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Abstract: Most of the Artificial Intelligence (AI) models currently used in energy forecasting are
traditional and deterministic. Recently, a novel deep learning paradigm, called ‘transformer’, has
been developed, which adopts the mechanism of self-attention. Transformers are designed to better
process and predict sequential data sets (i.e., historical time records) as well as to track any relationship
in the sequential data. So far, a few transformer-based applications have been established, but no
industry-scale application exists to build energy forecasts. Accordingly, this study is the world’s first
to establish a transformer-based model to estimate the energy consumption of a real-scale university
library and benchmark with a baseline model (Support Vector Regression) SVR. With a large dataset
from 1 September 2017 to 13 November 2021 with 30 min granularity, the results using four historical
electricity readings to estimate one future reading demonstrate that the SVR (an R2 of 0.92) presents
superior performance than the transformer-based model (an R2 of 0.82). Across the sensitivity
analysis, the SVR model is more sensitive to the input close to the output. These findings provide
new insights into the research area of energy forecasting in either a specific building or a building
cluster in a city. The influences of the number of inputs and outputs related to the transformer-based
model will be investigated in the future.

Keywords: CO2 emissions; energy consumption; transformer; machine learning; building energy
performance; building physics; net zero energy building; artificial intelligence

1. Introduction

Overpopulation has been considered a global problem leading to a surge in energy
consumption [1]. World Energy Outlook 2022 by the International Energy Agency (IEA)
reports that electricity forms around 20% of the world’s total energy consumption. Due to
many countries’ pervasive electric vehicles and heat pumps, this trend could still go up by
25–30% by 2030. At the same time, the growth of economies relies on energy consumption,
proliferating the demand for energy [2]. However, the rising demand for energy sparks
considerable carbon emissions, which are harmful to the environment [3,4]. It is a difficult
trade-off between economic growth and a green environment. Hence, there is a requirement
to enhance energy efficiency by forecasting energy consumption. Energy prediction is an
approach to building net-zero concepts. It analyses building consumption in the future
with considerations of the environmental impacts. In addition to carbon neutrality, public
buildings’ electricity decarbonisation is imperative [5]. Forecasting energy consumption is
beneficial for decision-makers and policy-makers such as governments. Determining how
much energy will be consumed may assist in minimising energy consumption. Predicting
future energy consumption in the short and long term will enable developers to understand
which form of energy is most widely utilised and attempt to reverse the trend. Different
variables, such as water, wind, and temperature, influence the quantity of energy used in
various places. Forecasting energy can be challenging with various variables [6].

From air conditioners to light bulbs to power switches to intelligent interfaces, electric-
ity is supplied to operate different forms of equipment. While all are energy consumers,
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some equipment has excessive energy consumption. Mitigating such a high consumption
becomes even more critical, with a need to set effective solutions and measures. Never-
theless, setting such feasible solutions manually may be useless as they may be set based
on biased perspectives. It may be challenging for a human to consider interchangeable
and complicated variables regarding the energy-consuming factors at one time, leading to
setting inefficacious energy reduction measures. In the past, physical modelling techniques
(also known as white box models or engineering approaches) were used to predict energy
demand. Physical models established statistical models mainly based on thermodynamic
principles. Some physical-based software such as eQuest and EnergyPlus relied on the
buildings’ thermodynamic knowledge and environmental factors such as operation sched-
ules, building construction details, heating, ventilation, air conditioning, and weather
conditions [6]. However, this is not always a solution for predicting energy demand owing
to a lack of apparatuses in buildings recording the required information for the physical
models. On the other hand, physical models are laborious, which can be more dominant
for a modern big building.

To alleviate such laborious methods, data-driven methods referring to AI do not
need to include buildings’ energy consumption details instead of extracting patterns from
historical data. The blooming of Artificial Intelligence enhances unprecedented advances
in many domains. AI models have achieved great leaps in energy forecasting using a wide
range of features, from simple date and time information to more complex features such
as weather conditions and building designs. Much of the attention has focused on the
more traditional algorithms referring to Artificial Neural Networks (ANNs) [7], Recurrent
Neural Networks (RNNs) [8], Convolutional Neural Networks (CNNs) [9], Support Vector
Regression (SVR) [10], etc. According to a review for energy consumption forecasting
investigating conventional models and artificial-intelligence-based models [11], most of
the studies (48% within 129 studies) were favourable to AI models, followed by 43% of
the researchers using conventional models and the least number of users for other models.
Collapsing across the AI models, 77% were ANNs, and SVR accounted for 23%. Very little
about the transformer using self-attention for forecasting energy consumption is known. To
address this gap, here, we shed light on the role of the transformer—a novel, simple network
based on an attention mechanism showing superior performance and making a great stride
in Natural language processing (NLP). For example, Ref. [12] achieved a leap in machine
translation with features of more parallelisable and less time required to train. In [13], the
authors proposed a pre-trained transformer-based model, BERT—Bidirectional Encoder
Representations from Transformers, which delivered an unprecedented performance in 11
NLP tasks.

