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Abstract: To be able to predict the DC flashover characteristics of composite insulators, a four-layer
BP neural network model is established with composite insulator shed structure parameters as
the input. Three algorithms (gradient descent with momentum, RMSProp gradient descent, and
Adam gradient descent) are applied, and the DC pollution flashover experimental data of composite
insulators are used as training data. The results show that all three algorithms have good prediction
capabilities. Among them, the Adam gradient descent model has the best prediction result, which
can make the average prediction with an error of less than 4% and a maximum error of less than
8%, so these results can provide a reference for the design of composite insulators in DC voltage and
product performance verifications.
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1. Introduction

Composite insulators have become the main solution for the external insulation prob-
lem of transmission projects. According to incomplete statistics, more than 10 million
composite insulators have been used in the Chinese Power Grid [1–3]. However, there is
still no unified standard for the shape design of composite insulators at this time. Vendors
often manufacture a variety of products with different shed structural parameters based on
the project requirements for creepage distance or insulation distance and the limitations
of their own molds. However, existing studies have shown that shed parameters have a
significant impact on the pollution flashover characteristics of composite insulators. By sim-
ulating the meteorological environment in an artificial climate chamber, some researchers
have used composite insulators with different shed combinations to evaluate their external
insulation characteristics by conducting artificial pollution flashover experiments. The
results showed that although the creepage distance of composite insulators had increased,
the pollution flashover voltage did not increase significantly [4,5]. Furthermore, the test
results also showed that depending on the shed combination of composite insulators, the
maximum difference in flashover voltage per unit insulation height can be 24.9% [6]. Other
scholars have also concluded that the shape of composite insulators has a greater influence
on their insulation performance than creepage distance [7].

The influence of the shed configurations of composite insulators varies in different
operating environments: For instance, the icing state of the insulator will be distinct due
to different shed structures, which will affect the insulation performance of the insulator
under icing conditions [8]. Moreover, in rainy conditions, some studies used the finite
element analysis method to illustrate how the shed parameters dominate the electric field
distribution along the insulator surface [9].

Consequently, under the same insulation distance, products with different shed pa-
rameters will have different insulation properties. Therefore, in order to improve the
performance of composite insulators, during the design process it is important to select
appropriate shed combinations and parameters according to their working environment.
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The traditional optimization method of shed parameters starts by designing a variety of
test products with different parameters, then the vendor will change the mold to produce
these test products, followed by the use of an artificial pollution test to compare the pol-
lution flashover voltage of these test products. Products with better pollution flashover
performances will be selected. However, this method has a high cost and a long research
period, which is not suitable for large-scale implementation.

As a machine learning method that has emerged in recent years, neural networks have
been widely used in external insulation-related research. Some studies have established
convolutional neural network models to automatically locate and classify insulator de-
fects on transmission lines. The detection precision of these models can reach more than
90% [10,11]. By analyzing a large number of leakage current data obtained by monitoring
devices on operating insulators, some researchers built a BP neural network model to fit
the distribution of leakage current. It has been shown that this model can reliably predict
the leakage current on the insulator surface [12,13]. It is worth mentioning that a neural net-
work algorithm also was applied to predict the flashover performance of external insulation
equipment. Most training data were obtained by performing experiments in high-voltage
laboratories where the operating weather and environment could be simulated artificially.
The results demonstrated the ability of the proposed neural network to predict the required
parameters with considerable accuracy [14]. Furthermore, the application of deep learn-
ing in the design of composite insulators’ profiles has also been reported [15]. Studies
quantified the related influencing factors including equivalent salt deposit density, shed
diameter, shed spacing, etc., in DC flashover experiments, and built an artificial neural
network model to analyze the effect of these factors on the flashover voltages.

In conclusion, in order to further demonstrate the value of the data obtained from the
artificial pollution test, building a neural network model is a forward-looking and effective
method, which can save the test cost and time while improving the intelligence level of the
external insulation design of the power grid. For this purpose, this paper establishes a four-
layer backpropagation (BP) neural network that takes composite insulator shed structure
parameters as the inputs, with the DC pollution flashover voltage per insulation distance
and the DC pollution flashover voltage per creepage distance as the outputs. The DC
pollution flashover voltage of composite insulators was predicted using gradient descent
with momentum, RMSProp gradient descent, and Adam gradient descent. The most
suitable algorithm was selected to build a neural network model based on the prediction
results. Finally, the trained model is used to predict and analyze the influence of different
shed structure parameters on the DC pollution flashover voltage of composite insulators.
This work shows that neural networks have preferable prediction capabilities for the
flashover voltages of composite insulators, and can provide a reference for the design of
insulator shed parameters of favorable engineering application value.

