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Abstract: Recently, building automation system (BAS) and building energy management system
(BEMS) technologies have been applied to efficiently reduce the energy consumption of buildings. In
addition, studies on utilizing large quantities of building data have been actively conducted using
artificial intelligence and machine learning. However, the high cost and installation difficulties
limit the use of measuring devices to sense the indoor environment of all buildings. Therefore, this
study developed a comprehensive indoor environment sensor module with relatively inexpensive
sensors to measure the indoor environment of a university building. In addition, an algorithm for
predicting the load in real time through machine learning based on indoor environment measurement
is proposed. When the reliability of the algorithm for predicting the number of occupants and load
according to the indoor CO2 concentration was quantitatively assessed, the mean squared error
(MSE), root mean square deviation (RMSD), and mean absolute error (MAE) were calculated to be
23.1, 4.8, and 2.5, respectively, indicating the high accuracy of the algorithm. Since the sensor used in
this study is economical and can be easily applied to existing buildings, it is expected to be favorable
for the dissemination of load prediction technology.

Keywords: energy consumption; load prediction algorithm; indoor environment sensor module;
university buildings

1. Introduction

With rapid climate change, efforts to reduce greenhouse gas (GHG) emissions have
been made in various fields worldwide [1]. The Republic of Korea set its Nationally Deter-
mined Contribution (NDC) at 26.3% compared to 2018 by establishing a carbon neutrality
committee, but its NDC increased by 40% from 2018 to October 2021. Accordingly, the
carbon reduction goal of the building sector significantly increased from 19.5 to 32.8% [2].

In addition, the Ministry of Land, Infrastructure, and Transport in the Republic of
Korea implemented “The Zero-Energy Building Roadmap 2030” in 2020. According to the
roadmap, zero-energy buildings became mandatory for public buildings over 1000 m2 in
2020. They will also become compulsory for public buildings over 500 m2, private buildings
over 1000 m2, and apartments with 30 households or more in 2025, as well as all buildings
over 500 m2 in 2030 [3,4].

In the Republic of Korea, the energy consumption of the building sector accounts
for more than 30% of the national energy consumption. As of 2020, the building sector
represents 2.5% of the companies with high energy consumption of over 2000 tons per year.
Excluding large companies that consume over 10ˆ5 tons per year in the industrial sector,
the energy consumption of the building sector was found to represent approximately 14.4%
of the total energy consumption. Among buildings with high energy consumption, the
energy consumption of public facilities, apartments, hospitals, and Internet data center
(IDC) industries was found to continuously increase. IDC exhibited the highest average
building energy consumption, followed by research institutes, public facilities, hospitals,
hotels, and schools [5].
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For most buildings with a high energy consumption, it is difficult to save energy
without lowering the quality of service because such buildings must be operated 24 h a
day and 365 days a year to provide high-quality services [6,7]. Therefore, a method was
developed to reduce energy consumption by generating usable energy through renewable
energy systems [8]. However, as of 2020, buildings with high energy consumption were
found to produce very little renewable energy—just 3.5% of the total energy consumption.

The university building used in this study has relatively regular occupant schedules,
but it is difficult to maintain a comfortable indoor environment because the load on the
equipment to maintain a comfortable thermal environment rapidly changes due to the high
number of people occupying a single space [9]. In addition, as cooling/heating devices
and lighting are manually controlled, energy is often wasted because the equipment is not
properly turned off even after the occupants’ exit [10].

As such, research on building automation system (BAS) and building energy man-
agement system (BEMS) technologies has been conducted [11]. These systems reduce
energy consumption by predicting the energy consumed in buildings and applying the
optimal operation method for equipment [12], which helps save the energy consumed
in buildings and results in eco-friendly buildings. In addition, artificial intelligence and
machine learning, which are useful in recognizing and predicting data patterns, have been
actively applied in building energy scenarios to rapidly calculate energy consumption
using large quantities of building data [13].

