Gas–Liquid Flow Behavior in Condensate Gas Wells under Different Development Stages
Abstract
:1. Introduction
2. Selection of Equation of State and Wellbore Flow Pressure Drop Calculation Model
2.1. Optimization of Equation of State
2.2. Optimization of Wellbore Flow Pressure Drop Calculation Model
3. Fluid Phase Changes in Different Development Stages of a Condensate Gas Reservoir
3.1. Phase Diagrams of Produced Fluids in Different Development Stages
3.2. The Change in Physical Properties of Produced Fluid in Different Development Stages
4. Gas–Liquid Flow Behavior in a Condensate Gas Well under Different Development Stages
4.1. Basic Data of Calculation and Analysis
4.1.1. Method for Dividing the Development Stages
4.1.2. Inflow Performance Relationship (IPR) Curve of a Gas Well
4.2. Analysis of Wellbore Flow Behavior under Different Development Stages
4.2.1. Analysis of Pressure Gradient in a Wellbore
4.2.2. Analysis of Critical Liquid-Carrying Gas Velocity
Calculation Formula of Critical Liquid-Carrying Gas Velocity
Effect of Fluid Component Change on Liquid-Carrying Capacity
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Liu, H.; Sun, C.-Y.; Yan, K.-L.; Ma, Q.-L.; Wang, J.; Chen, G.-J.; Xiao, X.-J.; Wang, H.-Y.; Zheng, X.-T.; Li, S. Phase behavior and compressibility factor of two China gas condensate samples at pressures up to 95 MPa. Fluid Phase Equilibria 2013, 337, 363–369. [Google Scholar] [CrossRef]
- Soave, G. Equilibrium constants from a modified Redlich-Kwong equation of state. Chem. Eng. Sci. 1972, 27, 1197–1203. [Google Scholar] [CrossRef]
- Peng, D.-Y.; Robinson, D.B. A new two-constant equation of state. Ind. Eng. Chem. Fundam. 1976, 15, 59–64. [Google Scholar] [CrossRef]
- Li, S.L. Natural Gas Engineering, 2rd ed; Petroleum Industry Press: Beijing, China, 2008; pp. 63–65. [Google Scholar]
- Nasrifar, K.; Bolland, O. Prediction of thermodynamic properties of natural gas mixtures using 10 equations of state including a new cubic two-constant equation of state. J. Pet. Sci. Eng. 2006, 51, 253–266. [Google Scholar] [CrossRef]
- Nazarzadeh, M.; Moshfeghian, M. New volume translated PR equation of state for pure compounds and gas condensate systems. Fluid Phase Equilibria 2013, 337, 214–223. [Google Scholar] [CrossRef]
- Bonyadi, M.; Esmaeilzadeh, F. Prediction of gas condensate properties by Esmaeilzadeh-Roshanfekr equation of state. Fluid Phase Equilibria 2007, 260, 326–334. [Google Scholar] [CrossRef]
- Elsharkawy, A.M. Predicting the dew point pressure for gas condensate reservoirs: Empirical models and equations of state. Fluid Phase Equilibria 2002, 193, 147–165. [Google Scholar] [CrossRef]
- Al-Meshari, A.A.; McCain, W.D. Validation of splitting the hydrocarbon plus fraction: First step in tuning equation-of-state. In Proceedings of the SPE Middle East Oil and Gas Show and Conference, Bahrain, Bahrain, 11–14 March 2007. [Google Scholar]
- Dandekar, A.Y. Effect of Fluid Characterization on CVD Liquid Drop-out Predictions of Gas Condensate Fluids Using an Equations of State Model. Energy Sources Part A 2008, 30, 1548–1562. [Google Scholar] [CrossRef]
