A Day-Ahead Short-Term Load Forecasting Using M5P Machine Learning Algorithm along with Elitist Genetic Algorithm (EGA) and Random Forest-Based Hybrid Feature Selection
Abstract
:1. Introduction
- Proposal of a novel HFS employing an EGA and random forest method for FS meant for the load forecasting problem;
- Implementation of the M5P forecaster with FS and WoFS to analyze the short-term load forecasts for the Australian electricity markets;
- Application of confidence interval to fix the margins of error in the forecasted load;
- Drawing certain insights on the number as well as type of features that affect the load in different seasons;
- Comparing the performance of the proposed forecaster (with FS and WoFS) to the performance of forecasters based on J48 and Bagging.
2. Methodology Adopted for Comparison of Forecasts with FS and WoFS
3. STLF Using M5P Forecaster Model
4. Input Feature Selection Using the Proposed HFS Algorithm
5. Results and Discussions
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
AEMO | Australian Energy Market Operator |
ANN | Artificial Neural Network |
ARMA | Auto Regressive Moving Average |
CLC | Closed Loop Clustering |
CNN | Convolutional Neural Network |
DE | Differential Evolution |
DRBFNNs | Decay Radial-Basis Function Neural Networks |
DRM | Dynamic Regression Model |
ELM | Extreme Learning Machine |
EGA | Elitist Genetic Algorithm |
EV | Error Variance |
FCV | Fold Cross-Validation |
FS | Feature Selection |
GA | Genetic Algorithm |
GENCOs | Generation Companies |
HFS | Hybrid Feature Selection |
HWT | Holt Winters Taylor |
IEMD | Improved Empirical Mode Decomposition |
IFS | In Function Systems |
LM | Levenberg Marquardt |
LR | Lasso Regression |
LSTM | Long Short Term Memory |
MABC | Multi-Species Artificial Bee Colony |
MAE | Mean Absolute Error |
MAPE | Mean Absolute Percentage Error |
MLP | Multi Layer Perception |
ML | Machine Learning |
NSW | New South Wales |
RMSE | Root-Mean Square Error |
SDR | Standard Deviation Reduction |
STLF | Short-Term Load Forecasting |
SVD | Singular Value Decomposition |
SVR | Support Vector Regression |
SVM | Support Vector Machine |
WoFS | Without Features Selection |
WT | Wavelet Transform |
10-FCV | 10 Fold Cross Validation |
References
- Muratori, M.; Rizzoni, G. Residential demand response: Dynamic energy management and time-varying electricity pricing. IEEE Trans. Power Syst. 2016, 31, 1108–1117. [Google Scholar] [CrossRef]
- Bunn, D.W. Forecasting loads and prices in competitive powermarkets. Proc. IEEE 2000, 88, 163–169. [Google Scholar] [CrossRef]
- Voronin, S.; Partanen, J. A Hybrid electricity price forecasting model for the Finnish electricity spot market. In Proceedings of the 32st Annual International Symposium on Forecasting, Boston, MA, USA, 24–27 June 2012. [Google Scholar]
- Yun, Z.; Quan, Z.; Caixin, S.; Shaolan, L.; Yuming, L.; Yang, S. RBF neural network and ANFIS-based short-term load forecasting approach in real-time price environment. IEEE Trans. Power Syst. 2008, 23, 853–858. [Google Scholar]
