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Abstract: The efficiency of rim-driven thrusters (RDT) has always been the focus of attention in
the context of energy conservation and environmental protection. A multi-parameter collaborative
optimization framework is proposed to improve the efficiency of RDT based on the response surface
method (RSM). The common structural parameters of RDT, including pitch ratio, disk ratio and rake
angle, are selected as design variables to carry out the Box–Behnken experimental design combined
with the simulation data obtained through CFD calculations. The response surface second-order
model is employed to evaluate the extent to which different parameters can affect the target variable
and obtain the optimal hydraulic efficiency. The results show that the established model has high
precision, good reproducibility and strong anti-interference ability. The influence of the pitch ratio,
rake angle and disk ratio on open water efficiency decreases in sequence. Compared with the
prototype RDT, the maximum efficiency of the optimized RDT is increased by 13.8%, and the surface
pressure distribution and flow field characteristics are also significantly modified.

Keywords: rim-driven thrusters (RDT); response surface method (RSM); hydrodynamic performance;
computational fluid dynamics (CFD); multi-parameter optimization

1. Introduction

With the development of intelligent and green ships, the problems of traditional me-
chanical propulsion systems are becoming increasingly prominent, which cannot meet the
increasingly strict emission regulations proposed by the International Maritime Organiza-
tion (IMO) for ship propulsion systems [1]. As an alternative propulsion scenario of the
mechanical propulsion system, the electric propulsion system has shown great potential in
energy conservation and environmental protection [2]. Furthermore, the breakthrough of
power electronics and motor control technology and the application of new semiconductor
materials have prompted the electric propulsion device to derive a variety of forms to cope
with the requirements of different ship types in recent years. In this context, rim-driven
thrusters (RDT) designed according to the concept of modularization have become the
focus of people’s attention with their innovative structure and are expected to be widely
used in the future [3].

The integrated electric propulsion device embeds the blade tip and the rotor together
to facilitate a motor to drive the blades directly, which can minimize the loss of energy
transmission. Simultaneously, both sides of the rim are fixed and supported by water-
lubricated bearings to omit the cooling and lubrication system [4]. All components are
installed in the duct to form a compact integrated unit, effectively reducing the space
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occupancy and allowing flexible installation and arrangement. The structure of RDT is
shown in Figure 1.
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Due to the special structure and many advantages of RDT, there has been much
research on its hydrodynamic performance, involving flow field characteristics, vibration
and noise, scale effect and cavitation performance. Zhu et al. [5] explored the internal flow
characteristics of RDT and revealed its flow loss mechanism. Freeman et al. [6] analyzed
the pressure distribution, incoming flow and vibration frequency of RDT blades based on
the fine element analysis (FEA). Chen et al. [7] compared the longitudinal vibration and
unsteady thrust transmission characteristics of shaftless rim-driven thrusters and traditional
shaft-driven propellers. Jiang et al. [8] discussed the flow distribution characteristics of
gap fluid in counter-rotating shaftless RDT (CRP-RDT) and the influence of a gap on its
hydrodynamic performance. Yang et al. [9] investigated the scale effect of RDT components
in consideration of the interaction between the duct and the rim.

As mentioned above, the performance research of RDT is almost accomplished through
numerical calculations. Accordingly, some innovative calculation methods have been
adopted to deal with the contradictions between efficiency and accuracy. Kinnas et al. [10]
employed a novel method to predict the effective wake and cavitation degree of RDT,
which combines a vortex lattice method (MPUF-3A) with a RANS Solver (FLUENT) for an
unsteady flow analysis. Cai et al. [11] proposed a modified body force method to calculate
the self-propulsion performance of matching RDT ships. Compared with the discrete
propeller method, this method can save a lot of computing resources on the premise of
ensuring accuracy. Hieke et al. [12] provided a hybrid procedure for the hydroacoustic
calculations and analysis of RDT, in which the transient pressure and velocity obtained
by the stress-blended eddy simulation (SBES) are used as the initial conditions to calcu-
late the underwater acoustic field based on the expansion about the incompressible flow
(EIF) approach and coherent flow structures were filtered through the proper orthogonal
decomposition (POD) method.