- Whitson, C.H. Characterizing hydrocarbon plus fractions. SPE J. 1983, 23, 683–694. [Google Scholar] [CrossRef]
- Nasrifar, K.; Bolland, O.; Moshfeghian, M. Predicting natural gas dew points from 15 equations of state. Energy Fuels 2005, 19, 561–572. [Google Scholar] [CrossRef]
- Agarwal, R.K.; Li, Y.K.; Nghiem, L. A regression technique with dynamic parameter selection for phase-behavior matching. SPE Res. Eng. 1990, 5, 115–119. [Google Scholar] [CrossRef]
- Almarry, J.A.; Al-Sadoon, F.T. Prediction of liquid hydrocarbon recovery from a gas condensate reservoir. In Proceedings of the Middle East Oil Technical Conference and Exhibition, Bahrain, Bahrain, 11–14 March 1985. [Google Scholar]
- Zhu, J.H.; Hu, Y.Q.; Zhao, J.Z.; Zhang, R.Z. Calculation on change in borehole pressure of gas condensate well at the condition of phase change. Pet. Geol. Oilfield Dev. Daqing 2006, 26, 50–52. [Google Scholar]
- Adagülü, D.; Gumrah, F.; Sinayuç, C. Wellbore Modeling for Predicting the Flowing Behavior of Gas Condensate during Production. Energy Sources Part A 2009, 31, 783–795. [Google Scholar] [CrossRef]
- Meng, Y.X.; Li, X.F.; Yin, B.T.; Qi, M.M. The calculation of wellbore pressure distribution for condensate wells. J. Eng. Therm. 2010, 31, 1508–1512. [Google Scholar]
- Liu, X.G.; Yue, J.W.; Yi, F. Study on Law of Wellbore Continuous Liquid Carrying in Low Permeability Gas Field. Sino-Global Energy 2012, 17, 65–67. [Google Scholar]
- Li, Z.P.; Guo, Z.Z.; Lin, N. Calculation Method of Critical Flow Rate in Condensate Gas Wells Considering Real Interfacial Tension. Sci. Techol. Rev. 2014, 32, 28–32. [Google Scholar]
- Turner, R.G.; Hubbard, M.G.; Dulker, A.E. Analysis and prediction of minimum flow rate for the continuous removal of liquids from gas wells. J. Pet. Techol. 1969, 21, 1475–1482. [Google Scholar] [CrossRef]
- Zhou, C.; Wu, X.; Li, H.; Lin, H.; Liu, X.; Cao, M. Optimization of methods for liquid loading prediction in deep condensate gas wells. J. Pet. Sci. Eng. 2016, 146, 71–80. [Google Scholar] [CrossRef]
- Whitson, C.H.; Torp, S.B. Evaluating Constant-Volume Depletion Data. J. Pet. Techol. 1983, 35, 610–620. [Google Scholar] [CrossRef]
- Yuan, S.Y. Theory and Practice of Efficient Development of Condensate Gas Reservoirs, 1st ed.; Petroleum Industry Press: Beijing, China, 2003; pp. 8–11. [Google Scholar]
- Hagedorn, A.R.; Brown, K.E. Experimental study of pressure gradients occurring during continuous two-phase flow in small-diameter vertical conduits. J. Pet. Techol. 1965, 17, 475–484. [Google Scholar] [CrossRef]
- Brill, J.P.; Mukherjee, H. Multiphase Flow in Wells; Society of Petroleum Engineers of AIME: Richardson, TX, USA, 1999; pp. 31–32. [Google Scholar]
- Duns, H., Jr.; Ros, N.C.J. Vertical flow of gas and liquid mixtures in wells. In Proceedings of the Sixth World Petroleum Congress, Frankfurt, Germany, 19–26 June 1963. [Google Scholar]
- Ansari, A.M.; Sylvester, N.D.; Sarica, C.; Shoham, O.; Brill, J.P. A comprehensive mechanistic model for upward two-phase flow inwellbores. SPE Prod. Facil. 1994, 9, 143–152. [Google Scholar] [CrossRef] [Green Version]