Byung-Ki Jeon et al. recently attempted to achieve multiple goals for thermal comfort
and energy saving by applying an energy storage system (ESS) and an energy predictive
control algorithm (model predictive control, also known as MPC) to save the energy
consumed in buildings. They reduced electrical energy consumption by 55% compared to
the existing operation method using MPC based on a genetic algorithm [14].

Hossein Moayedi et al. investigated the cooling/heating energy consumption of resi-
dential buildings and predicted cooling and heating loads according to the floor area using
the Grasshopper Optimization Algorithm, Wind-Driven Optimization, and Biogeography-
Based Optimization (BBO) to reduce energy consumption in smart cities. They found that
the BBO-based prediction algorithm has the highest accuracy [15].

Finally, Anam-Nawaz Khan et al. studied the power consumption of residential build-
ings to analyze the occupants’ demand–consumption patterns. They proposed a model
for predicting short-term power consumption according to the floor area by conducting a
time-series clustering analysis using the hourly energy consumption data of multi-family
housing as basic data [16].

Aparna Kumari et al. proposed a model for predicting the energy consumption of
home appliances using machine learning and Long-Short Term Memory (LSTM) among
deep learning technologies. They also proposed an algorithm for a priority analyzer to
efficiently solve peak power by providing consumers with the optimal home appliance
usage time [17].

Ayub N. et al. proposed a short-term and medium-term power load prediction
model using deep learning and machine learning based on the eight-year electricity load
data of a British power company. For load prediction, Support Vector Machines (SVM),
Gated Recurrent Units (GRU), and Convolutional Neural Networks (CNN) were applied
as a hybrid. When parameter tuning was performed with the Gray Wolf Optimization
(GWO) and Earth Worm Optimization (EWO) algorithms, performance was improved by
approximately 7% for CNN-GRU-EWO and 3% for SVM-GWO compared to the existing
prediction model [18].

In recent studies, prediction data with a low error rate and high accuracy were obtained
because the power load can be predicted using machine learning and deep learning based
on a large amount of past data, as mentioned above.

Load prediction technologies to date, however, have not been applied to many build-
ings due to the high cost and a lack of experts, as they use data from the distant past or
collect data using expensive equipment and perform prediction through machine learning
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and deep learning algorithms. In addition, it was difficult to analyze small spaces that
belong to large buildings, such as offices and classrooms, because the entire data sheet of a
building was used.

As such, this study aimed to produce a comprehensive sensor module for sensing the
indoor environment in real time and propose a machine-learning algorithm for predicting
the load in real time using the data obtained from the sensor and machine learning so as to
effectively reduce building energy consumption.

The main contributions of this paper are provided below:

• A relatively simple and inexpensive sensor module, which can measure the indoor
thermal environment and air environment, was produced and used in experiments so
that load-prediction-related technology was not limited to some buildings.

• Buildings with high energy consumption and irregular energy use schedules, which
have not commonly been looked at in previous studies, were selected as targets.

• Among the machine learning algorithms, the multiple linear regression algorithm
was applied because it is simple and suitable for real-time prediction as it can rapidly
process many variables.

• Quantitative assessment was performed by comparing the values predicted by the
load prediction algorithm with the actual indoor load.

2. Indoor Environment Measurement and Analysis
2.1. Status of the Target Building

The target building is a university building comprising professor laboratories, gradu-
ate school laboratories, and lecture rooms, as shown in Figure 1. It is a three-story reinforced
concrete (RC) structure with a building area of 1504 m2, as shown in Table 1. When the
number of occupants and schedules was analyzed, it was predicted that a constant load
would be maintained for most of the professor and graduate school laboratories. However,
relatively irregular energy use was expected for lecture rooms due to class schedules and
irregular student occupancy.
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Table 1. Details of the target building.

