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Abstract: China is endowed with a large quantity of residual coal resources that require upward
mining. The stability of interburden strata structures and accurate determination are crucial for safe
mining. Therefore, we established a mechanical model of disturbed voussoir beam structures of
interburden strata in upward mining. The model was solved, and stability analysis and instability
mechanism analysis were conducted. Based on this model, a new method for determining the
feasibility of upward mining was proposed and applied to the upward mining of coal seam No. 7
in Baijiazhuang Coal Mine. A physical simulation experiment and numerical simulation were
conducted to validate the method. Through research, it was found that the model had two instability
mechanisms: rotation instability and sliding instability. When the disturbance load crossed the
critical block of the structures, the model was most likely to experience sliding instability. When the
disturbance load acted entirely on the critical block, rotation instability was more likely to occur. The
result of the determination, performed using the new method, showed that there was no rotation
instability or sliding instability in the interburden strata structures of coal seam No. 7, indicating
that the coal seam could be mined upward. This result was consistent with the determinations using
the statistical method, “three-zone” method, and balanced surrounding rock method. Physical and
numerical simulations revealed that the upward mining of coal seam No. 7 caused the subsidence,
rotation, and separation compaction of the interburden strata structures but that the structures
remained stable. The results indicate that the proposed model and method have accuracy and
applicability, being able to guide the practical feasibility determination of upward mining.

Keywords: upward mining; rock strata structures; stability analysis; mining feasibility determination;
simulation study

1. Introduction

Due to historical and technological limitations, China’s residual coal reserves are esti-
mated to be around 40 billion tons, of which 34% to 45% needs to be mined through upward
mining [1]. Feasibility determination is the core prerequisite for upward mining [2,3]. The
current methods used to determine the feasibility of upward mining have developed
from empirical determination into quantitative determination. Traditional methods of
upward mining determination, both domestically and internationally, include the ratio
value method, statistical method, and determination method based on “three zones” of
overburden rock [4–6]. There are two discriminant standards of the ratio value method,
namely, the mining influence factor and OB/IB [7]. The former refers to the ratio of coal
seam spacing (H) to the mining height (M) of the lower coal seam, while the latter refers to
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the ratio of overburden thickness to interburden strata thickness. This method is widely
applied, both domestically and internationally. However, the critical range of the mining
influence factor is from 6 to 20, and the two critical values for OB/IB are 7 and 16, with a
wide range of variation for the critical values. Both the statistical method and “three-zone”
method are also related to M and H [8–11], and they, respectively, assert that when H
satisfies Equations (1) and (2), upward mining can be carried out:

H> 1.14M2+4.14 (1)

H >
100M

C1M + C2
(2)

In Equation (2), factors C1 and C2 reflect the lithology of the overburden rock, and their
values differ in the three types of overburden rock—“soft”, “medium–hard”, and “hard”.
When the rock goes from soft to hard, the values of C1 are 6.2, 4.7, and 2.1, respectively, and
the values of C2 are 32, 19, and 16, respectively [9]. Scholars from the former Soviet Union
and Poland have also derived feasibility determination equations for upward mining that
take into account factors such as the bulking coefficient and the thickness of the lower
coal seam. The ratio value method, statistical method, and “three-zone” method are used
to guide upward mining operations, but they mainly consider the relationship between
coal seam spacing and lower coal seam thickness, bulking coefficient, and burial depth,
without quantitatively studying the influence of rock strata structures. The practice at the
Qishan Coal Mine [12] and research by Peng [13] have both shown significant variations
in the feasible range of upward mining. As such, traditional determination methods face
significant challenges.

Numerous studies by scholars have shown that rock strata structures formed between
the floor of the upper coal seam and the roof of the lower mined coal seam during upward
mining, known as the interburden strata structures (as shown in Figure 1), exert a significant
influence on the rock strata control and feasibility determination of upward mining in the
residual coal mining area [6,14–17]. Upward mining can only proceed smoothly if these
structures remain stable.
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Figure 1. Schematic diagram of interburden strata structures under the disturbance load.