- Liao, K.G.; Li, Y.C.; Yang, Z.; Zhong, H.Q. Study on pressure drop models of gas-liquid two-phase pipe flow in gas reservoir. Acta Petrolei Sin. 2009, 30, 607–612. [Google Scholar]
- Tian, Y.; Wang, Z.B.; Li, Y.C.; Bai, H.F.; Li, K.Z. Evaluation and optimization of wellbore pressure drop model for drainage and gas recovery by velocity string. Fault-Block Oil Gas Field 2015, 22, 130–133. [Google Scholar]
- Chen, D.C.; Xu, Y.X.; Meng, H.X.; Peng, G.Q.; Zhou, Z.F. Evaluation and optimization of pressure drop calculation models for gas-liquid two-phase pipe flow in gas well. Fault-Block Oil Gas Field 2017, 24, 840–843. [Google Scholar]
- Lea, J.F.; Nickens, H.V.; Wells, M.R. Gas Well Deliquification, 2nd ed.; Elsevier Press: Amsterdam, The Netherlands, 2003; pp. 31–34. [Google Scholar]
Component | Symbol | Pressure, MPa | ||||
---|---|---|---|---|---|---|
35.2 | 25.15 | 18.2 | 11.91 | 7.8 | ||
Carbon dioxide | CO2 | 0.0151 | 0.0158 | 0.0163 | 0.0174 | 0.0155 |
Methane | C1 | 0.7199 | 0.7643 | 0.7807 | 0.7835 | 0.7810 |
Ethane | C2 | 0.0517 | 0.0531 | 0.0538 | 0.0550 | 0.0559 |
Propane | C3 | 0.0387 | 0.0385 | 0.0425 | 0.0408 | 0.0447 |
iso-Butane | iC4 | 0.0110 | 0.0106 | 0.0117 | 0.0112 | 0.0124 |
n-Butane | nC4 | 0.0198 | 0.0185 | 0.0203 | 0.0197 | 0.0218 |
iso-Pentane | iC5 | 0.0122 | 0.0107 | 0.0116 | 0.0115 | 0.0126 |
n-Pentane | nC5 | 0.0103 | 0.0087 | 0.0093 | 0.0094 | 0.0102 |
Hexanes | C6 | 0.0217 | 0.0162 | 0.0139 | 0.0146 | 0.0147 |
Heptanes | C7 | 0.0163 | 0.0115 | 0.0087 | 0.0097 | 0.0096 |
Octanes | C8 | 0.0200 | 0.0137 | 0.0085 | 0.0084 | 0.0075 |
Nonanes | C9 | 0.0163 | 0.0116 | 0.0073 | 0.0064 | 0.0056 |
Decanes | C10 | 0.0113 | 0.0079 | 0.0051 | 0.0045 | 0.0037 |
Undecanes Plus | C11+ | 0.0356 | 0.0189 | 0.0101 | 0.0078 | 0.0048 |
C11+ Molecular weight | 217.36 | 200.82 | 192.38 | 190.05 | 178.20 | |
C11+ specific gravity | 0.8556 | 0.8439 | 0.8372 | 0.8353 | 0.8250 |
Choke Size | Daily Gas Production Rate, m3 | Daily Oil Production Rate, tons | Daily Water Production Rate, tons | Wellhead Pressure, MPa | Bottom-Hole Flow Pressure, MPa | Depth of Apparatus Entry, m | Test Pressure, MPa |
---|---|---|---|---|---|---|---|
4 mm | 34,949 | 32.4 | 0 | 21.3 | 36.92 | 2800 | 31.41 |
6 mm | 80,036 | 51.5 | 7.22 | 16.4 | 33.60 | 2800 | 28.09 |
8 mm | 118,336 | 81.7 | 11.45 | 14.6 | 27.21 | 2800 | 23.16 |
Choke Size | Choke (4 mm) | Choke (6 mm) | Choke (8 mm) | Error Mean, % | |||
---|---|---|---|---|---|---|---|
Measurement Point Pressure Error, % | Wellhead Pressure Error, % | Measurement Point Pressure Error, % | Wellhead Pressure Error, % | Measurement Point Pressure Error, % | Wellhead Pressure Error, % | ||
Ansari | 6.31 | 3.55 | 9.53 | 13.53 | 11.69 | 7.44 | 8.68 |
Gray | 8.18 | 2.81 | 10.55 | 16.65 | 11.14 | 8.38 | 9.62 |
Duns–Ros | 8.64 | 9.24 | 5.50 | 12.31 | 9.67 | 6.86 | 8.70 |
Hagedorn–Brown | 8.16 | 3.31 | 10.14 | 16.70 | 10.62 | 8.00 | 9.49 |
Bottom-Hole Pressure, MPa | 35.2 | 25.15 | 18.2 | 11.91 | 7.8 |
---|---|---|---|---|---|
Molecular weight | 35.58 | 29.45 | 26.46 | 25.96 | 25.42 |