However, it is difficult to satisfy the requirements of green intelligent ships for propul-
sion devices only through performance research. At present, some problems confronted
with the development of RDT, such as low hydraulic efficiency, underwater noise and ship–
propeller matching, need to be overcome through structural optimization design. As far as
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RDT hydraulic components are concerned, quite some studies have analyzed the single
parameter effects of blades, ducts and rims. Zhang et al. [13] and Xiangcheng et al. [14]
investigated some of the primary factors affecting the hydrodynamic performance of RDT
through simulation, including the number of blades, the length–diameter ratio of the duct,
the diffusion ratio, the contract ratio of the duct and the tip diameter ratio of the blade.
Cao et al. [15] analyzed the wake field, blade load distribution and hydrodynamics of four
RDTs with different pitch ratios. Liu et al. [16] compared the hydrodynamic performance
and flow field structures of RDT with three different duct designs using the two-equation
SST k-ω model and the four-equation γ−Reθ transition model, respectively. Cai et al. [17]
analyzed the influence of the rim length on the wake flow field and friction loss and the
influence of the blade thickness on the RDT efficiency. Gaggero [18] proposed an RDT
design optimization (SBDO) method based on CFD to explore the impact of the number
of blades on the RDT performance through the parametric description of the RDT blades
and the use of multi-objective optimization algorithms to maximize blade efficiency and
minimize the cavitation. For the influence of the hub, Song et al. [19] designed four pairs
of hub types and hub rim-driven thrusters with different hub radii and mainly discussed
their open water performance.

To sum up, the existing works focused on the performance and single-parameter
optimization designs and lacked research on multi-parameter collaborative optimization for
the hydrodynamic performance of RDT. However, due to the integrity of the RDT structure,
its hydrodynamic performance is characterized by the interaction of many parameters.
Additionally, there is a mutual constraint mechanism between these structural parameters.
In most cases, the optimization of a single structural parameter cannot effectively improve
the performance of the thruster.

In this study, a multi-parameter collaborative optimization framework for RDT is
proposed based on the response surface method. The common structural parameters of
the blade, including disk ratio, pitch ratio and rake angle, are selected as design variables
to carry out the Box–Behnken experimental design combined with the simulation data
obtained through the CFD method. The response surface second-order model is employed
to evaluate the extent to which different parameters can affect the target variable and obtain
the optimal hydraulic efficiency. Subsequently, the surface pressure distribution and flow
field characteristics are also compared between the prototype RDT and the optimized RDT.

2. Methodology
2.1. Design of the RDT

The specific object selected is a 20 kW RDT, and some of its main parameters are
shown in Table 1. The modified Ka4-70 blade is used for the propulsion device, in which
the profile is an airfoil type from 0.2 R to 0.5 R, and the profile is a bow type from 0.6
R to 1.0 R. Considering the strength requirements of the blade root, the hub is used for
supporting and fixing to avert the deformation of the blade root that has a greater impact
on the hydraulic efficiency. The designed RDT are shown in Figure 2.

Table 1. Main parameters of the RDT.

Parameter Representation Value

Diameter of blade tip circle D/mm 260
Hub diameter ratio XH 0.1
Number of blades N 4

Disc ratio ARE 0.75
side bevel θ/(◦) 40

Pitch ratio at 0.7 R P/D 1.2
Rotation speed n/rpm 880
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2.2. Numerical Method
2.2.1. Numerical Model

The Reynolds-Averaged Navier–Stokes (RANS) equations are used to solve the flow
field based on the assumption of an incompressible and steady flow. The continuity and
momentum equations in star ccm+ can be expressed as [20]:{

∇·v = 0
∇·(ρv⊗ v) = −∇·pI +∇·

(
T + TRANS

)
+ fb

(1)

where ρ is the density, v is the average velocity, p is the average pressure, I is the unit tensor,
T is the average viscous stress tensor, and f b is the resultant force of volume force (such as
gravity and centrifugal force).

