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Abstract: The world’s technological and economic advancements have led to a sharp increase in the
demand for electrical energy. Saudi Arabia is experiencing rapid economic and demographic growth,
which is resulting in higher energy needs. The limits of fossil fuel reserves and their disruption
to the environment have motivated the pursuit of alternative energy options such as wind energy.
In order to regulate the power system to maintain safe and dependable operation, projections of
current and daily power generation are crucial. Thus, this work focuses on wind power prediction
and the statistical analysis of wind characteristics using wind data from a meteorological station
in Makkah, Saudi Arabia. The data were collected over four years from January 2015 to July 2018.
More than twelve thousand data points were collected and analyzed. Layout and wake effect studies
were carried out. Furthermore, the near wake length downstream from the rotor disc between 1 and
5 rotor diameters (1D to 5D) was taken into account. Five robust machine learning algorithms were
implemented to estimate the potential wind power production from a wind farm in Makkah, Saudi
Arabia. The relationship between the wind speed and power produced for each season was carefully
studied. Due to the variability in the wind speeds, the power production fluctuated much more
in the winter. The higher the wind speed, the more significant the difference in energy production
between the five farm layouts, and vice versa, whereas at a low wind speed, there was no significant
difference in the power production in all of the near wake lengths of the 1D to 5D rotor diameters
downstream from the rotor disc. Among the utilized prediction models, the decision tree regression
was found to have the best accuracy values in all four utilized evaluation metrics, with 0.994 in
R-squared, 0.025 in MAE, 0.273 in MSE, and 0.522 in RMSE. The obtained results were satisfactory
and provide support for the construction of several wind farms, producing hundreds of megawatts,
in Saudi Arabia, particularly in the Makkah Region.

Keywords: wind power; renewable energy; machine learning; regression; wake effect; wind energy

1. Introduction

The demand for electrical energy has risen dramatically due to the fact of global
technical and economic advances. Rapid population and economic growth in Saudi Arabia
is accompanied by increased energy consumption, whether in terms of fuel, electricity, or
for desalination.

Saudi Arabia has long relied on coal, petroleum, natural gas, and other fossil resources
to generate electricity. For various reasons, there has been an increase in interest in devel-
oping new sources of electric power generation in recent years. The most important reason
is reducing environmental pollution and anthropogenic greenhouse gas emissions caused
by fossil fuel combustion. Finding fossil fuel sources requires great financial investment.
This cost is projected to rise in the coming years; the Earth’s supply of fossil fuels is finite,
and these resources will become increasingly challenging to locate and maintain indefi-
nitely. On the other hand, wind energy is derived from sources that are regenerated by
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nature constantly. It is clean, emission free, and environmentally friendly energy, as its
production does not cause environmental pollution. In general, there are several reasons to
choose wind power, including aiding the environment, securing long-term price stability,
securing lower-cost electricity, and reducing the community’s reliance on fossil fuels. With
the expansion of scientific advancement and the commercial growth of the wind power
sector, human wind power usage has evolved from theoretical experiments to practical
production. Wind power’s manufacturing profitability and usefulness are continuously
being promoted. An economic study of power systems requires knowledge of a power
system’s current and predicted future conditions. Current power production and daily
power production predictions are critical in regulating the power system to maintain safe
and reliable operation. This impact has an effect on day-ahead unit commitment costs,
power system operation costs, and energy market clearing prices. The main contributions
of this work can be summarized as follows:

• Investigate the wind characteristics that have a significant impact on wind
power production;

• Compare the performance of various machine learning algorithms on predicting the
power output of wind farms;

• Evaluate the proposed prediction models utilizing effort estimation assessment metrics;
• Factoring wind farm turbine layout and wake effects in predicting wind power output.

The remainder of this paper is structured as follows. Section 2 discusses electricity
consumption. Section 3 highlights the wind energy share and literature review on wind
power prediction. The forecasting models and evaluation metrics utilized in this work
are introduced in Section 4. Section 5 presents the methodology to predict wind farm
power, including the layout and wake effect. The experimental results and discussion are
presented in Section 6. Finally, the conclusions are drawn in Section 7.

2. Electricity Consumption and Renewable Energy

For several years fossil fuel energy sources have been used as a based energy resource.
However, populations and demands for resources have continuously increased. Alternative
energy sources, such as solar, wind, hydropower, geothermal, biomass, and hydrogen,
have become more popular as a result of the depletion of fossil fuel supplies and the
environmental disruption they cause [1].

Wind power has increased rapidly in recent years as an essential part of renewable
energy. Wind energy is produced from the movement of wind, converting kinetic energy
into electrical energy through wind turbines (the principle of energy transformation).
Determining the location of a wind farm depends mainly on studying the activity of
wind movement in the region, which is measured by geographic studies, satellites, and
sensor monitoring and measuring devices [2]. Saudi Arabia has taken serious steps in
using renewable energy sources, in addition to oil and gas, conserving current resources,
achieving balance, ensuring that future generations have the resources they need to live
well and attaining economic development. There are several reasons for choosing Makkah
as the location for this wind farm case study. It is distinguished by a significant advantage
over other cities in Saudi Arabia, which is the presence of the Noble Sanctuary, which
requires operation 24 h a day, year round. Moreover, millions of people flock to Makkah
during the Hajj and Umrah seasons and, thus, the demand for electricity in this city is
higher than in other cities.

In the following subsections, detailed statistics regarding electricity consumptions are
provided. Further, the capacity of renewable energy and the status of wind energy in Saudi
Arabia are highlighted.

2.1. Electricity Consumption in Saudi Arabia

Saudi Arabia has one of the highest global rates of electricity use per capita. In
addition, this consumption rate rose from 6.9 to 9.6 MWh during the period between 2007
and 2017. Furthermore, Saudi Arabia’s share of residential electricity usage accounts for the
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largest share of overall electricity consumption, which, in 2017, increased by approximately
48% [3].

2.1.1. Electricity Consumption in Saudi Arabia

The total electricity consumption in Saudi Arabia in 2018, according to the Electricity
and Cogeneration Regulatory Authority (ECRA), was 299,188 GWh, with 101,159 GWh of
this being in the western region. The electrical energy consumption in residential sectors
was 130,428 GWh [4].