Category Content

Structure RC structure
Steel frame structure

Building area 1504.41 m2

Total floor area 1453.62 m2

Window area ratio 70%

Finishing
Concrete exposure/water-repellent coating

24 mm double glazing
0.5 mm wrinkle resin galvanized sheet

2.2. Comprehensive Indoor Environment Sensor Module

A comprehensive indoor environment sensor module was developed using Arduino,
as shown in Figure 2 [19]. The module consists of a temperature and humidity sensor, CO2
sensor, particulate matter (PM) sensor, and light/illuminance sensor, as shown in Table 2.
The module is powered by four 3.7 v batteries and is capable of continuous measurement
for approximately 25 h, with data measurement and storage possible every minute.
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Figure 2. Comprehensive sensor module for environment measurement.

Table 2. Qualification of each sensor.

Device Name Model Name Measurement Range Error Rate

Mainboard Arduino UNO R3 - -
Temperature and humidity

sensor DHT22 Temperature: −40~80 ◦C
Humidity: 20~90% RH

Temperature: ±0.5 ◦C
Humidity: ±2% RH

CO2 sensor CM1107 0~5000 ppm ±50 ppm + 3%

Particulate matter sensor PM2008
PM1.0: 0~1000 µg/m2

PM2.5: 0~1000 µg/m2

PM10: 0~1000 µg/m2

PM1.0 & 2.5: 0~100 µg/m2: ±10 µg/m2

101~1000 µg/m2: ±10%
PM10: 0~100 µg/m2: ±25 µg/m2

101~1000 µg/m2: ±25%

2.3. Verification of the Comprehensive Sensor Module

Considering the comprehensive sensor module (CSM) was not developed with pre-
cision sensors, it was verified using precision measuring devices for testing to secure the
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reliability of the experiment. The precision measuring devices used for sensor accuracy
verification are shown in Table 3. Data were collected by performing measurements in a
space with stable indoor airflow using the CSM and precision measuring devices. Measure-
ments were performed every minute for 3 h, with the error rate analyzed using the hourly
average data, as shown in Table 4.

Table 3. Precision sensor details.

SKT100-X5 TSI-9306

Measuring device
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The CSM showed error rates of 5, 0.3, and 1% for CO2, temperature, and humidity, 
respectively. As these values are close to the error rate (3%) of the precision devices, the 
CO2, temperature, and humidity measurement performances of the CSM were considered 
reliable. 

The CSM showed errors of 12 to 18% for PM2.5 and PM10, respectively, possibly 
because the PM concentration of the module was measured to be lower than the precision 
devices due to the precision difference and air intake performance of the Arduino sensor. 

However, the number of PM2.5 particles measured over time (shown in Figure 3) 
shows that the PM2.5 increase and decrease patterns were similar for all three measuring 
devices. 
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The CSM showed error rates of 5, 0.3, and 1% for CO2, temperature, and humidity,
respectively. As these values are close to the error rate (3%) of the precision devices, the
CO2, temperature, and humidity measurement performances of the CSM were consid-
ered reliable.

The CSM showed errors of 12 to 18% for PM2.5 and PM10, respectively, possibly
because the PM concentration of the module was measured to be lower than the precision
devices due to the precision difference and air intake performance of the Arduino sensor.

However, the number of PM2.5 particles measured over time (shown in Figure 3)
shows that the PM2.5 increase and decrease patterns were similar for all three measur-
ing devices.