Equation (1) is solved by using the finite volume method, where the SIMPLE algorithm
deals with the coupling of pressure and velocity. To ensure the computation speed and
convergence, the underrelaxation factors of velocity and pressure are set to 0.7 and 0.3,
respectively. The first-order upwind scheme is selected to discretize the partial differential
equations. Moreover, the SST k-ω turbulence model developed by Menter is adopted to
solve the stress term in the RANS equations, as it improves the boundary layer performance
of the k-ε model under strong an adverse pressure gradient and the sensitivity of the k-ω
model to the change of the turbulent kinetic energy in the free stream [21]. In the model,
the turbulent kinetic energy k and the specific dissipation rate ω solved by the transport
equations are introduced to determine the eddy viscosity coefficient µt. The SST k-ω
turbulence model can be listed as follows [21]:

∂
∂xi

(ρkui) =
∂

∂xj

(
Γk

∂k
∂xj

)
+ Gk −Yk + Sk

∂
∂xi

(ρωui) =
∂

∂xj

(
Γω

∂ω
∂xj

)
+ Gω −Yω + Dω + Sω

(2)

where Gω is the turbulence influence term, Gk is the turbulent kinetic energy, Yk and Yω are
the divergent terms of k and ω, respectively, Γk and Γω are the effective diffusion terms of
k and ω, respectively, Sk and Sω are the user-defined functions, and Dω is the orthogonal
divergence term.
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2.2.2. Boundary Setup and Grid Generation

A cylindrical computational domain shown in Figure 3 is used to describe the flow
field where the RDT is located. The whole flow field is divided into a rotating domain,
including hub, blades, rim and inner surface of the duct and a static domain composed of
other parts. A Cartesian coordinate system is defined to determine the sizes and positions
of different computational domains, which take the blade center as the origin O and the
negative direction of the z-axis as the free flow direction. The inlet of the static domain
with a radius of 5D is located at 6D upstream of RDT, and the outlet is located at 8D
downstream of RDT, where D is the diameter of the blade. The interface between the
rotation domain and the static domain is located in the middle of the duct to exchange
information between different domains. Table 2 summarizes the boundary conditions of
the computational domains.
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Table 2. Boundary conditions of the computational domains.

Velocity (m/s) Pressure (Pa) k (m2/s2) ω (1/s2) µt (Pa·s)

Inlet Depends on advance
coefficient J

∂p
∂n = 0

Depends on
turbulence
intensity (0.01)

Depends on
turbulence
intensity (0.01) and
turbulence
viscosity ratio

Calculated

Outlet ∂v
∂n = 0 Reference pressure ∂k

∂n = 0 ∂ω
∂n = 0 Calculated

Distant field ∂v
∂n = 0 Reference pressure ∂k

∂n = 0 ∂ω
∂n = 0 Calculated

Blades No-slip, MRF ∂p
∂n = 0 Wall function Wall function Wall function

Rim No-slip, MRF ∂p
∂n = 0 Wall function Wall function Wall function

Hub No-slip, MRF ∂p
∂n = 0 Wall function Wall function Wall function

Duct (rotating) No-slip, counter-MRF ∂p
∂n = 0 Wall function Wall function Wall function

Duct
(non-rotating) No-slip, fixed ∂p

∂n = 0 Wall function Wall function Wall function
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The grids of the computational domains are generated by the trimmed cell mesher in
star ccm+. Obviously, the complete flow details need to be captured by encrypting the areas
with a complex flow, including the RDT surface, wake field, leading edges and trailing
edges. As for the grids near the wall, the prism layer mesher is selected for the full yplus
wall treatment, which requires that yplus should be less than 5 or in the range of 30 to 300.
Figure 4 shows the grids of the yoz cross-section and refined area.
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Considering that the number of grids has a great impact on the calculation accuracy
and efficiency, the six groups of grids shown in Table 3 are arranged for the sensitivity
analysis based on the method proposed by Eça and Hoekstra at J = 0.5 [22,23]. This method
takes the solution not within the so-called “asymmetric range” as the standard, which
requires refining the grid beyond the allowable range in practical applications [18].
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Table 3. Grid sensitivity analysis.