2.1.2. Daily Average of Saudi Household Consumption

Household power consumption is the energy consumed by the population for domes-
tic purposes only (water heating, warming, air-conditioning, lighting, cooking, etc.). A
survey sample was taken consisting of 22,000 households distributed by administrative
regions across Saudi Arabia, and 3900 were in the Makkah Region. The percentage of
dwellings using public electricity throughout Saudi Arabia was 99.5%. The rate of house-
holds connected to the public electricity network in the Makkah Region was 98.7%, where
the average amount of electricity consumed by households during winter was 37 TWh,
and 9 TWh was consumed in Makkah. In the rest of the year, households in Saudi Arabia
consumed 149 TWh. However, in the Makkah Region, households consumed 39 TWh in
the rest of the year [5]. Accordingly, the average daily amount of electricity consumed in
Saudi Arabia by households during winter is approximately 1 GWh. In comparison, the
average daily household consumption in the rest of the year is 410 GWh.

2.2. Renewable Energy

The high rate of population and economic growth in Saudi Arabia has been followed
by a rise in energy consumption in the form of fuel, electricity, or for desalination. By
2032, Saudi Arabia’s electricity demand is anticipated to surpass 120 GW. Therefore, the
entire demand for raw fuels for energy generation, industry, transportation, and water
desalination will increase by 8.3 million barrels of oil per day by 2028 unless alternative
energy is generated and mechanisms to preserve energy are implemented [2]. Saudi Arabia
has taken significant measures to use both green energy sources and oil and gas in the
national energy mix in order to preserve the current wealth, ensure equilibrium, satisfy
the needs of life for future generations, and ensure economic growth. Thus, the National
Renewable Energy Program (NREP) has been initiated by Saudi Arabia in an active attempt
to indigenize the renewable energy industry to the highest international expectations.

2.3. Capacity of Wind Energy in Saudi Arabia

Saudi Arabia has numerous renewable energy sources, especially solar and wind
power. Utilizing the movement of air through wind turbines results in the generation of
electricity. Wind power is considered abundant, sustainable, widely distributed, and safe
resource that generates no greenhouse gas emissions (CO2 or CH4) during activity. Further
research is needed in Saudi Arabia on wind energy resources. There are many reasons for
this: (1) it is a new field and appealing for further research; (2) for the reduction of oil usage
and environmental issues; (3) the average annual wind speed is on the rise in all regions of
Saudi Arabia [6]. Observatories have been used throughout the country to research wind
energy experimentally, and there are ten stations for wind observation in Saudi Arabia. In
Saudi Arabia, 18.43% of total renewable energy comes from wind energy. According to the
first stage of the National Program for Renewable Energy Projects, the electrical energy
expected to be generated from the Domat Aljandal project is 1541 GWh, with a 400 MW
capacity. In 2022, 73,417 houses will be powered by this project [6].

According to The General Authority for Statistics (GASTAT), in the third release of the
Household Energy Survey Bulletin in Saudi Arabia, 2019, the percentage of households
who want to use renewable energy at home reached 52.26% [5].
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3. Wind Energy Related Works

Wind energy has grown to become a mainstream energy source in recent years. It
has been increasing rapidly as an essential part of renewable energy. Research on wind
field measurement has been ongoing for more than 38 years [7]. Wind energy is the energy
produced from wind movement, converted from kinetic energy into electrical energy
through wind turbines (the principle of energy transformation). Determining the sites of
wind farms depends heavily on studying the activity of wind movement in the region,
which is measured by geographic studies, satellites, and sensor monitoring and measuring
devices [2,8,9].

With technological progress and the commercial growth of the wind power industry,
humans’ use of the wind has progressed from theoretical experiment to practical production,
promoting manufacturing profit and its practical value [10]. Wind turbines built by 2020
have covered approximately 9% of the global demand for electricity [11]. A new milestone
of 651 GW of cumulative installed capacity was achieved in the global wind energy market
in 2020, with continued strong growth anticipated across Asia, the Americas, and Europe
according to the 2020–2024 Market Outlook [12]. To achieve a low-carbon or net-zero future,
wind power will play a leading role, needing a fully carbon-free electricity market and
significant emission cuts in all other areas of the economy. However, many changes need to
be made to increase wind energy share and accelerate the global energy transition. These
include a continued emphasis on solutions that facilitate the incorporation of wind and
other renewables into the grid, solutions for the more efficient transport of large amounts
of renewable energy over longer distances, partnering with other technologies, such as
hydrogen, to decarbonize sectors where direct electrification is a challenge, and increasing
the capacity to store energy in times of excess. To do this, it is essential to replace the
single mentality of renewable energy technology with the so-called “system approach”
and cross-industry cooperation to decarbonize the economy in the most effective way
possible [12].

The following subsections present a literature review on wind power prediction and
discusses the wake effect factor in wind farms.

3.1. Literature Review on Wind Power Prediction

Accurate prediction of wind speed, power, and maintenance has a significant role in
the functionality of wind energy systems; however, it is a complex task due to the uncertain
nature of wind. Accordingly, many researchers seek to intensify research that increases
the accuracy of wind energy prediction systems. This section shows works that discuss
several areas related to wind power prediction. The first area covers works that predict a
wind farm’s energy [1,13–16]; other works focus on wind speed prediction [17,18]. Wind
turbine predictive maintenance and wind turbine health assessment [19,20] are other topics
of research. Wind farm layout optimization [21–23] related works are also an active area of
research. Evaluating renewable energy potential, developing new electrical machine control
techniques, and special control algorithms for electronic power devices are of research
interest. Several studies have been carried out in the literature to predict the generation
of wind turbine power [1]. The reduced use of conventional power and increased use
of renewable energy could be encouraged by applying machine learning algorithms to
forecast wind turbine power generation.

The work presented in [13] used five different regression algorithms to forecast the
power produced. The utilized data consists of the wind speed, hourly wind speed standard
deviation, and wind power generated data, all compiled on daily bases. It was found that
the RF algorithm obtained an R2 of 0.995 and MAE of 7.048. On the other hand, when
excluding the standard deviation from the data, the best performing algorithm was SVR,
with an R2 of 0.955 and MAE of 32.6. However, the experimental evaluation in [15] showed
that the combination of decision trees and SVR outperformed vector regression alone, with
improvements of up to 37%. The results presented in [1] found that k-nearest neighbor
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regression achieved an R2 of 0.94, while the worst predictions were obtained by using linear
regression, with an R2 of 0.88.