Motivated by the great success of transformers in the NLP domain, the transformer
technique has been dominant in the computer vision area. Convolutional Neural Networks
(CNNs) draw most of the attention in computer vision, such as [14,15], but transformers
became a player in computer vision, such as [16] leveraged transformers for object detection
and [17] for pixels prediction. Either of them in [16,17] presented comparable or better
performances compared to CNNs. More recent studies shared similar ways with us. Saoud
et al. utilised a hybridisation of stationary wavelet transform (SWT) and transformers to
predict five households’ power consumption in various resolutions (5 min and 10 min) [18].
Their results found that their proposed method outperformed the existing approaches such
as a deep transformer, Long Short-Term Memory (LSTM), LSTM-CNN, support vector
machine (SVM), and LSTM-SWT. Considering the limitation exhibited in [18], it is sensible
to enlarge the size and variability of input data to ameliorate the model’s generality. More
importantly, a large and variable dataset is used in our study to evaluate a relatively new
model in the energy consumption prediction domain—transformer—and a more traditional
model—SVR.

This study provides insight into if the self-attention mechanism is helpful in the energy
forecasting domain with a comprehensive dataset (1 December 2017—25 March 2021 with
30 min granularity) of the University of Birmingham library. The possible influence of
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the number of inputs and outputs was discussed in our previous study [19], signifying
that multiple outputs hindered the model’s capability, especially since the number of
outputs was large. Hence, we choose four historical timestamps to predict one following
timestamp as a subject. SVR shows superior performance in [19] compared to Long Short-
term Memory (LSTM) [20] and Extreme Gradient Boosting (XGBoosting) [21]. Therefore,
SVR is used as a benchmarking model here.

The contribution of this study can be summarised in the following points:

1. The performance of the transformer-based model is estimated in the energy forecasting
domain, which can provide some insights into the comparison between a conventional
model SVR and the transformer-based model.

2. The sensitivity analysis’s outcome shows there is no need to proliferate the input
length as the prediction is insensitive to the data point far away.

The remainder of the paper is organised as follows: Section 2 unveils details of the
dataset, how the raw data are pre-proceeded, knowledge of the transformer model and SVR,
hyperparameter tuning, and evaluation criteria. Section 3 provides results for estimating
the next 30 min, discussions with existing counterparts, and sensitivity analysis of the SVR.
Section 4 provides conclusions, limitations, and future directions.

2. Materials and Methods

The Energy Performance of Building Directive and the further recasts envisaged
a standard [22]—the Energy Performance Certificates (EPCs) to rate buildings’ energy
performance. However, the major obstacle to using EPCs has been the absence of the
reliability of data collection approaches. Therefore, Salvalai G and Sesana MM evaluated
the impact of the different methods to collect energy data [23], yielding that three levels of
monitoring, namely the basic level, medium level, and advanced level, were required for
different purposes. It is worth mentioning that the main library shown in Figure 1 uses the
advanced level specified in [23], as there is sub-metering to monitor each room’s energy
consumption.
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Electrical consumption in the library in Figure 1 constantly fluctuates throughout
the day, which can be affected by a couple of factors, such as materials used in buildings,
ventilation systems, heating systems, etc. These factors can be challenging to analyse due
to most buildings’ lack of energy-measuring technologies. However, the main library at
the University of Birmingham is one of the largest academic libraries in the UK, which is
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equipped with countless intelligent sensors to adjust ventilation, lighting, and air condi-
tioning based on circumambient factors such as temperature, visibility, and other weather
conditions. More importantly, the intelligent and modern facility allows the record of elec-
tricity usage at room level, providing an excellent dataset to study the energy forecasting
model’s efficacy. Figure 2a exemplifies the first eight days of electricity usage, showing
that electricity consumption significantly fluctuates during the day. It is straightforward
in the quiet period from 21:30 to 06:00: most energy consumptions fall into the range
between 150 and 200 kWh. However, the rest of the day seems very hard to follow. The
reason could be that the electricity consumption is recorded from 94 different rooms in
the library, which implies enormous variability can be possible. Figure 2b glances at the
variability of the dataset between days, also signifying a significant variability of the dataset.
Within the 50 days, the most significant difference is 12,000 kWh resulting from the peak
of 27,000 kWh and the bottom of 15,000 kWh. Therefore, this study can complement the
study in [16] to further examine the potential of the transformer. At the same time, we
do not consider the weather a necessary precondition. Hence, we seek to characterise
the inherent electricity usage pattern feature, as seen in Figure 3, which results from all
attributes affecting electricity consumption.
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Figure 2. Electricity consumption at two resolutions (a,b) overlook of the dataset (a) using 30 min
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for only eight days provided in (a) is the clear reading of the figure.
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2.1. Pre-Process Data