- Mund, C.; Rathore, S.K.; Sahoo, R.K. A review of solar air collectors about various modifications for performance enhancement. Sol. Energy 2021, 228, 140–167. [Google Scholar] [CrossRef]
- Sobhani, M.; Campbell, A.; Sangamwar, S.; Li, C.; Hong, T. Combining weather stations for electric load forecasting. Energies 2019, 12, 1510. [Google Scholar] [CrossRef] [Green Version]
- Melissa, D.; Binita, K.; Colin, C.I. Extreme Weather and Climate Vulnerabilities of the Electric Grid: A Summary of Environmental Sensitivity Quantification Methods; No. ORNL/TM-2019/1252; Oak Ridge National Lab. (ORNL): Oak Ridge, TN, USA, 2019. [Google Scholar]
- Dar-Mousa, R.N.; Makhamreh, Z. Analysis of the pattern of energy consumptions and its impact on urban environmental sustainability in Jordan: Amman City as a case study. Energy Sustain. Soc. 2019, 9, 15. [Google Scholar] [CrossRef] [Green Version]
- Tso, G.K.; Yau, K.K. Predicting electricity energy consumption: A comparison of regression analysis, decision tree and neural networks. Energy 2007, 32, 1761–1768. [Google Scholar] [CrossRef]
- Alghandoor, A.; Phelan, P.; Villalobos, R.; Phelan, B. US manufacturing aggregate energy intensity decomposition: The application of multivariate regression analysis. Int. J. Energy Res. 2008, 32, 91–106. [Google Scholar] [CrossRef]
- Zaza, F.; Paoletti, C.; LoPresti, R.; Simonetti, E.; Pasquali, M. Multiple regression analysis of hydrogen sulphide poisoning in molten carbonate fuel cells used for waste-to-energy conversions. Int. J. Hydrogen Energy 2011, 36, 8119–8125. [Google Scholar] [CrossRef]
- Kumar, U.; Jain, V. Time series models (Grey-Markov, Grey Model with rolling mechanism and singular spectrum analysis) to forecast energy consumption in India. Energy 2010, 35, 1709–1716. [Google Scholar] [CrossRef]
- Rumbayan, M.; Abudureyimu, A.; Nagasaka, K. Mapping of solar energy potential in Indonesia using artificial neural network and geographical information system. Renew. Sustain. Energy Rev. 2012, 16, 1437–1449. [Google Scholar] [CrossRef]
- Matallanas, E.; Castillo-Cagigal, M.; Gutiérrez, A.; Monasterio-Huelin, F.; Caamaño-Martín, E.; Masa, D.; Jiménez-Leube, J. Neural network controller for active demand-side management with PV energy in the residential sector. Appl. Energy 2012, 91, 90–97. [Google Scholar] [CrossRef] [Green Version]
- Cheong, C.W. Parametric and non-parametric approaches in evaluating martingale hypothesis of energy spot markets. Math. Comput. Model. 2011, 54, 1499–1509. [Google Scholar] [CrossRef]
- Wesseh, P.K., Jr.; Zoumara, B. Causal independence between energy consumption and economic growth in Liberia: Evidence from a non-parametric bootstrapped causality test. Energy Policy 2012, 50, 518–527. [Google Scholar] [CrossRef]
- Grzegorz, D. Pattern-based local linear regression models for short-term load forecasting. Electr. Power Syst. Res. 2016, 130, 139–147. [Google Scholar]
- Cecati, C.; Kolbusz, J.; Rozycki, P.; Siano, P.; Wilamowski, B.M. A Novel RBF Training Algorithm for Short-Term Electric Load Forecasting and Comparative Studies. IEEE Trans. Ind. Electron. 2015, 62, 6519–6529. [Google Scholar] [CrossRef]