The work in [14] analyzed one year of wind farm data in Ceará State, Brazil. Whereas
to predict wind speeds, a logistic regression combined with nonlinear autoregressive neural
networks was used. Reference [16] suggested a sophisticated hybrid model with 1000 tested
points in projection from a real wind farm in Gansu, China, to increase the accuracy and
efficacy of wind power forecast. References [17,18] achieved decent wind speed prediction
results using artificial neural networks (ANNs) methods. The best results were obtained
with an RMSE of 0.6109 for ANN, using one layer and 30 neurons, and an RMSE of 0.5543
for the random forest. In [19], a mutual information (MI) feature selection to reduce the
complexity of the wind speed forecasting model was used. It was found that using the MI
feature selection was more accurate in dealing with wind speed prediction, with an RMSE
of 0.5814 and MAE of 0.4381.

Given the importance of predicting turbine faults in advance, the work in [19,20]
sought to create an application to predict and maintain turbine faults, where five machine
learning algorithms were applied, including decision tree and random forest classifica-
tions. In both works, the random forest algorithm outperformed other machine learning
algorithms, providing a better accuracy with 98.83% and 94.78%, respectively.

Seeking an appropriate wind farm layout constitutes a challenging vital task in
wind-energy-related projects. For this, many works explore this trend in the research
direction [21–28]. The optimized layout in [21] improved the power production by approx-
imately 97%, where the genetic algorithm was utilized with a continuous approach to
explore unlimited wind farm layouts. They selected a V112 wind turbine as the best type
to provide the optimal results. Whereas the 20 turbines from different vendors and with
varying rated outputs used in [22] determined that the Unison U 93 was the best turbine.
Fuzzy logic and multicriteria decision-making (MCDM) techniques were applied to obtain
results. Reference [23] conducted research to investigate the most suitable wind turbine,
from ten commercial wind turbines for five different locations in Saudi Arabia according to
technical and economic assessments.

3.2. Wake Effect on Wind Power

The wake effect is described as the aggregate influence on the wind farm’s energy
output resulting from the changes in wind speed induced by the turbines’ impact on each
other. The wake effects of nearby wind farms and the potential influence of wind farms
constructed in the future should also be considered. With an increase in the number of
wind turbines installed in wind farms, the wake effect and wake-generated loads become
increasingly significant [7].

One of the most critical factors of wind power meteorology is the presence of wind
turbine wakes, which reduce the power output and increase the loading on downstream
wind turbines. Finding an adequate wake model is, therefore, ongoing in order to effectively
plan wind power plant level control methods, forecast performance, and comprehend the
fatigue loads of turbines [24,25].

A wind turbine (WT) produces Its wake in the downstream volume as a result of
absorbing energy from the intake, which lowers the downwind speed. However, the flow in
the wake is more chaotic than that in the influx. This is because turbulence is created by the
rotating WT blades, and the WT tower and nacelle also block the inflow [26]. Characterizing
the flow behind the wind turbine is the main goal of the simulation of the wind turbine
wake. There are two main physical phenomena of interest in the wake: (1) the deficit
of momentum (i.e., velocity), which causes the downstream turbines to decrease their
power output; (2) the increased turbulence level, which results in unstable loading on the
downstream turbines. The wake effect in a wind farm is related to regional wind conditions,
WT characteristics, wind farm layout patterns, and other seasonal considerations. Therefore,
there is an urgent need to examine wake effects. To guide the wind energy community
in making better use of wind energy, data from full-scale wake experiments are crucial.
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With the derived data, wind deficit and turbulence features can be examined in detail.
State-of-the-art wind farm models based on more complex and precise wake measurements
are required through model creation and validation processes [7,27].

The work in [24] investigated six wake models, where each model has its different
level of complexity. Further, the models were described and inter-compared using the
Sexbierum onshore and Lillgrund offshore wind farms [24]. It is observed that the wake
effect is more potent at night on onshore wind. Onshore wind farm experiments have
been significantly impacted by the site circumstances. It is significant to carefully analyze
the economic costs related to staff and facilities expenditures. The power-based standard
deviation method has given an accurate description of ambient turbulence in the non-wake
zone when measuring the turbulence intensity on offshore wind. The wind direction has
been found to have a significant impact on turbulence intensity. Between the first two
consecutive WTs, a significant decrease in the wind speed is observed. With an increase
in the wind speed, the measured wake loss decreases. The collection of offshore data
is substantially more complex than the collection of onshore data [7]. Wind data were
recorded before and after the Yeongheung wind farm’s construction in Korea, which has
nine multi-megawatt (MW) wind turbines with a total capacity of 22 MW, to investigate
how the wind farm’s wake affects the average wind speed, wind shear, and turbulence
intensity. It was found that the turbulence intensity and wind shear were significantly
increased due to the wake effect of nearby turbines. In addition, this confirmed that a high
turbulence intensity substantially increases the fatigue load [28]. According to [29], placing
an upstream turbine that pulls less power than the subsequent turbines could boost the
total power output. The overall power production from the two turbines might be boosted
by approximately 12% by running the upstream turbine in a yawed condition.

4. Forecasting Models and Effort Estimation Evaluation Metrics

This section presents the algorithms that were utilized in this study. The algorithms are
random forest regression (RFR), decision tree regression, gradient boost (GBR) regression,
support vector regression (SVR), and linear regression. These algorithms were implemented
and evaluated in Python.

4.1. Random Forest Regression

The random forest regression (RFR) algorithm is a decision tree algorithm that pro-
duces many decision trees from an input dataset. The outcome of each decision tree is
then used to make a final decision [13]. This algorithm is distinctive in handling missing
values. Moreover, it maintains accuracy even when there are inconsistent data, and it is
simple to use [30]. In RFR, each tree is built using the training dataset and a random vector
k that represents a portion of the feature space of the dataset. Equation (1) provides the
generalization error and margin function for the RF.