Configuration Grids Count KTTotal ∆KTTotal 10 KQTotal 10 KQTotal

1-Very fine 14.03 million 0.3617 0 0.6241 0
2-Fine 6.42 million 0.36169 0.00% 0.62402 −0.01%
3-Medium 4.27 million 0.36152 −0.05% 0.6227 −0.22%
4-Reference 3.48 million 0.36181 0.03% 0.6253 0.19%
5-Coarse 1.53 million 0.35674 −1.37% 0.61314 −1.76%
6-Very coarse 0.86 million 0.34835 −3.69% 0.60053 −3.78%

The difference between the results of the different grid configurations and the asymp-
totic solution is within 4%, which shows that the RDT calculation results are considered
reproducible. Secondly, the thrust difference and torque difference between the refer-
ence grid and the finest grid are 0.03% and 0.19%, respectively, which is sufficient for the
subsequent optimization design. Therefore, this configuration will be selected in the study.

2.2.3. Verification of Calculation Method

Since the structure and hydrodynamic performance of the RDT are similar to those of
the duct propeller, and the performance test of the duct propeller is relatively convenient
and mature, the numerical calculation method will be verified by taking NO.19A + a Ka4-
70 duct propeller as an example. The parameters of the duct propeller blades are shown
in Table 4.

Table 4. Parameters of the duct propeller.

Diameter
(m)

Number
of Blades Hub Ratio Pitch

Ratio Disk Ratio Rake
Angle

Blade
Profile

0.2 4 0.167 1.2 0.7 0◦ NACA66

The hydrodynamic performance of the thruster can be defined in a dimensionless
form as follows:

J =
VA

nD
, KT =

T
ρn2D4 , KQ =

Q
ρn2D5 , η =

KT

QK
× J

2π
(3)

where KT is the thrust coefficient of the thruster, T is the thrust of the thruster, KQ is the
torque coefficient of the thruster, Q is the torque of the thruster, J is the advance coefficient,
η is the efficiency of the thruster, VA is the flow velocity, and n is the rotation speed of
the blade.

As shown in Table 5 and Figure 5, the simulation values of the thrust coefficient,
torque coefficient and open water efficiency are close to the test values, and their maximum
errors are all less than 3%. This error is within the acceptable range, which indicates
that the numerical calculation method adopted has high accuracy and can be used in the
subsequent simulation.

Table 5. Comparison between the simulation and test of the duct propeller [24].

J KT-sim KT-test 10 KQ-sim 10 KQ-test ηsim ηtest

0.2 0.5697 0.5632 0.65970 0.6531 0.2749 0.2745
0.3 0.5143 0.5044 0.63900 0.6341 0.3843 0.3798
0.4 0.4466 0.4467 0.60871 0.6073 0.4671 0.4683
0.5 0.3815 0.3879 0.57182 0.572 0.5309 0.5397
0.6 0.3183 0.3255 0.52859 0.5276 0.5750 0.5891
0.7 0.2564 0.2572 0.47757 0.473 0.5981 0.6058
0.8 0.1842 0.1807 0.41156 0.4071 0.5699 0.5652
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Figure 5. Comparison of the simulation and test results of the duct propeller.