- Zhai, M.-Y. A new method for short-term load forecasting based on fractal interpretation and wavelet analysis. Int. J. Electr. Power Energy Syst. 2015, 69, 241–245. [Google Scholar] [CrossRef]
- Arora, S.; Taylor, J.W. Short-Term Forecasting of Anomalous Load Using Rule-Based Triple Seasonal Methods. IEEE Trans. Power Syst. 2013, 28, 3235–3242. [Google Scholar] [CrossRef] [Green Version]
- Zeng, P.; Jin, M.; Elahe, M.F. Short-Term Power Load Forecasting Based on Cross Multi-Model and Second Decision Mechanism. IEEE Access 2020, 8, 184061–184072. [Google Scholar] [CrossRef]
- Nose-Filho, K.; Lotufo, A.D.P.; Minussi, C.R. Short-Term Multinodal Load Forecasting Using a Modified General Regression Neural Network. IEEE Trans. Power Deliv. 2011, 26, 2862–2869. [Google Scholar] [CrossRef]
- Zhang, C.; Li, R. A Novel Closed-Loop Clustering Algorithm for Hierarchical Load Forecasting. IEEE Trans. Smart Grid 2021, 12, 432–441. [Google Scholar] [CrossRef]
- Rafi, S.H.; Nahid-Al-Masood; Deeba, S.R.; Hossain, E. A Short-Term Load Forecasting Method Using Integrated CNN and LSTM Network. IEEE Access 2021, 9, 32436–32448. [Google Scholar] [CrossRef]
- Song, L.; Peng, W.; Lalit, G. Short-term load forecasting by wavelet transform and evolutionary extreme learning machine. Electr. Power Syst. Res. 2015, 122, 96–103. [Google Scholar]
- Kouhi, S.; Keynia, F.; Ravadanegh, S.N. A new short-term load forecast method based on neuro-evolutionary algorithm and chaotic feature selection. Int. J. Electr. Power Energy Syst. 2014, 62, 862–867. [Google Scholar] [CrossRef]
- Ungureanu, S.; Topa, V.; Cziker, A.C. Analysis for Non-Residential Short-Term Load Forecasting Using Machine Learning and Statistical Methods with Financial Impact on the Power Market. Energies 2021, 14, 6966. [Google Scholar] [CrossRef]
- Luo, J.; Hong, T.; Yue, M. Real-time anomaly detection for very short-term load forecasting. J. Mod. Power Syst. Clean Energy 2018, 6, 235–243. [Google Scholar] [CrossRef] [Green Version]
- Jiao, R.; Zhang, T.; Jiang, Y.; He, H. Short-term non-residential load forecasting based on multiple sequences LSTM recurrent neural network. IEEE Access 2018, 6, 59438–59448. [Google Scholar] [CrossRef]
- Haq, M.R.; Ni, Z. A new hybrid model for short-term electricity load forecasting. IEEE Access 2019, 7, 125413–125423. [Google Scholar] [CrossRef]
- Deng, Z.; Wang, B.; Xu, Y.; Xu, T.; Liu, C.; Zhu, Z. Multi-scale convolutional neural network with time-cognition for multi-step short-term load forecasting. IEEE Access 2019, 7, 88058–88071. [Google Scholar] [CrossRef]
- Hong, Y.; Zhou, Y.; Li, Q.; Xu, W.; Zheng, X. A deep learning method for short-term residential load forecasting in smart grid. IEEE Access 2020, 8, 55785–55797. [Google Scholar] [CrossRef]
- Ahmad, W.; Ayub, N.; Ali, T.; Irfan, M.; Awais, M.; Shiraz, M.; Glowacz, A. Towards short term electricity load forecasting using improved support vector machine and extreme learning machine. Energies 2020, 13, 2907. [Google Scholar] [CrossRef]
