally Insulated Historic Stone Building in a Cold Climate" Energies 16, no. 2: 866. https://doi.org/10.3390/en16020866
APA StyleBlumberga, A., Freimanis, R., Biseniece, E., & Kamenders, A. (2023). Hygrothermal Performance Evaluation of Internally Insulated Historic Stone Building in a Cold Climate. Energies, 16(2), 866. https://doi.org/10.3390/en16020866