This section presents how we clear the dataset (addressing null values and checking
the consecutive of the dataset) and data formatting (transforming and formatting the
dataset to be used by Machine Learning (ML) models).

Figure 4 unveils the shape of the dataset after we remove the null values. The skip
timeslot is not considered in this study, so we also check if the dataset is consecutive by
checking the gap between every reading date and the previous date. The rationale for
this action is to avoid biases introduced by the Nan value processing, such as the Nan
value being replaced by the mean value or other methods. The whole dataset ranges from
1 September 2017 to 13 November 2021, but the section after 25 March 2021 is incomplete
due to Nan values, so the incomplete part is removed. The summation of columns can
manipulate the resolution to a larger granularity. However, the impact of granularity is not
in our scope of interest.
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2.2. Transformer

In this section, we outline the essential details to unfold how the transformer uses self-
attention to extract information from input and some techniques, such as skip connection
and layer normalisation, to help train the model.

2.2.1. Self-Attention

By addressing data in sequence problems, LSTM, RNN, and Gated Recurrent Unit
(GRU) have been established and have shown compelling results. However, RNN suffered
from the vanishing gradient problem [24], where LSTM and GRU mitigated but eliminated
the issue. Considering the constraint of the RNN that the result at t is dependent on the
result at t–1, the RNN is hard to parallel. A simple example in Figure 5a illustrates that y3
is calculated by x0 to x3 in sequence but in parallel. For the more extended sequence, the
RNN tends to lose some information due to the vanishing gradient problem, as the weight
easily vanishes and explodes when the sequence is long.

To address the present lack of parallel calculation and memory loss due to long se-
quences, Ref. [12] proposed a self-attention mechanism to calculate the correlation. Figure 6
shows a block of self-attention where all samples are converted to queries, keys, and values
(q, k, v in Figure 6) by the three matrices (Wq, Wk, and Wv). It is sensible to introduce
more sets of the three matrices to increase the number of attentions that can extract more
information from the input.
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Here, we show how self-attention works by using three samples. All samples share
the same three matrices, Wq, Wk, and Wv, to gain each sample’s query (q), key (k), and
value (v) using Equations (1)–(3). To evaluate the interplay between each pair of samples,
each sample’s query dot products each sample’s value to obtain the weights (θ) related
to each sample before being converted to weight by the softmax function in Equation (4).
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Noting that
√

d is an empirical value to reduce the value inside the SoftMax function to
prevent gradient vanishing, Equation (5) outputs the vector after the self-attention layer for
each sample.

qi = wq xi (1)

ki = wk xi (2)

vi = wv xi (3)

θi
0= softmax

(
q0 kT

i√
d

)
(4)

z0 = θi
0 vi (5)

2.2.2. Skip Connection and Layer Normalisation

Figure 7 exemplifies a skip function and normalization. The skip function was pro-
posed by [14] specifically for a very deep network where the error can be minor in the deep
layer leading to a difficulty that the model cannot learn from the minor error. This concern
can be solved by a skip connection that can propagate the error from the shallow layer to
the deep layer.

Normalisation is deployed to reduce the training time and the network’s overfitting
issue, especially for the deep neural network haunted by these two issues. Unlike batch
normalisation [25], layer normalisation presents a more straightforward mechanism due to
no new dependencies being introduced between training cases [26].

µt =
1
N

N

∑
i=1

xt
i (6)

σt =

√√√√ 1
N

N

∑
i=1

(xt
i − ut)

2 (7)

ht = f [
g
σt �

N

∑
i=1

at − µt) + b] (8)

where µ is the mean value, σ is the standard deviation, t is the number of layers, h is the
normalised value, and g and b are the learnable values to scale the normalised value.