- Pei, S.; Qin, H.; Yao, L.; Liu, Y.; Wang, C.; Zhou, J. Multi-step ahead short-term load forecasting using hybrid feature selection and improved long short-term memory network. Energies 2020, 13, 4121. [Google Scholar] [CrossRef]
- Xuan, Y.; Si, W.; Zhu, J.; Sun, Z.; Zhao, J.; Xu, M.; Xu, S. Multi-model fusion short-term load forecasting based on random forest feature selection and hybrid neural network. IEEE Access 2021, 9, 69002–69009. [Google Scholar] [CrossRef]
- Ijaz, K.; Hussain, Z.; Ahmad, J.; Ali, S.F.; Adnan, M.; Khosa, I. A Novel Temporal Feature Selection Based LSTM Model for Electrical Short-Term Load Forecasting. IEEE Access 2022, 10, 82596–82613. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, N.; Zhang, Z.; Chen, Y. Electric Power Load Forecasting Method Based on a Support Vector Machine Optimized by the Improved Seagull Optimization Algorithm. Energies 2022, 15, 9197. [Google Scholar] [CrossRef]
- Liu, M.; Qin, H.; Cao, R.; Deng, S. Short-Term Load Forecasting Based on Improved TCN and DenseNet. IEEE Access 2022, 10, 115945–115957. [Google Scholar] [CrossRef]
- Yi, H.S.; Lee, B.; Park, S.; Kwak, K.C.; An, K.G. Prediction of short-term algal bloom using the M5P model-tree and extreme learning machine. Environ. Eng. Res. 2019, 24, 404–411. [Google Scholar] [CrossRef]
- Kisi, O.; Shiri, J.; Demir, V. Hydrological time series forecasting using three different heuristic regression techniques. In Handbook of Neural Computation; Academic Press: Cambridge, MA, USA, 2017; pp. 45–65. [Google Scholar]
- Srivastava, A.K.; Pandey, A.S.; Elavarasan, R.M.; Subramaniam, U.; Mekhilef, S.; Mihet-Popa, L. A Novel Hybrid Feature Selection Method for Day-Ahead Electricity Price Forecasting. Energies 2021, 14, 8455. [Google Scholar] [CrossRef]
- Dudek, G. A Comprehensive Study of Random Forest for Short-Term Load Forecasting. Energies 2022, 15, 7547. [Google Scholar] [CrossRef]
Sr. No. | Year | Author [Ref.] | Methodology Used | Feature Selection | Perforemnce Measure | |||
---|---|---|---|---|---|---|---|---|
MAPE | MAE | RMSE | EV | |||||
1. | 2018 | Luo et al. [28] | Dynamic Regression Model (DRM)-based detection method | No | √ | X | X | X |
2. | 2018 | Jiao et al. [29] | Multiple Sequence LSTM Recurrent Neural Network | No | √ | √ | √ | X |
3. | 2019 | Haq et al. [30] | T-Copula-IEMD-DBN Method | No | √ | X | √ | X |
4. | 2019 | Deng et al. [31] | TCMS-CNN Algorithm | Yes | √ | √ | √ | X |
5. | 2020 | Hong et al. [32] | Iterative Resblocks-Based Deep Neural Network (IRBDNN) | No | √ | √ | √ | X |
6. | 2020 | Ahmad et al. [33] | SVM-GS, ELM-GA | Yes | √ | √ | √ | X |
7. | 2020 | Pei et al. [34] | ILSTM network | Yes | √ | √ | √ | X |
8. | 2021 | Rafi et al. [24] | CNN-LSTM-based hybrid Network | Yes | √ | √ | √ | √ |
9. | 2021 | Ungureanu et al. [27] | LSTM, LSTMed, GRU, CNN-LSTM | Yes | √ | √ | √ | X |
10. | 2021 | Xuan et al. [35] | CNN-BiGRU Algorithm | Yes | √ | X | √ | X |
11. | 2022 | Ijaz et al. [36] | Artificial Neural Network (ANN) layer and LSTM | Yes | √ | √ | √ | X |
12. | 2022 | Zhang et al. [37] | Improved Seagull Optimization Algorithm and SVM (ISOA-SVM) Method | No | √ | √ | √ | X |