2.3. Optimization Strategy

The aim of the response surface method is to fit the functional relationship between the
target variables and the design variables by solving the multivariate high-order regression
equation based on a series of sample points obtained through the appropriate experimental
design method [25]. In general, when the highest order of the equation is the second
order, the fitting result can fulfill the accuracy requirements [26]. According to the Taylor
expansion polynomial and the variables selected in this paper, the functional relationship
can be expressed as:

y = β0 +
3

∑
i=1

βixi +
3

∑
i=1

3

∑
j=1

βijxixj (4)

where y is the fitting value of the target variable; xi is the ith design variable; and β0, βi and
βij are the regression coefficients.

In order to evaluate the accuracy of the fitting response surface, the determination
coefficient R2, the adjustment determination coefficient R2

ad, the mean square σRMSE and
the coefficient variability CV are selected to judge the prediction ability of the response
surface model [27]. The expression of the evaluation index is as follows:

R2 = 1−

ns
∑

i=1
(yi − yi)

2

ns
∑

i=1
yi

2 −
ns
∑

i=1
yi

2/ns

(5)

R2
ad =

[
ns
∑

i=1
(yi − yi)

2
]

/(ns − nt − 1)(
ns
∑

i=1
yi

2 −
ns
∑

i=1
yi

2/ns

)
/(ns − 1)

(6)

σRMSE =

√√√√√ ns
∑

i=1
(yi − yi)

2

ns
(7)
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CV =
σRMSE

ns
∑

i=1
yi/ns

(8)

where yi is the fitting value of the target point, yi is the observation value of the target point,
ns is the number of sample points, nt is the number of terms contained in the function
polynomial, R2 represents the correlation between the observed value and the fitted value of
the target variable, R2

ad represents the degree to which the response surface model explains
the relationship between the target variable and the design variables, σRMSE represents
the accuracy of the response surface model and CV represents the reproducibility of the
response surface model.

The optimization of the RDT open water efficiency is taken as an example, and the
procedure of the RSM is shown in Figure 6.
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3. Optimization Parameters and Experimental Design
3.1. Parameters Selection

The pitch ratio is the ratio of the surface pitch P to the diameter D of the blade, which
determines the spatial distribution and load distribution of the blade profile. According
to the traditional propeller circulation theory, the closer the position of the maximum
radial distribution of the blade load to the blade tip under the influence of the pitch ratio,
the higher the blade efficiency, but the cavitation performance of the blade tip will be
worse [28]. As for the disk ratio and rake angle, the disk ratio Ae/Ao is the ratio of the
sum of the areas included in the blade extension profile to the propeller disk area, while
the rake angle θ is the angle between the blade reference line and the vertical line of the
axis. The disk surface ratio affects the efficiency and cavitation of the propeller by changing
the blade thickness, chord and other structural parameters. The rake angle is designed
to increase the distance between the blade and the stern to reduce the interference of the
hull wake on the performance of the blade. However, the rake angle beyond the constraint
range will increase the bending stress of the blade tip at the rim, thus reducing the blade
strength. Therefore, these three parameters will be used as design variables to accomplish
the collaborative optimization of open water efficiency. The geometric representation of
different design variables is shown in Figure 7.
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3.2. Box–Behnken Experimental Design

The Box–Behnken design (BBD) is an experimental design type belonging to the RSM
second-order model, which has better flexibility toward a small number of discontinuous
variables compared with the central composite design. Moreover, depending on the specific
working range of the structural parameters required by the RDT performance, this design
type can fit the response surface without including high-level sample points composed
of the upper and lower limits of various variables. The factor levels based on the BBD
principle are shown in Table 6.

Table 6. Factors and levels affecting the open water efficiency.

Factor Name
Level

−1 0 1

Pitch ratio 1.0 1.2 1.4
Disk ratio 0.65 0.75 0.85

Rake angle/(◦) 0 5 10

Within the above given parameter range, some RDT simulation data are supplemented
to enrich the experimental data. The ultimate experimental data are fifteen groups, includ-
ing two validation experiments, which can be carried out by setting the number of grids.
The experimental scheme is shown in Table 7.