2.3. SVR

Support vector machines were first developed by Vapnik [27] specifically for classifica-
tion problems. SVMs aim to locate the maximum margin to separate the classes, namely
hyperplane, which generally implies classifying as many training points as possible [28].
SVR, the variant of SVMs, was designed for regression problems by including an ε-tube,
as shown in Figure 8. SVR’s optimisation problem is now reformulated to find the ε-tube
that best fits the training samples. The red samples outside the ε-tube are ditched, but the
samples within the tube region that do not fall on the estimated line can still be retained
and receive no penalty. One major strength of SVR is that its computational complexity is
insensitive to the number of input features. In addition, SVR is selected for its accuracy
and excellent generalizability.
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2.4. Hyperparameter Tuning

Apart from the learnable parameters such as weights and biases, some parameters
known as hyper-parameters are not learnable but pre-defined. To ensure the model can
deliver optimal performance, it is necessary to conduct a hyper-parameter tuning process
manually or by tuning techniques. Using the optimal subset of hyper-parameters for AI
models directly influences models’ performance. Manually selecting the best hyperparame-
ters demands a comprehensive understanding of AI algorithms and good hyperparameter
tuning capabilities. There are some automatic tuning techniques available. However,
practical evaluation before choosing one is required as they have different benefits and
drawbacks in various cases.

A hyperparameter tuning technique employed in the study is random search due to
the time-saving and productivity compared to manual tuning and other methods such as
grid search [29]. Grid search tends to take a long time. However, it shows no apparent
benefit over the random search, especially when the search space is ample, according to
research carried out by Bergstra et al. using seven different datasets trained on neural
networks [30]. In Bergstra et al.’s findings, the random search showed equivalent or
comparable results among four out of seven datasets and superior performance in one of
seven datasets using the lower computational budget. It is possible that the random search
can also outperform using the four datasets if the same computational budget as the grid
search is provided for the random search. Table 1 illustrates the pre-defined space for the
random search to identify the optimal subset. It is worth mentioning that SVR’s kernel
function RBF is used to alleviate the overfitting—a common issue that the model overfits
the training set and lacks generalisation in other unseen or new datasets [31].

Table 1. The searching space of the hyperparameters.

Algorithms Hyperparameters Searching Space

Transformer

The No. of attention 1–256
The no. of units for the feedforward layer 32–256

The no. of attention blocks 1–20
Dropout rate 1 × 10−1–0.9 × 10−1

Learning rate 1 × 10−1–1 × 10−6

SVR
Epsilon 1 × 10−2–2 × 10−1

C 1–2000
Kernel RBF

2.5. Metrics

Motivated by the ubiquitous method, ML models, used in the energy forecasting
domain, the American Society of Heating, Refrigerating and Air-Conditioning Engineers
(ASHRAE) unified a metric, the coefficient of variation (CV), to interpret and benchmark
the model’s result [32]. At the same time, the model’s performance in the study is also
evaluated by the Root Mean Squared Error (RMSE) [33] and coefficient of determination
(R2) [34] to circumvent potential biased interpretation of the result. All three metrics are
given below.

CV =

√
1

N−1 ∑N
i=1 (yi − ŷI)

2

y
× 100 (9)

RMSE =

√√√√ 1
N

N

∑
i=1

(ŷi − yi)
2 (10)

R2 = 1− ∑N
i=1(ŷi − yi)

2

∑N
i=1(ŷi − y)2 (11)
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where yi indicates the actual value; ŷI is the predicted value; y is the mean value of actual
energy consumption; N refers to the number of samples.

3. Results and Discussions

Table 2 presents results from two optimal models based on the testing dataset (70%
training set, 10% validation set, and 20% testing set) using the tuned values shown in
Table 3. SVR procures the least CV (12%), followed by 18% gained by the transformer.
During the training process, the transformer and SVR are fed with [Xt−3, Xt−2, Xt−1, Xt] to
predict Xt+1, where X is the dataset and t refers to the timestamp right now. A widely used
optimiser—Adam optimiser [35]—is adapted with the benefits of being computationally
efficient, having little memory requirements, and being suitable for problems with large
datasets. A key hyper-parameter learning rate from 0.1 to 1 × 10−6 with log sampling is
set to find the optimal learning rate for the model. The transformer model is regularised by
the dropout layer from overfitting in a range of 1 × 10−1 to 0.9 × 10−1 with an increment
of 0.1. The transformer’s architecture is delivered and implemented by Keras backend [36]
and Tensorflow [37], while SVR is implemented with scikit-learn [38].