Based on this discovery, scholars used the balanced surrounding rock method to
further consider the influence of rock strata structures and proposed that the coal seam
above the balanced surrounding rock could be mined upward. This method also provides
an equation for calculating the height of the balanced surrounding rock (Hp):

Hp =
M

K1 − 1
+ hp (3)

K1, M, and hp represent the bulking coefficient, lower coal seam mining height, and
balanced surrounding rock stratum thickness, respectively. This method accounts for
the stability of the rock strata structures at the floor of the upper coal seam but does not
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provide stability conditions and quantitative determination methods for the balanced
surrounding rock stratum. Guorui Feng [18,19] proposed a determination criterion for
the upward mining of residual coal, centering the method around the “stability of the
controlling stratum structures”. It determined the feasibility of upward mining based on
the stability of the interburden strata structures. Further research by Yaodong Jiang [20],
Baoyang Wu [14], and others [21,22] considered the additional disturbances and static loads
generated by upward mining near the coal seam. As shown in Figure 2, a comparison
of the aforementioned determination methods for upward mining reveals that the ratio
value method and statistical method are based on geometric dimensions, specifically the
relationship between the coal seam spacing, lower coal seam mining height, and burial
depth. The determination method based on “three zones” of overburden rock considers
the influence of the overburden lithology. The balanced surrounding rock method and
the determination method based on the stability of the interburden strata structures take
into account the influence of rock strata structures, including factors such as the lower coal
seam mining height, immediate roof range, and rock strata structures.
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The development of feasibility determination methods for upward mining is a process
of deepening the human understanding of upward mining. Feasibility determination
methods based on the stability of the interburden strata structures do not negate the role of
coal seam spacing but rather consider a greater variety of influencing factors based on an
understanding of new rules and mechanisms. Therefore, based on discovering the influence
of mining disturbance near coal seams on the stability of interburden strata structures,
it is necessary to further study the characteristics, structural forms, stability, instability
conditions, and feasibility determination methods for upward mining. This should be
based on structural stability, allowing research to scientifically and accurately guide the
upward mining of residual coal seams.

This paper analyzes the factors influencing the stability of interburden strata structures
during upward mining and proposes a disturbed voussoir beam structure (DVBS) model
for interburden strata based on the “disturbance load as the instability inducement”. This
model is based on the traditional voussoir beam structure (VBS) model and is solved
and analyzed for stability. Based on the stability of the model, a feasibility determination
method for upward mining is proposed using the stability of the DVBS as the criterion.
Taking the upward mining of coal seam No. 7 in Baijiazhuang Coal Mine as the background,
the differences between the results obtained with traditional methods and this method are
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discussed. Finally, numerical simulation and physical simulation were used to study the
stability of the interburden strata structures during upward mining in Baijiazhuang Coal
Mine, further verifying the accuracy and applicability of the new method.

2. The DVBS Model of Interburden Strata in Upward Mining
2.1. The VBS and Its Characteristics in Upward Mining
2.1.1. The VBS in Interburden Strata

As shown in Figure 1, the term “interburden strata structure” refers to the rock strata
structures between two coal seams in upward mining. It also denotes the overburden rock
structures formed using lower coal seam longwall mining. There are many hypotheses
and theories regarding the possible forms of overburden rock structures in longwall mining,
including the “pressure arch” hypothesis, “cantilever beam” hypothesis, “pre-existing fracture”
hypothesis, “hinged rock” hypothesis [23–25], Minggao Qian’s “VBS” theory [26,27], and
Zhenqi Song’s “transferring rock beam” theory [28]. The VBS model is one of the most
widely used models in the coal mining field [27]. It effectively explains the manifestation
patterns of ground pressure in coal mining. Validated through field observations and
production practices, it plays an important role in guiding theoretical research into ground
pressure and coal mining production [21,29–32]. Therefore, this study adopted the VBS
theory as its fundamental basis and conducted further research.

According to the VBS theory, as shown in Figure 1, following the mining of the lower
coal seam, the overburden rock structures above the longwall mining working face can be
divided into the falling zone (I), the fracture zone (II), and the bending subsidence zone (III)
in the vertical direction. Moving along the advancing direction of the working face, it can
be divided into the original stress zone (A), the roof compression zone (B), the separation
zone (C), the recompacted zone (D), and the stable zone (E). As the working face advances,
the hard rock strata above the goaf fracture into regular rock blocks within the fracture
zone, forming the VBS [26]. It is widely known that most of the goaf area is typically in
a compacted state. However, due to the presence of the roof rock strata structures, there
are large numbers of unfilled cavities in the separation area near the open cut, mining
terminal line, and coal pillars on both sides [25,33]. In order to ensure the safety of upward
mining on longwall working faces, it is necessary to stabilize roof structures above unfilled
cavities [22,26,34–36]. In other words, the stability of the VBS needs to be maintained above
the unfilled cavity.