Therefore, the measurements of the CSM were used without additional correction
because this study analyzed the increase and decrease patterns according to indoor envi-
ronment changes, such as the number of occupants and air conditioning.
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2.4. Measurement Method

Figure 4 shows the spaces to be measured and the installation locations of the CSM.
Spaces A and B are laboratories with a relatively constant number of occupants, while
Spaces C and D are lecture rooms. The CSM was installed in the four target spaces
to measure the indoor environment, with two additional units installed to measure the
outdoor environment. To prevent sensor malfunction errors, data were supplemented by
installing one additional CSM at each measurement point. The experiment was performed
for ten days from 2 to 15 September, excluding weekends (when there were no occupants).
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3. Proposal of a Real-Time Load Prediction Method
Overview of a Real-Time Load Prediction Algorithm

The temperature, humidity, CO2 concentration, and PM (PM2.5) concentration of each
room were measured using the sensor; the number of occupants was measured through
the schedule and observation of each room. Such comprehensive indoor environment
measurements were necessary to develop a real-time load prediction algorithm. The energy
consumption of each room was analyzed by applying the measured data as the input
data of the TRNSYS energy analysis software. An algorithm for predicting the number of
occupants was developed using machine learning to analyze the temperature, humidity,
CO2 concentration, and PM concentration according to the number of occupants.

In addition, an algorithm for predicting the load according to the number of occupants
was proposed by analyzing the energy consumption analysis data for each room and the
algorithm for predicting the number of occupants using machine learning.

In this study, a hypothesis that the indoor temperature, humidity, CO2 concentra-
tion, and PM will increase alongside the increase in the number of occupants was estab-
lished [20–22], and the linear regression analysis algorithm was selected as a machine
learning algorithm under the judgment that there would be a certain linear relationship
between the measured indoor environment data and the number of occupants. These
algorithms are supervised learning algorithms for predicting correlations between data and
their trends. Among such linear regression analysis algorithms, the multiple linear regres-
sion analysis algorithm was used in this study due to the presence of multiple variables,
such as temperature, humidity, CO2 concentration, PM concentration, and the number
of occupants.

Equation (1) is the basic equation of the multiple linear regression model. X is an
explanatory variable, and Y is the response variable. w0 is the y-intercept, and w1, w2. . . are
the coefficients of the explanatory variables.

Y = w0 + w1X1 + w2X2 + w3X3 + · · ·+ wpXp (1)

TRNSYS energy analysis software was used for calculating the target space energy
consumption, as shown in Figure 5. A simulation was performed to calculate the energy
consumption through the input of the wall and window structures of the target space,
the equipment data, and the indoor and outdoor temperature and humidity among the
measured data as variables. In addition, indoor heating equipment and the number of
occupants were considered as variables.
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4. Results and Discussion
4.1. Analysis of the Indoor Environment of the Target Building

A day with relatively stable measurement results was selected during the measure-
ment period, with changes in the daily indoor temperature, humidity, PM2.5 concentration,
and CO2 concentration compared and analyzed, as shown in Figure 6. The indoor tempera-
ture was found to vary depending on the operation of EHP (air conditioner) rather than
changes in the number of occupants; the humidity was relatively constant regardless of
changes in occupant numbers. The number of PM2.5 particles was inversely proportional
to the CO2 concentration due to the influence of changing occupant numbers, activities,
and ventilation.

For Rooms A and B, which were laboratories, the indoor environment was found to be
relatively constant after the entrance of occupants because the number of occupants did not
significantly change. In the case of Rooms C and D, which were lecture rooms, the indoor
temperature varied significantly depending on indoor cooling due to severe fluctuations in
the number of occupants. However, the humidity was irregular under external influence.

PM and CO2 were found to increase or decrease relatively regularly according to
changes in the occupant number in all rooms, regardless of the measurement location.
These two can be set as the reference variables of the algorithm because the change in the
number of occupants is closely related to variations in indoor PM and CO2 concentrations.