Table 2. Regression performances for the two models.

Models CV R2 RMSE

Transformer 17.0652% 0.8238 76.9611
SVR 12.1949% 0.9196 54.9363

SVR in [18] N/A N/A 0.0296
The transformer in [18] N/A N/A 0.0182

The proposed method in [18] N/A N/A 0.009

Table 3. Optimal hyperparameters for the two models.

Algorithms Hyperparameters Tuned Value

Transformer

The No. of attention 256
The no. of units for the feedforward layer 224

The no. of attention blocks 4
Dropout rate 0.2
Learning rate 0.0013

SVR
Epsilon 0.089

C 19
Kernel RBF

In view of past work [39], electricity consumption is weather-dependent. Therefore,
they used 140 sensors to monitor weather attributes and achieved 20.05% CV. Only one
feature is used here and delivers better results than [10], implying that weather attributes
are not a precondition to predict future electricity load. At the same time, it is noted that
SVR outperforms the transformer with about 10% more R2, 20 kWh less RMSE, and 5%
less CV.

In counterpart [18], they also used transformer and SVR to predict five households’
energy consumption in multiple time granularities—5 min, 10 min, 20 min, and 30 min. The
dataset acquired by the UK-DALE project [40] in 2015 was used to develop their models.
In the following, we discuss and compare our results with the result of the resolution of
30 min in [18]. The common metric is RMSE between our study and [18], which delivered
an optimal RMSE of 0.0296 for the SVR, 0.0182 for the transformer, and 0.009 for the
transformer + SWT (proposed by them). It is noticeable that the RMSEs of our models are
considerably larger than those in [18] because the RMSE is a scale-dependent measure, and
it is not comparable to the different cases using RMSE. This is one of the reasons why CV, a
measure independent of the unit or widely different means, has been introduced. However,
in our case, the SVR shows superior performance than the transformer, which is the other
way around in [18].
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Sensitivity analysis is only conducted on the outperformed model—SVR—to showcase
the main contributing factor to the prediction. Dimopoulos and Bakas [41] used a variant
method from [42,43] to analyse and characterise each independent variable’s impact on the
dependent variable. A significant advantage of sensitivity analysis conducted here is that
we can examine if the feature close to the prediction has a more significant effect. Figure 9
unveils how the sensitivity analysis factor is determined. The original dataset is modified
to (x0, x0

mean, x1
mean, x2

mean), which subsequently is used to train the optimal SVR to gain
y0

max and y0
min. Equations (12) and (13) are given to calculate the corresponding sensitivity

analysis for the features.
In = yn

max−yn
min (12)

Sn =
In

∑n In
(13)

where I is the difference between the estimated electricity consumption, S is the sensitivity
analysis factor, and n is the feature. Figure 10 shows the sensitivity analysis results from
the timestamp far away (X0) and closest (X3) to the predicted values. Although all four
features see similar sensitivity to electricity consumption, the impact of the features close
to the predicted value still presents a more significant impact on the prediction.
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4. Conclusions

This study is designed to determine the real-world efficacy of the transformer model
in the energy forecasting domain, as the transformer shows a dominant performance in
language translation compared to the RNN. The transformer also allows parallelisation that
the RNN is not able to provide. Comparing the transformer and SVR yields a conclusion
that the transformer fails to provide outstanding results as it does in other domains. The
second significant finding is that the predicted value is proportional to its closeness found
in the sensitivity analysis section. This study also underpins and strengthens the finding
in our previous research [19] that the weather feature is not a prerequisite to forecast
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energy demand for a public residential building or a public building such as a library.
These findings contribute to existing knowledge of a transformer-based model used in the
energy forecasting area by proving that the transformer does not perform better than a
traditional SVR.

A sound model for predicting electricity consumption benefits the supplier, the end-
user, and the environment. It helps save unnecessary costs and resources from undesigned
activities of the buildings and the power plants. There is no consideration of the length of
the input and output. However, this can be important to the transformer as the mechanism
is designed for a long sequence which can be a future investigation. It is also unfortu-
nate that the study does not include ensemble methods in which the combination of the
transformer-based model and the SVR model can achieve an enhancement. Predicting
other utility services, such as water and natural gas, will be a fruitful area for further work.
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