Table 7. Experimental scheme.

Case
X1 X2 X3 Y

Pitch Ratio Disk Ratio Rake Angle Open Water Efficiency

1 1.0 0.65 5 40.98
2 1.4 0.65 5 51.77
3 1.0 0.85 5 38.49
4 1.4 0.85 5 49.75
5 1.0 0.75 0 41.05
6 1.4 0.75 0 52.48
7 1.0 0.75 10 39.9
8 1.4 0.75 10 50.88
9 1.2 0.65 0 48.32
10 1.2 0.85 0 47.85
11 1.2 0.65 10 46.91
12 1.2 0.85 10 46.62
13 1.2 0.75 5 47.41
14 1.2 0.75 5 46.87
15 1.2 0.75 5 47.23

4. Results and Discussion
4.1. Optimization Results

Through the regression fitting analysis of the experimental data in the table, the
multivariate quadratic regression equation between the open water efficiency (Y) and the
pitch ratio (X1), the disk surface ratio (X2) and the vertical inclination angle (X3) can be
obtained as follows:

Y = +47.17 + 5.5575X1 − 0.65875X2 − 0.67375X3 + 0.1175X1X2
−0.1125X1X3 + 0.045X2X3 − 1.635X2

1 − 0.2875X2
2 + 0.5425X2

3
(9)

Table 8 presents the analysis of variance of the fitted response surface model according
to the experimental data, in which the significance of the model and model terms is judged
by the p-value or Prob > F-value related to the variance σRMSE. The p-value of the model is
less than 0.0001, implying the regression model is significant. Values of “Prob > F” less than
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0.05 indicate the model terms are significant. In this case, X1, X2, X3 and X1
2 are significant

model terms. Comparing the significance (p-value) of each parameter, it can be seen that
the influence of each structural parameter on the open water efficiency is in descending
order of pitch ratio > rake angle > disk ratio. The “Lack-of-Fit F-value” of 7.83 implies
the lack of fit is not significant relative to the pure error. There is a 11.54% chance that a
“Lack-of-Fit F-value” this large could occur due to interference, which indicates that the
model is reasonable.

Table 8. Variance analysis of the open water efficiency.

Source Sum of Square Degrees of
Freedom

Mean Squared
Error F-Value p-Value

Prob > F

Model 266.00 9 29.56 76.70 <0.0001
X1 247.09 1 247.09 641.21 <0.0001
X2 3.47 1 3.47 9.01 0.0300
X3 3.63 1 3.63 9.42 0.0278

X1X2 0.055 1 0.055 0.14 0.7206

X1X3 0.051 1 0.051 0.13 0.7318
X2X3 0.0081 1 0.0081 0.021 0.8904
X1

2 9.87 1 9.87 25.61 0.0039
X2

2 0.31 1 0.31 0.79 0.4143
X3

2 1.09 1 1.09 2.82 0.1539
residual 1.93 5 0.39

lack of fit 1.78 3 0.59 7.83 0.1154
error 0.15 2 0.076
sum 267.92 14

In addition to the above significance test, the accuracy, reproducibility and anti-
interference of the model should also be evaluated by the corresponding indicators. The
correlation coefficient R2 of the regression model is 99.28, indicating that the observed value
of the target variable is strongly correlated with the fitted value. The prediction determina-
tion coefficient R2

pred = 89.27%, the adjustment determination coefficient R2
adj = 97.99% and

the difference between the two indexes is less than 0.2, indicating that 97.99% of the change
in the response value (open water efficiency) comes from the pitch ratio, disk surface ratio
and rake angle. The coefficient of variation (CV) is 1.34% < 10%, indicating that the model
has high repeatability and small variation. “Adeq precision” is 26.65 > 4, which indicates
that the model has strong anti-interference and can be used to navigate the design space.