2. Methods
2.1. Data Set

Under the requirements for certain insulation distances and creepage distances, com-
posite insulator vendors can produce composite insulators with different shed parameters
according to their own molds. Currently, composite insulators with large/small shed com-
binations and large/small/small shed combinations are used widely in existing artificial
pollution tests, so this article summarizes the pollution test results of 29 types of composite
insulators with different combinations of large/small shed parameters, and 23 types of
composite insulators with different large/small/small shed parameter combinations. The
experimental data were used as the training and testing data set of the BP neural network.
The experimental parameters of the artificial pollution test are shown in Table 1: ρESDD
is the equivalent salt deposit density of the insulator surface contamination; ρNSDD is the
nonsoluble deposit density of the insulator surface contamination; and temperature and
humidity are the experimental environments.
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Table 1. Experimental parameters of artificial pollution test.

ρESDD (mg/cm2) ρNSDD (mg/cm2) Temperature (◦C) Humidity

0.1 0.6 20~30 30~50%

The composite insulator structure of two different shed combination modes is shown
in Figure 1, where P1 is the radius of the large shed, P2 is the radius of the small shed, S1 is
the distance between two large sheds, S2 is the distance between two adjacent sheds, α is
the up-shed angle, and β is the down-shed angle. Settings: α = 12◦, β = 7◦, P1–P2 ≥ 20 mm,
S1 ≥ 80 mm (large/small) or S1 ≥ 90 mm (large/small/small).
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2.2. Data Preprocessing

When inputting data into the neural network, to prevent the gradient explosion
phenomenon caused by the large difference in the magnitude of the input data range [16],
P1, P2, and S1 can be normalized based on Equation (1), and the training of the neural
network can also be accelerated.

x = 0.1 + 0.8
(x − xmin)

(x max − xmin)
(1)

In Equation (1), x is the input sample data of P1, P2, and S1, xmin is the minimum value
of the sample data, and xmax is the maximum value of the sample data. The input of the
neural network can be fixed in the range of 0.1 and 0.9 after normalization.

The DC pollution flashover voltage data of composite insulators are also normalized
for comparison. One group of composite insulator pollution flashover experimental data
results are selected from the sample as a baseline, U0H is the pollution flashover voltage
per unit insulation distance, and voltage per unit creepage distance, U0C, is the pollution
flashover voltage per unit creepage distance. The result is normalized by Equation (2):{

K1 = UxH
U0H

K2 = UxC
U0C

(2)

where K1 is the per-unit value of pollution flashover voltage of the composite insulators
with different shed structure parameters (UxH and U0H) in the sample, K2 is the per-unit
value of pollution flashover voltage creepage distance of the composite insulators with
different shed structure parameters (UxC and U0C).

2.3. BP Neural Network Model

A four-layer BP neural network model was established, with large shed extension
P1, small shed extension P2, large shed spacing S1, and large and small shed combination
mode variable Cshed as inputs, and K1 and K2 as outputs. Among them, Cshed is used to
digitize the combination of large and small sheds to convert them into a form that is easy
to use by machine learning algorithms. When Cshed = 0, the input is the shed data of the
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“big/small shed” combination, and when Cshed = 1, the input is the shed data of the “big
shed/small/small shed” combination.

The structure of the four-layer BP neural network is shown in Figure 2, including the
input layer, hidden layer 1, hidden layer 2, and output layer. Compared with the three-layer
BP neural network with a single hidden layer, the network with two hidden layers can
better fit the output with the input. The number of neurons in the hidden layer is set to
nine according to the empirical equation 2N + 1 (N is the number of neurons in the input
layer) [17].
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The ReLU function is selected as the activation function of the neuron, and the equation
is shown in Equation (3).

Relu(x) =
{

x x > 0
0 x ≤ 0

(3)

Compared with the traditional sigmoid activation function, the ReLU function will
avoid the disappearance of the gradient during the network training process, and the ReLU
function has a faster calculation speed and convergence speed [18].