PE = PX,Y(mg(X, Y) 0) (1)

where
mg(X, Y) = avk I(hk(X) = Y)−maxj 6=Yavk I(hk(X) = j)

where X and Y are random vectors, mg is the margin function that controls average votes
at random vectors for the proper output compared to any other output, I is the indicator
function, and hk is the classifiers.

4.2. Decision Tree Regression

Generally, a decision tree is a data structure that uses a hierarchical divide-and-conquer
approach to solve problems. Each element of a decision tree, except for the top node, has a
parent node. This method is a nonparametric technique that can be used for both regression
and classification [1]. The decision tree has an arbitrary number of nodes and branches at
each node [31]. An internal node is a node with outgoing edges. Nodes that are not related
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to each other are called leaves. The algorithm produces adequate results in training data,
but it is likely to overfit the data in the test set, resulting in poor performance. This occurs
as a function of the tree’s complexity when the number of features is large [32]. For node m,
Xm is a subset of X which reached node m. Therefore, it is the set of all x ∈ X, that, along
its path from the root to node m, satisfies every criterion in every decision node. It can be
defined as shown in Equation (2).

bm(x) =
{

1
0

i f x ∈ Xm, x reaches a speci f ic node m, (2)

4.3. Gradient Boosting Regression

Friedman’s [33] gradient boosting algorithm is a supervised learning technique. For
many complex datasets, it has shown to be a dependable method [34]. GBR uses a group of
weak learners’ iterations to develop one strong learner using appropriate loss function [35].
It can be applied to classification and regression-type issues [36,37].

4.4. Support Vector Regression

The support vector regression (SVR) algorithm is the support vector machines (SVM)
algorithm’s regression variant [13]. To distinguish input datasets, the SVM algorithm
generates a line, plane, or hyperplane for one, two, or multidimensional input space.
From the input hyperplanes, nonlinear SVR attempts to find a regression function. The
most common application of the SVM algorithm is SVR. The SVR algorithm makes use
of training data instances and attempts to fit a plane from the input variables within a
specified distance. The equation bellow gives the basic form of the SVR algorithm, where w
is the space of input patterns, b is the bias, and xi is the error measure.

min
1
2
‖w‖2 + c ∑l

i=1 ξi + ξ∗i subject to


yi −< w, xi >− b ≤∈ +ξi
< w, xi >+ b− yi ≤∈ +ξ∗i

ξi, ξ∗i ≥ 0
(3)

The SVR performance is affected by a variety of variables, such as the function type,
C, gamma, and epsilon. Based on the features of the input data, the function type is the
parameter that should be chosen, as it is the most useful. The gamma and C values also
shield the model from the over- and underfitting issue [13].

4.5. Linear Regression

It is assumed in linear regression that a linear system, as shown in Equation (4),
describes the connection between the dependent variable y and the p-length regressors x
for a particular dataset {

yi, xi1 , xi1 , . . . , xip

}n

i=1
(4)

with n statistical units [38].

4.6. Evaluation Metrics

The aforementioned algorithms are evaluated based on four evaluation metrics,
namely, R-squared values, the mean absolute error (MAE), mean squared error (MSE),
and root mean squared error (RMSE) metrics. The results are divided into two main parts.
The first results are without considering the wake effect, and the second results are with
considering the wake effect. Those evaluation metrics will be used for evaluating the
models presented in the previous section.

4.6.1. R-Square

R-squared is also called the coefficient of determination [39]. Chicco et al. [40] sug-
gested R-squared as a standard metric to evaluate regression analyses in any scientific
domain. The R-squared value ranges between zero to one. It will yield a bad result if the
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model does not fit the algorithm. The model performs better if the value is greater or closer
to 1 [40].

R2 = 1− ∑m
i=1(Xi −Yi)

2

∑m
i=1(Y′ −Yi)

2 (5)

For R-squared, the best value equals one, while the worst value equals −infinity.

4.6.2. Mean Absolute Error (MAE)

MAE is the average sum of all absolute errors [41]. If the outliers reflect corrupted
portions of the data, it can be applied [40]. It is the average of all the absolute errors.

MAE = ∑n
i=1
|Actual Valuei − Prediction Valuei|

n
(6)

The best value equals zero, while the worst value equal +infinity.

4.6.3. Mean Square Error (MSE)

MSE is the average of square of errors in the dataset [39]. If any outliers need to be
found, it can be applied. If the model ultimately produces just one poor prediction, the
MSE is useful for assigning larger weights to those points, since the squaring portion of the
function emphasizes the error [40].

MSE =
1
2 ∑n

i=1(Xobs,i − Xmodel,i )
2 (7)

where Xobs is an actual value, and Xmodel is the predicted value. MSE is similar to MAE;
values closer to zero indicate a better performance.

4.6.4. Root Mean Square Error (RMSE)

RMSE measures the standard deviation (SD) of the evaluated deviation [39]. The two
variables MSE and RMSE have a monotonic relationship (through the square root) [40].

RMSE =

√
∑n

i=1(Xobs,i − Xmodel,i )
2

n
(8)

where Xobs is an actual value, and Xmodel concedes as a predicted value. For the RMSE,
values closer to zero indicate a better performance.

5. Methodology

In this section, the methodology to predict the wind farm power is presented. The
dataset was collected from weather station number 41030, located in Makkah, Saudi Arabia,
at 21◦26′ N, 39◦46′ E, elevation 240 m, from 1 January 2015 to 31 July 2018. This dataset
contains 1283 daily wind responses, including air temperature, prevailing wind direction,
wind speed, relative humidity, atmospheric pressure, and station level. In the current
prediction analysis, most of these variables were not significant, except, of course, the wind
speed. Wind speed was the most relevant and useful for wind power prediction. Due to
the fact of its uncertain behavior, considerable challenges lie in managing this resource.
However, the wind direction also influences power generation, although to a lesser degree
than the wind velocity, because each WT is built to face the wind when operating.