13. | 2022 | Liu et al. [38] | DenseNet-iTCN) | Yes | √ | √ | √ | √ |
Class of Input Feature | Timing of Input Feature | Name of Input Feature |
---|---|---|
Load (Ld) | Ld(K-00.30) | Ld1 |
Ld(K-01:00) | Ld2 | |
Ld(K-01:30) | Ld3 | |
Ld(K-24:00) | Ld4 | |
Ld(K-23:30) | Ld5 | |
Ld(K-23:00) | Ld6 | |
Wind speed (Ws) | Ws(K-00.30) | Ws1 |
Ws(K-01:00) | Ws2 | |
Ws(K-01:30) | Ws3 | |
Ws(K-24:00) | Ws4 | |
Ws(K-23:30) | Ws5 | |
Ws(K-23:00) | Ws6 | |
Temperature (Tem) | Tem(K-00.30) | Tem1 |
Tem(K-01:00) | Tem2 | |
Tem(K-01:30) | Tem3 | |
Tem(K-24:00) | Tem4 | |
Tem(K-23:30) | Tem5 | |
Tem(K-23:00) | Tem6 | |
Humidity (Hy) | Hy(K-00.30) | Hy1 |
Hy(K-01:00) | Hy2 | |
Hy(K-01:30) | Hy3 | |
Hy(K-24:00) | Hy4 | |
Hy(K-23:30) | Hy5 | |
Hy(K-23:00) | Hy6 | |
Hour timing (HTo) | HTo(K-00.00) | HTo |
Name of Input Feature | Number of Times Input Feature Selected | Name of Input Feature | Number of Times Input Feature Selected |
---|---|---|---|
Ld6 | 17 | Tem6 | 11 |
Ld5 | 12 | Tem5 | 08 |
Ld4 | 12 | Tem4 | 12 |
Ld3 | 22 | Tem3 | 18 |
Ld2 | 29 | Tem2 | 12 |
Ld1 | 36 | Tem1 | 13 |
Ws6 | 02 | Hy6 | 07 |
Ws5 | 07 | Hy5 | 10 |
Ws4 | 09 | Hy4 | 12 |
Ws3 | 12 | Hy3 | 12 |
Ws2 | 11 | Hy2 | 14 |
Ws1 | 07 | Hy1 | 12 |
HTo | 36 |
Name of Input Feature | Summer | Winter | Spring |
---|---|---|---|
Ld6 | 06 | 06 | 05 |
Ld5 | 03 | 03 | 06 |
Ld4 | 03 | 03 | 06 |
Ld3 | 06 | 07 | 09 |
Ld2 | 09 | 09 | 11 |
Ld1 | 12 | 12 | 12 |
Ws6 | 00 | 01 | 01 |
Ws5 | 03 | 04 | 00 |
Ws4 | 02 | 05 | 02 |
Ws3 | 02 | 06 | 04 |
Ws2 | 03 | 07 | 01 |
Ws1 | 02 | 02 | 03 |
Tem6 | 03 | 03 | 05 |
Tem5 | 02 | 05 | 01 |
Tem4 | 04 | 06 | 02 |
Tem3 | 08 | 06 | 04 |
Tem2 | 02 | 05 | 05 |
Tem1 | 06 | 02 | 05 |
Hy6 | 01 | 04 | 02 |
Hy5 | 03 | 02 | 05 |
Hy4 | 05 | 04 | 03 |
Hy3 | 04 | 05 | 03 |
Hy2 | 06 | 05 | 03 |
Hy1 | 02 | 06 | 04 |
HTo | 12 | 12 | 12 |
Sr. No. | Methodology | Name of Performance Measures | Season | Mean | ||
---|---|---|---|---|---|---|
Winter (1–7 August 2015) | Spring (1–7 September 2015) | Summer (1–7 February 2016) | ||||
1 | J48 | MAPE | 1.66 | 1.82 | 1.42 | 1.63 |
J48 + FS | 1.37 | 1.53 | 0.95 | 1.28 | ||
Bagging | 1.21 | 0.98 | 0.83 | 1.01 | ||
Bagging + FS | 1.16 | 0.93 | 0.80 | 0.96 | ||
M5P | 1.07 | 0.99 | 0.64 | 0.90 | ||
M5P + FS | 0.67 | 0.70 | 0.61 | 0.66 | ||
2 | J48 | MAE | 147.39 | 138.43 | 108.40 | 131.41 |
J48 + FS | 120.43 | 114.05 | 73.79 | 102.76 | ||
Bagging | 106.51 | 78.28 | 64.05 | 82.95 | ||
Bagging + FS | 102.43 | 74.52 | 62.02 | 79.66 | ||
M5P | 93.73 | 80.15 | 49.50 | 74.46 | ||
M5P + FS | 56.54 | 55.42 | 47.76 | 53.24 | ||
3 | J48 | RMSE | 215.63 | 221.77 | 140.64 | 192.68 |
J48 + FS | 190.14 | 164.95 | 95.13 | 150.07 | ||
Bagging | 151.66 | 108.72 | 81.76 | 114.05 | ||
Bagging + FS | 147.97 | 100.75 | 78.41 | 109.04 | ||
M5P | 131.17 | 107.06 | 63.91 | 100.71 | ||
M5P + FS | 73.00 | 73.75 | 60.33 | 69.03 | ||
4 | J48 | EV | 0.00033 | 0.00055 | 0.00013 | 0.00034 |
J48 + FS | 0.00029 | 0.00026 | 0.00006 | 0.00020 | ||
Bagging | 0.00016 | 0.00009 | 0.00004 | 0.00010 | ||
Bagging + FS | 0.00015 | 0.00007 | 0.00004 | 0.00009 | ||