The response surface diagram and contour diagram of the design variables when
they interact in pairs drawn according to Formula (9) are shown in Figure 8. It should
be noted that, from the purple area to the red area, the minimum value of the efficiency
gradually increases to the maximum value. Additionally, the influence of the interaction
between different design parameters on the open water efficiency is embodied by the
inclination of the three-dimensional map. If the inclination is greater, the influence will be
more significant.

It can be seen that the combination of pitch ratio and disc ratio, as well as the combi-
nation of pitch ratio and rake angle, has a significant impact on the open water efficiency,
while the combination of disc ratio and rake angle has little impact. The open water effi-
ciency can be improved by increasing the pitch ratio and properly reducing the disc ratio
and the rake angle, and the optimal value of efficiency is about 52%. In the circumstances,
the pitch ratio is about 1.4, the disc ratio is between 0.62 and 0.72 and the rake angle is
within the range of 0 to 2◦. By searching the optimal value of the fitting function, the final
optimization variables are obtained as follows: the pitch ratio is 1.4, the disc ratio is 0.651,
the rake angle is 0◦ and the open water efficiency can reach 52.72%.
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Figure 8. Interactions between different design variables. (a) Interactions between pitch ratio and
disk surface ratio. (b) Interactions between pitch ratio and rake angle. (c) Interactions between disc
ratio and rake angle.
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4.2. Simulation Verification and Performance Comparison

To verify the response surface method, the optimization results will be compared
with those calculated through the simulation. According to the optimal parameters rec-
ommended by the response surface optimization method, the model of a 1.4 pitch ratio,
0.651 disk surface ratio and 0◦ rake angle is shown in Figure 9.
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Figure 9. Optimized RDT model.

Table 9 shows the comparison of the simulation results between the prototype RDT
and optimized RDT. The maximum efficiency of the optimized RDT is 52.53% at about
J = 0.7. The error between the highest efficiency predicted by the response surface and the
simulation result is 0.19%, which indicates that the analysis results are quite consistent
with the simulation values, and the equation fitted by RSM can accurately reflect the
influence of multi-parameter synergy on the open water efficiency of RDT. Compared
with the prototype RDT, the maximum open water efficiency is effectively improved by
13.8%. Considering that the efficiency of the RDT mainly depends on the thrust and torque
generated by the pressure difference between the suction surface and the pressure surface
of the blades, the pressure distribution of the prototype RDT and the optimized RDT shown
in Figure 10 will be adopted to further discuss the reasons for the efficiency improvement.

Table 9. Comparison of the simulation results between the prototype RDT and optimized RDT.

J VA(m/s)
Prototype RDT Optimized RDT

KT-pro 10 KQ-pro ηpro KT-opt 10 KQ-opt ηopt

0.4 1.5253 0.4797 0.8353 0.3656 0.6151 0.9590 0.4083
0.5 1.9067 0.4255 0.8104 0.4178 0.5454 0.9362 0.4636
0.6 2.288 0.3649 0.7772 0.4484 0.4768 0.9068 0.5021
0.7 2.670 0.3043 0.7346 0.4615 0.4075 0.8692 0.5253
0.8 3.051 0.2393 0.6802 0.4479 0.3341 0.8209 0.5183
0.9 3.432 0.1643 0.6124 0.3843 0.2553 0.7611 0.4805
1.0 3.813 0.0943 0.5378 0.2791 0.1704 0.6890 0.3936
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As shown in Figure 10, the pressure coefficient Cp is used to describe the hydrodynamic
load distribution on the RDT surface, which can be defined as:

Cp =
P− P∞
1
2 ρVA

2
(10)

where P is the local pressure, and P∞ is the free stream pressure.
It can be observed that the pressure distribution on the suction side of the optimized

RDT is more significantly improved than that on the pressure side, which is a crucial factor
for improving the efficiency. In addition, the pressure coefficient on the pressure side of
the two RDTs increases in sequence from the leading edge to the trailing edge, while the
pressure coefficient on the suction side decreases first and then increases in this direction.
As a result, there is a negative pressure area near the leading edge on the pressure side and
a positive pressure area near the leading edge and the trailing edge on the suction side.
Although the thrust loss has been effectively reduced through optimization, the reverse
pressure zone is still obvious, which indicates that the efficiency of the optimized RDT can
be further improved.