5.1. Data Preprocessing and Analysis

Cleaning the data before the final analysis is an essential step prior to building machine
learning models. It makes the data easier to investigate and build visualizations around.
Empty cells and missing values lead to inaccurate results. The values were transferred to
the Jupyter notebook, which utilizes a Python environment.
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Initially, the data contained approximately 3600 daily wind observations. It was
monitored from 2008 to 2018 and recorded in separate CSV files for each year. The last
4 years of the study were chosen from 2015 to 2018 to obtain more accurate data. All data
were collected in the CSV file format to facilitate the work during the application of the
algorithms. The data were checked and cleaned, and momentum theory calculated the daily
wind strength (with and without waking effect calculation). After checking the dataset,
the data included several empty cells and missing values. The next step was to perform
a statistical analysis on the data. Finding patterns and trends in data requires a rigorous
process of data collection, organization, exploration, interpretation, and presentation. The
results of these investigations are then applied to forecast future trends and reduce risks.

A heatmap was used to distinguish the correlation between all of the variables
(Figure 1). This assisted in exploring the relationships between the data. Note that the
low values are shown in the low-intensity colors, and the higher values are shown in the
high-intensity colors. As seen in the heatmap, wind speed had a tremendous correlation
with other variables.
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5.2. Wind Power Calculation

To calculate the daily wind power, both the wind speed and the turbine’s technical
specification values are needed. The technical specifications differ from one turbine to
another, and this has an impact on calculating power values. The turbine selected for this
study is an onshore wind turbine, model SG 2.9-129. It was chosen because of several key
factors: it has a higher capacity factor for greater returns, it provides proven technology
to increase capacity while simplifying maintenance, and it is based on the most reliable
and successful 2.3 MW product line, with over 9700 units in service. The design lifetime is
guaranteed for 25 years. Table 1, below, explains the main characteristics for the SG 2.9-129
turbine [42].
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Table 1. Main characteristics for the SG 2.9-129 turbine.

Rotor

Font size and style

Diameter 129 m

Swept Area 13,070 m2

Power Density 221.88 W/m2

Blades

Font size and style

Length 63.5 m

Airfoils Siemens Gamesa

Material Fiberglass reinforced with epoxy resin

5.3. Blade Element Momentum Theory

Blade element momentum theory (BEMT) is a wind turbine blade design method
incorporating airfoil information. BEMT is widely utilized in the design and testing of
wind turbine blades. This is mainly owing to the theory’s consistency with experimental
results. The BEMT’s robustness in wind turbine rotor analysis has been proved in multiple
studies [43]. Equations (9)–(13) describe the BEMT equations employed in the rotor devel-
opment [44]. Equation (14) was used to calculate the power generation, P, from the turbine
rotor, where ρ is the air density; A is the wind turbine sweep area which, in turn, was calcu-
lated from the length of the turbine blades; Cp is the maximum power coefficient, which
was equal to 0.358; and U is the daily wind speed, calculated in the equation for each day
accordingly (Equation (14)). Table 2 explains the central values needed in Equation (14).

α = φ− θp (9)

σr =
Bc

2πr
(10)

a
1− a

=
σr

4sin2φ
× (Cl sinφ− Cd cosφ) (11)

a′

1− a′
=

σr

4 sinφ cosφ
× (Cl sinφ− Cd cosφ) (12)

Cp =
8

λ2

∫ λ

λh
λ3

r a′(1− a)
[

1−
(

Cd
Cl

)
cotφ

]
dλr α = φ− θp , (13)

P = Cp
1
2

ρ A U3 (14)

Table 2. Variables for the SG 2.9-129 turbine.

Variable of Equation (6) Value

Cp 0.358

ρ 1.225

A 13,070

U Daily values measured

5.4. Wake Effect Calculation

To generate electricity, wind turbines take energy from the wind; thus, the wind
exiting the turbine must have a lower energy content than the wind upstream of the turbine.
As noted in Section 3, the wind turbine wake is one of the most essential elements in
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wind power meteorology. It should be noted that the wake effect includes the cumulative
impact of multiple shadowing, the effects of wind direction, and the wind speed time
delay. It reduces the power output while increasing the stress on downstream wind
turbines. As a result, the wind downstream of a wind turbine is slower and more turbulent;
this downstream wind is known as the turbine’s wake. As the wind flow continues
downstream, the wake will stretch out and eventually restore a free-flowing condition.
When a downwind turbine’s swept area coincides with a wake, the downwind turbine is
said to be “shadowed” by the wake-producing turbine. In this work, six wind farm layouts
were developed. The wake effect coefficient was calculated in the second layout and above.
Katic et al. developed a semi-empirical wake model that was used in this study [44,45].
Figure 2 is a schematic diagram illustrating the wake effect [46]. Equation (15) can be
used to calculate the wind speed at a distance X behind a wind turbine using conservation
of momentum.

Ux = Uo

1−
(
1−
√

1− CT
)(

1 + 2k ∗
(

X
D

))2

 (15)

where CT is the thrust coefficient, k is the wake decay constant (assumed to be 0.11 [45]), D
is the diameter of the wind turbine, Ux is the wind speed at distance X, and Uo is the initial
free stream wind speed incident at the first row of wind turbines.
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6. Experimental Results and Discussion

In order to validate the methodology, five regression algorithms to predict wind power
were used: decision tree regression, gradient boosting regression (GBR), random forest
regression (RFR), support vector regression (SVR), and linear regression. The algorithms
were evaluated based on software effort estimation evaluation metrics, which included
R-squared values, mean absolute error (MAE), mean squared error (MSE), and the root
mean squared error (RMSE) metrics.

The dataset used in this study was obtained from Makkah, from weather station
number 41030. The data were collected over four years, from 2015 to 2018, including
1283 data points for wind speed (m/s), wind direction (◦), barometric pressure (hPa), air
temperature (◦C), and relative humidity, which were recorded daily. The relationship
between the wind speed and power generation was assumed to be interdependent. The
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wind speed was the most relevant and useful for the wind power prediction, while the
other dataset variables were not considered significant in the wind power prediction.

The input dataset for this process was divided into training and testing data. Table 3
lists the mean absolute error and coefficient of determination values as a result of the
prediction method. At the same time, the ranking of the algorithms in terms of their
accuracy of prediction is provided in Table 4.

Table 3. The accuracy values of the algorithms.

Algorithm Accuracy Value

Decision Tree Regression 0.994

Gradient Boosting Regression 0.984

Random Forest Regression 0.993

Support Vector Regression −0.093

Linear Regression 0.727

Table 4. Comparison of the accuracy results for the applied algorithms.