Bottom-Hole Pressure, MPa | Molecular Weight | Density, kg m−3 | Viscosity, mPa s | Mass Fraction, % | ||||
---|---|---|---|---|---|---|---|---|
Gas | Oil | Gas | Oil | Gas | Oil | Gas | Oil | |
35.2 | 19.07 | 88.32 | 44.74 | 689.56 | 0.01164 | 0.5215 | 41.3 | 58.7 |
25.15 | 19.15 | 80.63 | 45.43 | 668.58 | 0.01164 | 0.4246 | 53.1 | 46.9 |
18.2 | 19.61 | 73.91 | 46.46 | 646.71 | 0.01162 | 0.3395 | 62.4 | 37.6 |
11.91 | 19.64 | 69.32 | 46.92 | 636.57 | 0.01163 | 0.3102 | 65.2 | 34.8 |
7.8 | 19.82 | 65.81 | 47.46 | 614.69 | 0.01161 | 0.2530 | 67.8 | 32.2 |
Development Stage | Reservoir Pressure, MPa | Bottom-Hole Pressure, MPa | Wellhead Pressure, MPa | Gas Production Rate, sm3·d−1 |
---|---|---|---|---|
Early | 41.9 | 39.7 | 22.4 | 2 × 104 |
Middle | 26.3 | 24.3 | 14.5 | 2 × 104 |
Late | 7.8 | 5.1 | 2.76 | 2 × 104 |
Depth, m | Mixture Density, kg·m−3 | Gas Mass Fraction, % | Pressure Gradient, Pa·m−1 | ||||||
---|---|---|---|---|---|---|---|---|---|
Early Stage | Middle Stage | Late Stage | Early Stage | Middle Stage | Late Stage | Early Stage | Middle Stage | Late Stage | |
−4329 | 345.72 | 215.71 | 38.09 | 100.00 | 85.24 | 97.86 | 3398 | 2221 | 558 |
−4267 | 345.31 | 214.81 | 37.62 | 100.00 | 85.11 | 97.62 | 3394 | 2214 | 552 |
−3962 | 345.16 | 212.66 | 36.95 | 100.00 | 83.75 | 97.31 | 3393 | 2199 | 547 |
−3657 | 347.30 | 212.75 | 36.13 | 89.76 | 80.35 | 96.74 | 3414 | 2207 | 551 |
−3352 | 350.67 | 213.94 | 35.96 | 78.75 | 77.35 | 96.63 | 3446 | 2225 | 560 |
−3048 | 354.98 | 215.40 | 35.72 | 65.35 | 73.57 | 96.35 | 3489 | 2247 | 569 |
−2743 | 359.64 | 217.14 | 35.34 | 58.64 | 71.67 | 94.43 | 3535 | 2271 | 578 |
−2438 | 362.89 | 219.07 | 34.92 | 50.24 | 68.64 | 93.21 | 3570 | 2298 | 585 |
−2133 | 366.63 | 221.41 | 34.61 | 47.91 | 66.61 | 91.93 | 3614 | 2328 | 594 |
−1828 | 370.94 | 223.54 | 34.25 | 44.86 | 63.80 | 90.16 | 3659 | 2356 | 596 |
−1524 | 376.11 | 225.94 | 33.56 | 42.69 | 61.35 | 88.64 | 3711 | 2386 | 596 |
−1219 | 380.50 | 228.63 | 33.13 | 40.28 | 59.66 | 86.92 | 3757 | 2418 | 595 |
−914 | 385.64 | 231.48 | 32.50 | 38.95 | 56.34 | 85.36 | 3809 | 2452 | 594 |
−609.6 | 391.70 | 234.44 | 31.69 | 36.54 | 54.37 | 83.10 | 3871 | 2486 | 593 |
−304.8 | 397.78 | 238.04 | 31.34 | 35.16 | 53.92 | 81.26 | 3932 | 2527 | 590 |
0 | 404.23 | 241.58 | 30.31 | 34.29 | 51.96 | 78.43 | 3996 | 2565 | 584 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, W.; Zhu, W.; Li, M. Gas–Liquid Flow Behavior in Condensate Gas Wells under Different Development Stages. Energies 2023, 16, 950. https://doi.org/10.3390/en16020950
Wang W, Zhu W, Li M. Gas–Liquid Flow Behavior in Condensate Gas Wells under Different Development Stages. Energies. 2023; 16(2):950. https://doi.org/10.3390/en16020950
Chicago/Turabian StyleWang, Weiyang, Wei Zhu, and Mingzhong Li. 2023. "Gas–Liquid Flow Behavior in Condensate Gas Wells under Different Development Stages" Energies 16, no. 2: 950. https://doi.org/10.3390/en16020950
APA StyleWang, W., Zhu, W., & Li, M. (2023). Gas–Liquid Flow Behavior in Condensate Gas Wells under Different Development Stages. Energies, 16(2), 950. https://doi.org/10.3390/en16020950