2.1.2. New Characteristic of the VBS in Upward Mining—Disturbance

As shown in Figure 1, the VBS above the unfilled cavity is stable under undisturbed
conditions. However, when subject to the abutment pressure disturbance load caused
by the upward mining working face, there is a risk that these interburden strata struc-
tures might become unstable. Overall, the instability of interburden strata structures is
completely different from the instability of the traditional VBS, primarily in the following
aspects: the instability inducement of interburden strata structures is the disturbance load
generated by the movement of abutment pressure in the upward mining working face,
whereas the instability inducement of traditional VBS relates to the internal evolution
within the structures.

It can be seen that interburden strata structures are similar to traditional overburden
rock structures on the longwall mining working face. Indeed, both of them can present the
VBS. However, the new characteristics of the interburden strata structure were influenced
by a moving disturbance load generated by upper coal seam mining. Therefore, we can
establish a mechanical model of the DVBS to study the stability of the interburden strata
structures during upward mining.

2.2. Establishment of the DVBS Model

Interburden strata structures are the strata structures between two coal seams in
the case of upward mining. Overburden rock structures are composed of rock blocks.
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According to the VBS theory [27], block B and block C play crucial roles in the stability of
the entire structures. These are called key rock blocks. The size of the impact of the advance
abutment pressure on the upward mining working face was much larger than the length of
the overburden rock strata structures of the longwall working face. Therefore, although
the disturbance load exerted by the abutment pressure on the DVBS was non-uniform,
the disturbance load could still be simplified as a uniform disturbance load. In summary,
according to the VBS model, the DVBS model of interburden strata can be represented
by Figure 3. In the figure, qa represents the load of the abutment pressure applied to the
DVBS by the upward mining working face, which is called the disturbance load. Its length
increases with the advancement of the upward mining working face, and its maximum
length is greater than twice the length of the DVBS. q1, q2, and qr2 are distributed forces
acting on the upper and lower surfaces of the block, and q1 and q2 are the loads acting on
the VBS before the upper coal seam is mined, including the weight of the block. RA and RB
as well as T are the shear forces and horizontal thrust force at points A and B, respectively.
It is assumed that the forces distributed on each block are uniformly distributed, and the
support force below block B is zero. The length of the disturbance load acting on the DVBS
is b; h and li (i = 1, 2) are the height and length of the block; θ1 and θ2 are the rotation angles
of block B and block C; and W1 and W2 are the subsidence of block B and block C.
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2.3. Solution of the Model

Mechanical analysis of the DVBS model was carried out. Based on stress equilibrium
and moment equilibrium (sum of the torques about point A and point O are both zero), the
equilibrium equations of the DVBS model were obtained:


RA + RB + qr2l2 − q1l1 − q2l2 − qab = 0

q1l2
1

2 + q2l2
(

l1 +
l2
2

)
− qr2l2

(
l1 +

l2
2

)
− (l1 + l2)RB − T(h−W2 − av) + qab

(
l1 + l2 − b

2

)
= 0

q2l2
2 l2 − qr2l2

2 l2 − l2RB + T(W2 −W1) + qab
(

l2 − b
2

)
= 0

, b ≤ l2 (4)


RA + RB + qr2l2 − q1l1 − q2l2 − qab = 0

q1l2
1

2 + (q2 − qr2)l2
(

l1 +
l2
2

)
− (l1 + l2)RB − T(h−W2 − av) + qa(b− l2)

(
l1 − b−l2

2

)
+ qal2

(
l1 +

l2
2

)
= 0

q2l2
2 l2 − qr2l2

2 l2 − l2RB + T(W2 −W1) + qab
(

l2 − b
2

)
= 0

, b > l2 (5)
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Considering the similar properties of the main roof rock beams under the same
geological mining conditions, it was approximated as li = l. Thus, the solution for the DVBS
model was obtained:

T = (q1+q2−qr2)l2+q1b2

2(h+W2−2W1−av)