The PM2.5 concentration was found to be proportional to the ventilation rate or occu-
pant activity rather than occupant number, while the CO2 concentration varied constantly
according to changes in occupant number, indicating that the PM2.5 concentration may
decrease despite many indoor occupants if the occupant activity is low, as would be the
case during a lecture.
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4.2. Algorithm for Predicting the Number of Indoor Occupants

The algorithm for predicting the number of indoor occupants was developed using the
multiple linear regression model to analyze the occupant number and the data measured
through the CSM. The significance of the proposed algorithm was analyzed using statistical
techniques for testing algorithms, such as the sample regression coefficient, standard
deviation, and significance level, as shown in Table 5. The regression coefficient shows the
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influence of the independent variable on the dependent variable; the influence increases
with the absolute value of the coefficient. The standard deviation indicates a relationship
by measuring the nominal scale between variables. The significance level represents the
significance and significance probability of the proposed algorithm data and the actual
data. In statistical research, a significance level of 0.05 or less typically corresponds to a
significant algorithm.

Table 5. Significance test for the algorithm to predict the number of indoor occupants.

Regression
Coefficient (Coef)

Standard Deviation
(Std Err)

Significance Level
(p-Value > |t|)

Temperature 5.578 7.227 0.022
Humidity 1.508 1.013 0.004

CO2 concentration 24.074 5.844 0.002
PM (PM2.5) −6.135 4.211 0.425

For the algorithm to predict the occupant number, the regression coefficient of the CO2
concentration was found to be 24.074, indicating that the CO2 concentration has the largest
influence on predicting the number of indoor occupants. As the value of the significance
level (0.002) was close to zero, the algorithm was found to be highly significant.

The number of occupants in Room A on measurement Day 1 was predicted using the
proposed algorithm. When the results were compared with the measured values, as shown
in Figure 7, errors occurred as gradual changes in the number of indoor occupants were
predicted according to changes in indoor environments. Slight errors were also observed in
the predicted occupancy time compared to the measured values because the number of
occupants was calculated using the indoor environment measurement data. However, as
the occupancy time of residents was found to be almost identical, it can be concluded that
the algorithm is reliable.
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4.3. Derivation and Verification of the Algorithm for Predicting the Load in Real Time

The energy consumption of each room was calculated by entering the data measured
using the CSM and the number of occupants predicted through the algorithm for predicting
the number of occupants into the TRNSYS energy analysis software as variables and
conducting energy analysis, as shown in Table 6.
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Table 6. Calculation of the energy consumption of each room (Wh/m2·Day).

Measurement
Space

Measurement
Day 1

Measurement
Day 2

Measurement
Day 3

A
Average number

of occupants 3 3 3

Energy
consumption 511 494 523

B
Average number

of occupants 1 2 2

Energy
consumption 401 439 443

C
Average number

of occupants 20 25 25

Energy
consumption 610 623 655

D
Average number

of occupants 17 18 15

Energy
consumption 439 444 460

An algorithm for predicting the actual energy consumption according to the difference
between indoor/outdoor environmental variables and the number of occupants was im-
plemented by entering the following as variables: measured indoor/outdoor temperature,
humidity, and CO2 concentration data; number of occupants calculated using the occupant
prediction algorithm; and energy consumption calculated through TRNSYS energy analysis
into the multiple linear regression model.

The significance of the proposed algorithm was analyzed, with the results shown in
Table 7. The number of occupants (predicted) showed the highest regression coefficient
(35.1), followed by the indoor temperature (31.1) and indoor CO2 concentration (29). The p-
value was also closest to zero for the number of occupants (predicted), indoor temperature,
and indoor CO2 concentration.

Table 7. Significance test for the energy consumption prediction algorithm.

Regression
Coefficient

(Coef)

Standard
Deviation (Std

Err)

Significance
Level (p-Value >

|t|)

Number of occupants (predicted) 35.13 4.441 0.001

Outdoor
Temperature 7.884 0.066 0.014

Humidity 5.006 0.057 0.009
CO2

concentration 1.014 0.015 0.305

Indoor
Temperature −31.077 5.541 0.001

Humidity −18.135 2.269 0.004
CO2

concentration 29.002 3.944 0.001

Therefore, it was found that the predicted energy consumption is significantly affected
by the number of occupants (predicted), indoor temperature, and indoor CO2 concentration.
This appears to be because indoor and outdoor temperatures were used for the actual indoor
load and the number of occupants was predicted using the indoor CO2 concentration.