2.4. BP Algorithm

The predicted value ŷ is calculated through the forward propagation link, which is
used as the input of the loss function Equation (4) together with the actual value y.

loss =
1
m

m

∑
i=0

(y(i) − ŷ(i))
2

(4)

where m is the number of samples, and ŷ(i) and y(i) represent the predicted value and actual
value of the i-th sample, respectively. The calculated loss is the Mean Squared Error (MSE)
value of the predicted value and the actual value.

The BP of the neural network is used to obtain the gradient of the weights of each
layer based on taking the derivative of the weights of each layer of the network through
the loss function. The weights of each layer of the network are then updated according
to the gradient and the learning rate of the network, as shown in Equation (5) (standard
gradient descent): {

dW(n) = ∂loss
∂W(n)

W(n)= W(n) − αdW(n) (5)
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where W(n) represents the weight of the n-th layer of the network, dW(n) represents the
calculated gradient of the n-th layer of the network, and α is the learning rate of the network.
As the number of neural network training iterations increases, the network weights will be
adjusted, the loss function will gradually converge, and the predicted value ŷ will move
closer to the actual value y.

For the neural network model, different algorithms in the BP will affect the perfor-
mance of the neural network, e.g., the convergence speed and the accuracy of the prediction.
Common optimization algorithms include mini-batch [19], gradient descent with momen-
tum, RMSProp (Root mean square propagation) gradient descent, and Adam gradient
descent [20]. The mini-batch algorithm is used in the case of a large amount of data, and
will not be discussed in this article. This paper compares the results of three algorithms:
gradient descent with momentum, RMSProp gradient descent, and Adam gradient descent.
The principles of the three algorithms are discussed below:

1. The gradient descent with momentum algorithm updates the weights after taking the
exponentially weighted average of the gradient dW calculated by Equation (5). As
shown in Equation (6), compared with the standard gradient descent, the gradient
descent with momentum method can reduce the swing in the gradient descent process
and increase the convergence speed.{

vdW(n)= βvdw(n)+(1 − β)dW(n)

W(n)= W(n) − αdvdW(n)
(6)

where vdW(n) is the exponentially weighted average of the gradient dW(n), β is an
adjustable hyperparameter, and α is the learning rate. vdW(n) includes the result of
the previous BP process and the gradient calculated by the current BP process. vdW(n)

is used to update the network weight W(n) to avoid the vibration of the W(n) value. In
this way, the loss function can converge faster.

2. The RMSProp gradient descent algorithm calculates the exponentially weighted
average of the gradient square and then updates the weights based on the learning rate,
gradient, and exponentially weighted average. The equation is shown in Equation (7).SdW(n)= βSdW(n) + (1− β)

(
dW(n)

)2

W(n)= W(n) − α dW(n)
√

SdW+ε

(7)

where SdW(n) is the exponentially weighted average of the square of the gradient
dW(n), β is an adjustable hyperparameter, α is the learning rate of the network, ε is a
small real number to set the denominator to a nonzero value. As can be seen from
Equation (7), when SdW(n) is large, the update speed of weight W(n) is slow because s
is in the denominator. When SdW(n) is small, the update speed of weight W(n) is fast.
RMSProp can obtain faster learning progress of weights in the gentle parameter set,
reduce the oscillation of weights in the steep parameter set, and speed up the learning
speed of the neural network.

3. Adam gradient descent is a combination of gradient descent with momentum and
RMSProp gradient descent. It is one of the most effective algorithms for training
neural networks. The algorithm is shown in Equation (8).SdW(n)= βSdW(n) + (1− β)

(
dW(n)

)2

W(n)= W(n) − α dW(n)
√

SdW+ε

(8)

where vdW(n) is the exponentially weighted average of the gradient, SdW(n) is the
exponentially weighted average of the square of the gradient, β1 and β2 are adjustable
hyperparameters, α is the learning rate of the network, and ε is a small real number
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that prevents the denominator from being 0. Adam algorithm has the advantages of
fast convergence speeds and good learning results. It can avoid the loss of learning
rate and the loss of function oscillation.

3. BP Neural Network Model Training and Prediction Results

This paper builds a BP neural network model based on the Python and Tensorflow
deep learning framework. Three different algorithms were used, gradient descent with
momentum, RMSProp gradient descent, and Adam gradient descent. Fifty-two sets of data
were divided into 2 sets, of which 42 sets of data were used as the training set, and 10 sets
of data were the test values. The parameter settings for data training are shown in Table 2.

Table 2. Network parameters.