Algorithm R-Squared MAE

Decision Tree Regression 0.994 0.025

Gradient Boosting Regression 0.984 0.061

Random Forest Regression 0.993 0.065

Support Vector Regression −0.093 2.762

Leaner Regression 0.727 2.437

Random Forest [13] 0.995 7.048

Support Vector Regression [15] 0.995 32.6

As noted in Table 3, the accuracy value was very high in most of the used algorithms,
while the linear regression accuracy value was lower than the other algorithms.

Table 4 shows the four software effort evaluation metrics: R-squared, MAE, MSE, and
RMSE. After using these evaluation metrics, most of the regression algorithms achieved the
best overall accuracy values. The results showed that the decision tree regression, gradient
boosting regression, and random forest regression algorithms robustly forecasted the daily
wind power. Decision tree regression presented the best overall performance by achieving
accuracy values of 0.994 in R-squared, 0.025 in MAE, 0.273 in MSE, and 0.522 in RMSE. On
the other hand, the linear regression lowered the accuracy in all four metrics due to the fact
of its linear basis, with an R-squared of 0.727, MAE of 2.437, MSE of 12.186, and RMSE of
3.491, as shown in Table 4. However, the 0.727 R-squared value of the leaner regression
algorithm was relatively acceptable. It can be observed that the worst performing algorithm
was the SVM algorithm, with a value of −0.093 in R-squared, 2.762 in MAE, 48.719 in MSE,
and 6.980 in RMSE.

6.1. Wind Farm Layout to Produce 150 MW

This section describes a case study of a 150 MW onshore wind farm in Saudi Arabia,
Makkah. The wind farm produces 150 MW in the standard test condition (STC) when the
wind speed was 10 m/s and air temperature was 25 ◦C. The energy may vary with the
change in the wind speed. In this study, the proposed wind farm was studied from two
angles: with and without considering the wake effect.

The layout of the wind farm considered the production of 150 MW with and without
the wake effect due to the many wind farms around the world that have been installed
or will be installed with a capacity of 150 MW. In Jhimpir, Pakistan, a wind farm with
150 MW is being established, including 87 GE 1.7-103 wind turbines. That will provide the
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equivalent power needed to supply more than 50,000 Pakistani homes [47]. Hong Kong
aims to build an offshore wind farm southwest of Lamma Island in mid-2025. This project
would use 13–19 wind turbines. The wind farm capacity is 150 MW, with average wind
speeds of approximately 7.1 m/s [48]. In 2021, Canada started building a 150 MW wind
farm in the west of the town of Oyen, Alberta, using 35 units of the Vestas V150-4.2 MW
turbine. By the end of 2022, the new wind farm in Alberta is anticipated to begin operating
for profit [49]. In addition, extensive research to study and develop wind farms has been
applied to wind farms with a capacity of 150 MW. Dicorato et al. [50] developed a general
model to estimate the total investment based on the layout of a 150 MW wind farm. The
model was used to determine the best connection solution, considering several connection
schemes, as well as the availability of either an offshore or onshore substation. Shata [51]
introduced a technical estimation of the electric current production from a 150 MW wind
farm. Using the collected wind speed data for five years from the meteorological station
in Shark El-Ouinat City in the Egyptian desert, they offered a statistical study of wind
properties. The average annual wind speed was 6.5 m/s. The CWEX-13 field campaign was
created by Lundquist et al. [52] to investigate the interaction of numerous wakes and the
propagation of individual turbine wakes under various atmospheric stability conditions.
In the heart of Iowa, United States, a 150 MW wind farm hosted CWEX-13. Therefore,
150 MW was chosen in this study for the ease of research and comparison.

6.1.1. Wind Farm Layout to Produce 150 MW without Considering the Wake Effect

To design a wind farm layout with an approximate capacity of 150 MW, neglecting the
wake effect factor, requires 52 SG 2.9-129 turbines arranged as a matrix, as shown in the
aggregated model in Figure 3. Each turbine generates 2.87 MW in the STC.
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Figure 3. Wind farm layout with 52 turbines.

6.1.2. Wind Farm Layout to Produce 150 MW without Considering the Wake Effect

To design a wind farm layout with an approximate capacity of 150 MW, factoring the
wake effect, at least 81 SG 2.9-129 turbines were arranged in a particular setting. In this
study, the wake length considered was between 1 and 5 rotor diameters (1D to 5D) down-
stream from the rotor disc, with far wake regions depending on topography and environ-
mental factors [53]. The values from D1 to D5 were calculated using Equations (14) and (15).
The value of Ux for each layout was calculated from Equation (15); then, the value of the
energy for each turbine was found using Equation (14). When calculating D1, the value of X
was the same as the value of the turbine diameter, which was 129 m, but when calculating
D2, the value of X was twice the value of the diameter, which means 258 m, and so on to
D5, as shown in Figure 4. The chosen value of the wind speed was ten, because it was the
most frequent in the dataset. The power generated by each turbine and wind farm, from
D1 to D5, is shown in Table 5. As mentioned previously, the selected turbine is an onshore
SG 2.9-129 with a 129 m diameter.
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Table 5. Wind power from D1 to D5.

Layout Power per Turbine at 10 m/s
Wind Speed

Number of Turbines Needed
to Produce 150 MW

D1 0.58 256

D2 1.00 149

D3 1.35 111

D4 1.62 92

D5 1.83 81

6.2. Relationship between Wind Speed and Power Production across the Four Seasons for the
Proposed 150 MW Wind Farm in Makkah

In this section, the difference in the wind speed during the four seasons and the
resulting potential amount of energy production are discussed, as well as the amount of
energy provided to consumers. The wind speed data and the energy produced for a week
were taken as a sample for the study, from the middle of each of the four seasons in 2017:
for winter from 5–11 February, for autumn from 8–14 May, for spring from 5–11 August,
and for summer from 4–10 November.

6.2.1. Relationship between Wind Speed and Power Production across the Four Seasons in
Makkah, without Considering the Wake Effect

To determine the wind speed data and the energy produced for a sample week without
taking into account the wake effect factor, a sample from the middle of each of the four
seasons was taken: for winter (Table 6, Figure 5), autumn (Table 7, Figure 6), spring (Table 8,
Figure 7), and summer (Table 9, Figure 8).
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Table 6. The relationship between wind speed and power in the winter season in Makkah.