The measurement data of the indoor environment of Room A and the algorithm for
predicting the occupant number were applied to the proposed load prediction algorithm as
variables. Then, the results were compared with the measured values, as shown in Figure 8.
The degree of similarity between the data predicted using the algorithm and the measured
data was analyzed. As shown in Figure 8, the degree of data distribution is very similar for
the predicted and measured load data with respect to the X = Y line.
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Quantitative analysis methods used to analyze and evaluate the difference between the
value estimated by machine learning or predicted by a model with the value measured in
the actual environment include the mean squared error (MSE), root mean square deviation
(RMSD), and mean absolute error (MAE), which are calculated using Equations (2)–(4).
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The MSE, RMSD, and MAE of the proposed load prediction algorithm were calculated,
as shown in Table 8. MSE is the average of the squares of the errors between the measured
and predicted values. An MSE closer to zero indicates that the predicted value is closer
to the original value and thus corresponds to higher accuracy. RMSD is the standard
deviation for the error between the measured and predicted values, representing the
degree of dispersion based on the regression line as a value. Thus, an RMSD closer to
zero corresponds to higher accuracy. MAE is mainly used as an indicator for regression
assessment; an MAE closer to zero indicates a model of higher quality.

Table 8. Quantitative assessment of the load prediction algorithm.

Metric Value

MSE 23.063
RMSD 4.802
MAE 2.512
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Therefore, the accuracy and quality of the proposed load prediction algorithm are
considered high because the RMSD and MAE were calculated to be 4.8 and 2.5, respectively.
However, the MSE was calculated to be 23.1, indicating that the accuracy can be evaluated
to be relatively low.

5. Conclusions

This study investigated algorithms for the automatic control of equipment according to
the indoor environment to save energy in buildings. Algorithms for predicting the number
of occupants and energy consumption using a simple comprehensive indoor/outdoor
environment sensor module were proposed. The results can be summarized as follows.

1. When the indoor environment of the measured space was analyzed using the CSM, the
temperature, humidity, particulate matter (PM), and CO2 level changed according to
variations in occupant numbers. When the significance of machine learning was tested
for the prediction of occupant number, the regression coefficient and significance level
of CO2 were calculated to be 24 and 0.002, respectively, indicating that the CO2
concentration is closely related to the occupant number.

2. A load prediction algorithm was proposed by reflecting the algorithm for predicting
the number of occupants according to the CO2 concentration. When the significance
of each variable was tested, the regression coefficient and significance level of indoor
temperature were calculated to be 31 and 0.001, respectively, excluding the CO2
concentration reflected in the occupant prediction algorithm and the number of
occupants. This result indicates that the energy consumption prediction algorithm is
closely related to the predicted number of occupants and indoor temperature.

When the accuracy of the proposed load prediction algorithm was quantitatively
assessed, the mean squared error (MSE), root mean square deviation (RMSD), and mean
absolute error (MAE) were calculated to be 23.1, 4.8, and 2.5, respectively. As the RMSD
and MAE values are close to zero even though the MSE value is not relatively close to zero,
the accuracy and quality of the proposed algorithm can be considered to be high.

According to the results of this study, we propose a simple and new method to in-
directly predict occupant numbers using the CO2 concentration and predict the energy
consumption using the predicted occupant number and the indoor and outdoor tempera-
tures measured in real time.

In particular, the proposed load prediction algorithm is economical compared to the
existing method that uses several precision sensors and energy consumption measuring
devices because it measures the indoor environment using relatively inexpensive sen-
sors. The algorithm also has high usability because it can be easily applied to spaces in
existing buildings.

However, the proposed algorithm is limited to school buildings. Therefore, in the
future, it is necessary to expand the usability and reliability of the proposed model by
applying various types of building data and comparing it with the existing method that
uses precision sensors.
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