Gradient Descent
Algorithm Train Epochs Learning Rate α Hyperparameter

Momentum 50 0.01 B = 0.9
RMSProp 50 0.01 B = 0.9 and ε = 10−7

Adam 50 0.01 β1 = 0.9, β2 = 0.999, and ε = 10−7

The loss function curve obtained based on the BP neural network model established
in this paper for the three algorithms is shown in Figure 3. The result shows that under the
data set conditions of this paper, the convergence speed of the three loss function curves
has no obvious difference. The loss function tends to converge after about 20 training sets,
and the Adam gradient descent algorithm obtains the smoothest model loss function curve.
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The 10 sets of test data were inputted into the trained BP neural network model, and
the comparison between the predicted value of the model and the actual value under three
different gradient descent algorithms is shown in Figure 4.

As can be seen from Figure 4, the flashover voltage per unit insulation height K1
and flashover voltage per unit creepage distance K2 are predicted by the gradient descent
with the momentum algorithm. The maximum errors are about 11.4% and 16.8%, and the
average errors are about 6.1% and 6.8%. For the RMSProp gradient descent algorithm,
the maximum errors for K1 and K2 are about 7.8% and 9.0%, and the average errors are
about 3.4% and 5.1%, respectively. For the Adam gradient descent algorithm, the maximum
errors for the predicted K1 and K2 are about 5.3% and 7.3%, and the average errors are
about 2.1% and 3.4%. The comparison results are shown in Figure 5.
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From the results in Figure 5, it can be found that the average error for the prediction
results of the flashover resistance of composite insulators by the three neural networks is
smaller than 7%. Due to the small number of data sets, there is no significant difference in
the convergence speed of the loss function during the training of different models. Among
the three algorithms, the Adam gradient descent algorithm has the best performance. Not
only does it have a smoother loss function curve, but the error between the final output
predicted value and the actual value is also relatively low. Given that there is a certain
error in the artificial flashover experiment itself, it demonstrates that the BP neural network
model using the Adam gradient descent algorithm has a better prediction of the flashover
resistance of composite insulators.

SVM (support vector machine) is using commonly in machine learning. To prove the
superiority of the neural network model, we used the data set established in this paper for
training and used SVM to build a model. The comparison between the SVM and neural
network is shown in Table 3. It can be seen that the prediction accuracy of neural networks
using the Adam algorithm is much higher than for SVM.
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Table 3. Model accuracy.

Model Value Average Accuracy

SVM
K1 92.1%
K2 89.7%

Neural Network with Adam
K1 97.9%
K2 96.6%

4. Discussion and Prospect

The neural network model used in this paper has a good prediction accuracy, which is
acceptable in engineering applications. This method is simple and efficient to implement,
which is the main reason why this model been chosen. Admittedly, there are other methods
that can further improve the prediction effect (accuracy) of the model, such as making more
improvements to the algorithm, or combining neural network and other commonly used
optimization algorithms (e.g. the Ant Colony). However, due to the small number of data
sets, the model has the possibility of over-fitting. The main way to improve the robustness
of the model is to increase the number of data sets, even if there is a certain possibility
that the accuracy of the model will be reduced. Specifically, it is difficult to obtain the data
of insulator pollution flashover voltage, so the existing research is carried out under the
condition of small amount of data. In the future, algorithms for small data sets will be the
focus of research in this field.

With the rapid development of deep learning technology, more work related to the
application in HVDC system would be carried out in the future. At present, some achieve-
ments in the field of computer vision have been applied, including the use of various CNN
models for intelligent identification of equipment features or defects with good results.
Moreover, it is believed that an intelligent platform that can monitor the operation of HVDC
system in real time and online will soon be widely applied and promoted. This achievement
would further improve the digital level of power system and significantly facilitating the
establishment of a new energy system. The digital twinning of HVDC system is also a
feasible research direction in the future.

5. Conclusions

Three types of four-layer BP neural network models using different gradient descent
algorithms were established. The neural network was trained with data for the insulator
DC pollution flashover experiment as the input. The results proved that gradient descent
with momentum, RMSProp gradient descent, and Adam gradient descent can all predict
the pollution flashover characteristics of composite insulators to a certain level.

Among the three neural network models, it was found that the Adam gradient descent
model had the best prediction effect. The average error was only about 4%, and the
maximum errors were smaller than 8%. This can provide a reference for the design of
composite insulator shed structures. There is still room for further optimization of the model
given that there were only a few data sets available for the training of the neural networks.
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