Date Wind Speed (m/s) Power per Turbine (MW) Power Generation of
52 Turbines (MW)

5/2/2017 18 16.71 869.13

6/2/2017 6 0.62 32.19

7/2/2017 12 4.95 257.52

8/2/2017 14 7.86 408.93

9/2/2017 12 4.95 257.52

10/2/2017 18 16.71 869.13

11/2/2017 7 0.98 51.12
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Figure 5. Relationship between wind speed and power in the winter.

Table 7. The relationship between wind speed and power in autumn season in Makkah.

Date Wind Speed (m/s) Power per Turbine (MW) Power Generation of
52 Turbines (MW)

8/5/2017 12 4.95 257.52

9/5/2017 13 6.29 327.41

10/5/2017 10 2.87 149.03

11/5/2017 5 0.36 18.63

12/5/2017 10 2.87 149.03

13/5/2017 10 2.87 149.03

14/5/2017 10 2.87 149.03
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Figure 6. Relationship between wind speed and power in the autumn.

Table 8. The relationship between wind speed and power in the spring season in Makkah.

Date Wind Speed (m/s) Power per Turbine (MW) Power Generation of
52 Turbines (MW)

5/8/2017 10 2.87 149.03

6/8/2017 10 2.87 149.03

7/8/2017 10 2.87 149.03

8/8/2017 13 6.29 327.41

9/8/2017 12 4.95 257.52

10/8/2017 8 1.47 76.30

11/8/2017 10 2.87 149.03Energies 2023, 16, x FOR PEER REVIEW 17 of 23 
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Figure 7. Relationship between wind speed and power in the spring.
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Table 9. The relationship between wind speed and power in the summer season in Makkah.

Date Wind Speed (m/s) Power per Turbine (MW) Power Generation of
52 Turbines (MW)

4/11/2017 8 1.47 76.30

5/11/2017 8 1.47 76.30

6/11/2017 8 1.47 76.30

7/11/2017 8 1.47 76.30

8/11/2017 10 2.87 149.03

9/11/2017 8 1.47 76.30

10/11/2017 8 1.47 76.30
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Figure 8. Relationship between wind speed and power in the summer.

The data showed that the wind max speed in the first day was 18 m/s while the next
day it was decreased significantly into 6 m/s. Then in the third day it was increased to
reach 12 m/s. This significant variation of wind speed during winter season may affect
the accuracy of wind power prediction. Therefore, to overcome this prediction accuracy
limitation, its preferable to collect more data for wind speed in winter season to enhance
power prediction accuracy during winter season.

The sample collected during autumn showed that the wind speed in the first day
was 12 m/s and 13 m/s on the second day. Interestingly, the other days of the week were
close to the first two days (10 m/s). This stability in the wind speed presented a higher
prediction accuracy.

In spring, the wind speeds were more stable than in the winter and autumn seasons.
In the first three days of the sample week for the spring season, the wind speed was 10 m/s.
The subsequent days of the week had values that were almost identical to the first three
days. On the fourth day, the wind speed increased slightly to 13 m/s; on the fifth day, it
was 12 m/s. Because of this, the power prediction during this season will be more accurate
due to the relatively stable wind speed.

In summer, it is noticed that the wind speed was stable with a decreased average speed
in comparison to the other seasons. The wind speed on most days of the week sample was
8 m/s. This stability resulted in the increase in the accuracy of the wind forecast. Further,
this low wind speed will provide less wind farm power compared to the other seasons.
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The wind speed and power produced varied according to the seasons. To obtain a
comprehensive understanding of the amount of power produced throughout the year,
Figure 9 presents a visualization of the four seasons.
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From Figure 9, it can be observed that the power production of the wind farm during
the sample weeks was at a relatively stable level in the summer due to the consistency of
the wind speeds. In autumn and spring, the power output was more variable, while in
the winter, the variation in the power output increased even more due to the increasing
variation in the wind speed.

6.2.2. Relationship between the Wind Speed and Power Production across the Four Seasons
in Makkah, Considering the Wake Effect

The power output varied according to the wind speed; the higher the speed, the higher
the power production. Table 10 shows the power production of one turbine from D1 to D5
for each of the wind speeds mentioned in the sample week of the four seasons.

Table 10. Power produced in the wind farm with five rotor spacings for the winter.

Date Wind Max.
Speed

Power of 256
Turbines in D1

(MW)

Power of 149
Turbines in D2

(MW)

Power of 111
Turbines in D3

(MW)

Power of 92
Turbines in D4

(MW)

Power of 81
Turbines in D5

(MW)

5/2/2017 18 870.4 870.16 872.46 868.48 864.27

6/2/2017 6 33.28 32.78 32.19 32.2 32.4

7/2/2017 12 258.56 257.77 258.63 257.6 255.96

8/2/2017 14 409.6 409.75 410.7 408.48 406.62

9/2/2017 12 258.56 257.77 258.63 257.6 255.96

10/2/2017 18 870.4 870.16 872.46 868.48 864.27

11/2/2017 7 51.2 50.66 51.06 50.6 51.03

In winter (Table 10), it is noted that the energy produced was uneven and unstable
due to the considerable variation in the wind speed, as discussed before. This variation in
the wind speed affected the power production in the different farm layouts (D1 to D5). It
is noted that as the wind speed became slower, the power production was almost similar
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in the different farm layouts. For instance, on the second day, the wind speed was 6 m/s,
with only a 1.1 MW difference between the maximum power production (33.28 MW) in D1
and the minimum power production (32.19 MW) in D3. Although, there was significant
variation in the number of turbines between D1 and D5, the power productions from D1 to
D5 were almost similar. With the increase in the wind speed, the difference in the energy
produced between the five farm layouts (D1 to D5) increased. For example, in the winter,
the difference between the farms with a wind speed of 18 m/s was 8.2 MW between the
maximum and minimum power productions (872.46 and 864.27 MW).