M5P | 0.00011 | 0.00008 | 0.00003 | 0.00007 | ||
M5P + FS | 0.00003 | 0.00004 | 0.00002 | 0.00003 |
Sr. No. | Methodology | Mean MAPE | Percentage Improvement (%) |
---|---|---|---|
1. | M5P +FS | 0.66 | - |
2. | J48 | 1.63 | 59.51 |
3. | J48 + FS | 1.28 | 48.44 |
4. | Bagging | 1.01 | 34.65 |
5. | Bagging + FS | 0.96 | 31.25 |
6. | M5P | 0.90 | 26.67 |
Sr. No. | Methodology | Mean MAE | Percentage Improvement (%) |
1. | M5P +FS | 53.24 | - |
2. | J48 | 131.41 | 59.48 |
3. | J48 + FS | 102.76 | 48.19 |
4. | Bagging | 82.95 | 35.81 |
5. | Bagging + FS | 79.66 | 33.16 |
6. | M5P | 74.46 | 28.50 |
Sr. No. | Methodology | Mean RMSE | Percentage Improvement (%) |
1. | M5P +FS | 69.03 | - |
2. | J48 | 192.68 | 64.18 |
3. | J48 + FS | 150.07 | 54.01 |
4. | Bagging | 114.05 | 39.48 |
5. | Bagging + FS | 109.04 | 36.70 |
6. | M5P | 100.71 | 31.46 |
Sr. No. | (1–7 Aug 2015) Winter | (1–7 Sep 2015) Spring | (1–7 Feb 2016) Summer | |||
---|---|---|---|---|---|---|
M5P | M5P + FS | M5P | M5P + FS | M5P | M5P + FS | |
1 | 0.95 | 0.69 | 1.12 | 0.53 | 0.66 | 0.63 |
2 | 1.60 | 0.92 | 0.98 | 0.54 | 0.61 | 0.54 |
3 | 1.26 | 0.94 | 1.00 | 0.66 | 0.48 | 0.49 |
4 | 0.92 | 0.60 | 0.92 | 0.60 | 0.58 | 0.63 |
5 | 1.09 | 0.58 | 0.80 | 0.71 | 0.71 | 0.65 |
6 | 0.90 | 0.48 | 0.83 | 0.82 | 0.65 | 0.61 |
7 | 0.79 | 0.46 | 1.26 | 1.07 | 0.75 | 0.73 |
5.25 | 1.07 | 0.67 | 0.99 | 0.70 | 0.64 |
Sr. No. | Duration | Methodology | MAPE |
---|---|---|---|
1 | 1–7 December 2015 | Random Forest [42] | 1.02 |
2 | Proposed Algorithm (M5P + FS) | 0.70 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Srivastava, A.K.; Pandey, A.S.; Houran, M.A.; Kumar, V.; Kumar, D.; Tripathi, S.M.; Gangatharan, S.; Elavarasan, R.M. A Day-Ahead Short-Term Load Forecasting Using M5P Machine Learning Algorithm along with Elitist Genetic Algorithm (EGA) and Random Forest-Based Hybrid Feature Selection. Energies 2023, 16, 867. https://doi.org/10.3390/en16020867
Srivastava AK, Pandey AS, Houran MA, Kumar V, Kumar D, Tripathi SM, Gangatharan S, Elavarasan RM. A Day-Ahead Short-Term Load Forecasting Using M5P Machine Learning Algorithm along with Elitist Genetic Algorithm (EGA) and Random Forest-Based Hybrid Feature Selection. Energies. 2023; 16(2):867. https://doi.org/10.3390/en16020867
Chicago/Turabian StyleSrivastava, Ankit Kumar, Ajay Shekhar Pandey, Mohamad Abou Houran, Varun Kumar, Dinesh Kumar, Saurabh Mani Tripathi, Sivasankar Gangatharan, and Rajvikram Madurai Elavarasan. 2023. "A Day-Ahead Short-Term Load Forecasting Using M5P Machine Learning Algorithm along with Elitist Genetic Algorithm (EGA) and Random Forest-Based Hybrid Feature Selection" Energies 16, no. 2: 867. https://doi.org/10.3390/en16020867
APA StyleSrivastava, A. K., Pandey, A. S., Houran, M. A., Kumar, V., Kumar, D., Tripathi, S. M., Gangatharan, S., & Elavarasan, R. M. (2023). A Day-Ahead Short-Term Load Forecasting Using M5P Machine Learning Algorithm along with Elitist Genetic Algorithm (EGA) and Random Forest-Based Hybrid Feature Selection. Energies, 16(2), 867. https://doi.org/10.3390/en16020867