RB = − (h−W1−av)qab2

2(h+W2−2W1−av)l
+ qab + (q2−qr2)l

2 + (W2−W1)(q1+q2−qr2)l
2(h+W2−2W1−av)

RA =
(2q1+q2−qr2)l

2 + qab2

2l −
(W2−W1)[(q1+q2−qr2)l2+qab2]

2(h+W2−2W1−av)l

, b ≤ l2 (6)


T = (q1+q2+qa−qr2)l2+qa(b−l)(3l−b)

2(h+W2−2W1−av)

RB = q1l
{

[(q1+qa)+qa(b−l)(3l−b)](W2−W1)
2(h+W2−2W1−av)

− 1
2 qal

}
RA = (q1l + qab)− q1l

{
[(q1+qa)+qa(b−l)(3l−b)](W2−W1)

2(h+W2−2W1−av)
− 1

2 qal
} , b > l2 (7)

Normally, the contact between rock blocks at both ends should be equal [26]. There-
fore, the relationship between the contact height and the height and length of the block
was obtained:

av =
1
2
(h− lisin θ1) (8)

It is known from the geometry of the block that:

W1 = lsin θ1 (9)

W2 = l(sin θ1+ sin θ2) (10)

In order to further study the influence of the disturbance load on the stability of the
DVBS, the disturbance load distribution coefficient (DLDC) was defined as the ratio of the
length of the disturbance load acting on the DVBS to the model length, represented by j
(j = b/l). The height-to-length ratio of the block, known as the lump rate, was represented by
i (i = h/l). The disturbance load coefficient (DLC), represented by df (df = qa/qi), was defined
as the ratio of the disturbance load to the original load acting on the VBS. Considering the
actual situation, q2 is approximately equal to qr2. By substituting Equations (8)–(10) and
the expressions of j, i, and df into Equations (6) and (7), the expression of the force solution
equation for this model was obtained:

T = q1l 1+d f ·j2
(i−sin θ1+2 sinθ2)

RB = q1l
[

0.5(i−sin θ1)d f ·j2+sin θ2
(i−sin θ1+2 sinθ2)

+ d f ·j
]

RA = q1l
[
1 + 0.5(i−sin θ1)d f ·j2−sin θ2

(i−sin θ1+2 sinθ2)

] , b ≤ l2 (11)


T = q1l (1+d f )+d f (j−1)(3−j)

(i−sin θ1+2 sinθ2)

RB = q1l
[
[1+d f+(j−1)(3−j)d f ] sin θ2

(i−sin θ1+2 sinθ2)
− 1

2 d f
]

RA = q1l
{

1 + d f ·j + 1
2 d f − [1+d f+(j−1)(3−j)d f ] sin θ2

(i−sin θ1+2 sinθ2)

} , b > l2 (12)

2.4. Stability Condition and Analysis of the Model

According to the VBS theory, the DVBS exhibits two types of instability mechanisms:
rotation instability and sliding instability.

2.4.1. Condition for Rotation Instability

When the DLC and the DLDC increase to a certain extent, the horizontal thrust
also increases accordingly. When the horizontal thrust increases to a certain value, the
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corner position of the block is the first to be destroyed, causing the instability of the
block, which is called rotation instability. Furthermore, introducing the influencing factor
of the environment of the DVBS, the conditions for the DVBS not to undergo rotation
instability are:

T ≤ aηcηeσc (13a)

where a represents the contact area of the block per unit width, and ηc is the corner
compression factor; ηc is set to 0.3. ηe is defined as the horizontal thrust comprehensive
environmental influence factor, which represents the weakening effect of the environment
on the compressive strength and is determined through experiments [19].

By substituting Equations (11) and (12) into Equation (13a) and rearranging them,
Equation (13b) is obtained. Therefore, if the DVBS does not undergo rotation instability, the
DLC and DLDC must meet the following conditions: d f ·j2 ≤ 1

2q1
ηcηeσc(i− sin θ1 + 2 sinθ2)(i− sin θ1)− 1, b ≤ l2

d f ·
[
2− (2− j)2

]
≤ 1

2q1
ηcηeσc(i− sin θ1 + 2 sinθ2)(i− sin θ1)− 1, b > l2

(13b)

When both the DLC and the DLDC are zero, Equation (13b) is completely con-
sistent with the calculation results of the VBS theory. In Equation (13b), “df ·j2” and
“df ·[2 − (2 − j)2]” are used to characterize the dimensionless parameters that represent the
upward mining disturbance. Additionally, the magnitude and distribution range of distur-
bance loads are clarified and defined as disturbance factors. The right side of the equation
represents the block parameters of the DVBS, which characterize the critical conditions
under which rotation instability does not occur in the DVBS. This equation establishes
the relationship between the parameters of the DVBS and the disturbance load during
rotation instability.