In autumn (Table 11), the average wind speed was 10 m/s. D3 recorded the highest
energy production, with 111 turbines, at wind speeds of 10, 12, and 13 m/s. The power
produced reached 149.85 MW at a wind speed of 10 m/s in D3. On the other hand, D2
recorded the highest power production, with 149 turbines, at a wind speed of 5 m/s on the
fourth day. At a 10 m/s wind speed, D5 recorded the lowest power production (148.23 MW),
while at 5 m/s, D1 recorded the most insufficient power production (17.92 MW).

Table 11. Power produced in the wind farm with five rotor spacings for the autumn.

Date Wind Max.
Speed

Power of 256
Turbines in D1

(MW)

Power of 149
Turbines in D2

(MW)

Power of 111
Turbines in D3

(MW)

Power of 92
Turbines in D4

(MW)

Power of 81
Turbines in D5

(MW)

8/5/2017 12 258.56 257.77 258.63 257.6 255.96

9/5/2017 13 327.68 327.8 328.56 327.52 325.62

10/5/2017 10 148.48 149 149.85 149.04 148.23

11/5/2017 5 17.92 19.37 18.87 18.4 18.63

12/5/2017 10 148.48 149 149.85 149.04 148.23

13/5/2017 10 148.48 149 149.85 149.04 148.23

14/5/2017 10 148.48 149 149.85 149.04 148.23

The spring season (Table 12), was similar to autumn. The D3 wind farm recorded the
highest power productivity on all days of the week, except for the sixth day. The average
wind speed on most days was 10 m/s. D1 recorded the highest power production on the
sixth day, with 256 turbines and a wind speed of 8 m/s. On the other hand, for the rest of
the six days of the week, D3 recorded the best energy production with 111 turbines and
wind speeds varying between 13 and 10 m/s.

Table 12. Power produced in the wind farm with five rotor spacings for the spring.

Date Wind Max.
Speed

Power of 256
Turbines in D1

(MW)

Power of 149
Turbines in D2

(MW)

Power of 111
Turbines in D3

(MW)

Power of 92
Turbines in D4

(MW)

Power of 81
Turbines in D5

(MW)

5/8/2017 10 148.48 149 149.85 149.04 148.23

6/8/2017 10 148.48 149 149.85 149.04 148.23

7/8/2017 10 148.48 149 149.85 149.04 148.23

8/8/2017 13 327.68 327.8 328.56 327.52 325.62

9/8/2017 12 258.56 257.77 258.63 257.6 255.96

10/8/2017 8 76.8 75.99 76.59 76.36 76.14

11/8/2017 10 148.48 149 149.85 149.04 148.23

In summer (Table 13), the wind speed was 8 m/s on most days, except on the fifth
day, it was 10 m/s. The power production was almost similar in all five layouts from D1 to
D5 when the wind speed was 8 m/s; D1 recorded a slight increase in power production
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and reached 76.8 MW. The difference between the power prediction in the wind farms was
approximately 0.8 MW at a wind speed of 8 m/s, while it was 1.6 MW at a wind speed of
10 m/s. This assures the notation that whenever the wind speeds increased, the variance of
the power productivity increased from D1 to D5. From the power produced during the
sample weeks (Table 13), it is observed that the power produced was uneven and unstable
due to the considerable variation in the wind speed. On the first day during the sample
week of the wind farm, the wind speed was monitored at 18 m/s, with a power production
rate of 870 MW, while on the second day, it decreased to 6 m/s, which led to a decrease
in the power produced in the farm to approximately 33 MW. Wind speeds were broadly
similar during the sample weeks in autumn and spring. The average wind speed was
10 m/s, with an average power of approximately 149 MW. In the summer, the wind speed
decreased somewhat steadily to 8 m/s per week of the sample, and the power produced
was 76 MW.

Table 13. Power produced in wind farm with five rotor spacings for spring.

Date Wind Max.
Speed

Power of 256
Turbines in D1

(MW)

Power of 149
Turbines in D2

(MW)

Power of 111
Turbines in D3

(MW)

Power of 92
Turbines in D4

(MW)

Power of 81
Turbines in D5

(MW)

4/11/2017 8 76.8 75.99 76.59 76.36 76.14

5/11/2017 8 76.8 75.99 76.59 76.36 76.14

6/11/2017 8 76.8 75.99 76.59 76.36 76.14

7/11/2017 8 76.8 75.99 76.59 76.36 76.14

8/11/2017 10 148.48 149 149.85 149.04 148.23

9/11/2017 8 76.8 75.99 76.59 76.36 76.14

10/11/2017 8 76.8 75.99 76.59 76.36 76.14

7. Conclusions

The limitation of fossil fuel reserves and their disruption to the environment motivate
renewable energy generation. The ever-increasing energy demand has drawn attention
to renewable energy sources and other low-carbon, affordable energy sources for power
generation due to the associated challenges, such the depletion of fossil fuel reserves, their
price instability, and global climate change. In this work, five machine learning models
were applied to predict wind farm power, namely, random forest regression, decision tree
regression, gradient boosting regression, and linear regression. A case study concerning
a city in Saudi Arabia included 1283 data points that were gathered from January 2015
to July 2018 from a wind station in Makkah. Further, the layout to produce a wind farm
of 150 MW factoring the wake effect was considered. In the simulation studies, the wind
speed had the most effect on the amount of power produced. In addition, decision tree
regression was found to have the best accuracy values in all four used metrics, with 0.994
in R-squared, 0.025 in MAE, 0.273 in MSE, and 0.522 in RMSE, while the linear regression
scored the least in all four metrics. In the setting and layout of a wind farm in Makkah, 52 SG
2.9-129 turbines were required to produce approximately 150 MW of power. When taking
into account the wake effect, the number of wind turbines increased up to 81 turbines. Due
to the convergence of wind speeds, energy production at the planned wind farm during the
sample weeks was relatively stable in the summer season. However, due to the variability
in the wind speeds, the power production fluctuated much more in the winter. The higher
the wind speed, the more significant the difference in the energy production between the
five farm layouts, and vice versa, whereas at a low wind speed, there was no significant
difference in the power production in all of the near wake lengths of the 1D to 5D rotor
diameters downstream from the rotor disc. The case study was conducted for Makkah,
Saudi Arabia, and the obtained results were satisfactory and further provide support for
the construction of several wind farms, producing hundreds of MWs in Saudi Arabia.
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