To gain insight into the pressure distribution on the blade surface, the pressure coef-
ficients of different radius profiles are shown in Figure 11. As can be seen, the pressure
distribution curves of the suction surface and pressure surface intersect from 0.3 R to
0.9 R. Obviously, the effective thrust is generated by the pressure difference between the
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two curves on the left side of the intersection, but the adverse thrust is also caused by
the pressure difference of the right curves. It is observed that the thrust loss gradually
increased from blade root to blade tip, especially after 0.5 R. Therefore, the thrust can be
raised by optimizing the blade profile after 0.5 R.
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Since the performance of the RDT is directly related to the characteristics of the flow
field, the nondimensional axial velocity distribution in different planes shown in Figure 12
is used to depict the changes of the flow field structure, including the plane at z/R = ±0.2
before and after the propeller disk and the yoz plane. From Figure 12a2,a3,b2,b3, it can
be observed that the pressure-driven flow in the axial direction develops a significant
velocity gradient along the radial direction, whether upstream or downstream of the blades.
However, the optimized RDT has a smaller velocity gradient and wake velocity compared
with the prototype RDT, which indicates that the flow field in the rotating region becomes
more uniform, and less energy is lost in the wake with the improvement of the performance.
In addition, there is an obvious velocity difference around the wake of the nozzle and the
hub, where flow separation occurs under the action of shear stress. To better illustrate this
phenomenon in the wake field, the iso-surface with a Q-factor equal to 600 s−2 is shown
in Figure 13. It should be pointed out here that, since the velocity field and vorticity are
in good consistency in the steady calculations, the flow separation phenomenon can be
clarified by the Q-factor in the wake. However, this approach is not applicable to unsteady
simulations [29].
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Due to the interaction between the decelerating flow from the duct boundary layer
and the wake from the blades, some obvious vortices are generated at the trailing edge of
the duct, which are defined as the primary vortex (1) and primary vortex (2) in Figure 13a,b.
Obviously, the primary vortex (2) has a higher strength, and a secondary vortex is derived,
which is consistent with the stronger flow separation around the wake of the duct nozzle
shown in Figure 12b1. Moreover, the shear layer vortex can hardly be observed in the
optimized RDT, while the wake vortex of the blade is more obvious than that of the
prototype RDT. This is because the improvement of the efficiency enhances the energy of
the wake vortex, making its dissipation process longer. Nevertheless, there is still a strong
separation vortex at the nozzle of the optimized RDT; thus, the structure can be optimized
to improve the distribution and strength of the wake field.

5. Conclusions

In this paper, a multi-parameter collaborative optimization framework is proposed to
improve the efficiency of RDT. The main conclusions are as follows:
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(1) The p-value of the model is less than 0.0001, and the Lack-of-Fit F-value, correlation
coefficient R2, prediction determination coefficient R2

pred, adjustment determination
coefficient R2

adj, coefficient of variation CV and Adeq precision are 7.83, 99.28, 89.27%,
97.99%, 1.34% and 26.65, respectively, indicating that the established model has high
precision, good reproducibility and strong anti-interference ability.

(2) The influence of the pitch ratio, rake angle and disk ratio on the open water efficiency
decreases in sequence. The pitch ratio has a significant effect on the open water
efficiency, while the rake angle and disk ratio have little effect.

(3) Compared with the prototype RDT, the maximum efficiency of the optimized RDT
is increased by 13.8%. Additionally, the surface pressure distribution and flow field
characteristics are significantly modified, but the efficiency can be further improved
by optimizing the local structure.
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