2.4.2. Analysis of Rotation Instability

Selecting relevant research results for parameter values [27], let θ1 = 2◦, θ2 = 0.5◦,
i = 0.5, q1 = 0.5 MPa, l = 10 m, ηc = 0.3, ηe = 1; it is possible to analyze the influence of
different lump rates, the DLC, and the DLDC on the rotation instability of the block.

1. Relationship between DLDC and Horizontal Thrust

Using Equations (11) and (12), the horizontal thrust and the DLDC are calculated for
DLCs (df ) = 0, 1, 2, 3, and 4. Figure 4 presents the relationship between the DLDC and
horizontal thrust.
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As shown in Figure 4, when df = 0, the disturbance load on the DVBS model is zero.
The corresponding calculation results are consistent with the calculation results of the VBS
theory, verifying the correctness of the model. When df 6= 0, as the DLDC increases, the
horizontal thrust shows an increasing trend of “fast first, slow later,” and the curve exhibits
an “S” shape. The larger the DLC is, the faster the change trend of the “S” curve with the
increase in the DLDC will be.

2. Effect of the Lump Rate on the Rotation Instability

Based on the above parameter calculations, Figure 5 shows the relationship between
the lump rate and the critical DLC for DLDC (j) = 1 and DLDC = 2, with the uniaxial
compressive strengths of rock strata structures standing at 65 MPa, 75 MPa, 85 MPa,
95 MPa, and 105 MPa.
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As shown in Figure 5, when the DVBS has the same uniaxial compressive strength,
the critical DLC for rotation instability increases with increasing lump rate and follows a
quadratic function distribution. Under the same uniaxial compressive strength of the DVBS,
the critical DLC required for instability when the disturbance load acts on two blocks is
much smaller than the critical DLC required when the disturbance load only impacts block
B. The larger the lump rate, the greater the disturbance load required for rotation instability.
When the lump rate remains the same, the uniaxial compressive strength of the DVBS
grows larger, and the greater the disturbance load required for rotation instability becomes.
This is consistent with the known fundamental law.

3. Effect of the Disturbance Load on the Rotation Instability

Derived based on the above parameters, the critical DLC and the corresponding
DLDC for calculating uniaxial compressive strength according to Equation (13b) at 65 MPa,
75 MPa, 85 MPa, 95 MPa, and 105 MPa are shown in Figure 6. The logarithmic coordinate
axis is used on the vertical axis of the figure to represent its rapid rate of change. As the
DLDC increases, the required disturbance load for the rotation instability of the DVBS
decreases rapidly, showing a power function decreasing trend. This indicates that when
the disturbance load is small, a significant disturbance load is needed to cause DVBS
instability. When the DLDC is less than 0.5, a large disturbance load is required for rotation
instability. However, when the DLDC is greater than 0.5, as the range of the distribution
load increases, the required disturbance load for rotation instability starts to decrease slowly.
The disturbance load acts entirely on the DVBS, making it more prone to rotation instability.
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2.4.3. Condition for Sliding Instability

In addition to rotation instability, the key block of the DVBS may also undergo sliding
instability during the transformation process. The maximum shearing force is located at
point A, as indicated in Figure 3. Therefore, in order to prevent the block sliding instability
at this location, the following conditions must be satisfied:

T·ηe· tanϕ ≥ RA (14a)

By substituting Equations (11) and (12) into Equation (14a) and rearranging them, the
condition under which sliding instability does not occur in the DVBS is obtained:

1
d f ·j2+1 ≤

2ηe tan ϕ−(i−sin θ2)
(i−sin θ1+3 sinθ2)

, b ≤ l2
d f ·j+ 1

2 (2+d f )
(d f+1)+d f (j−1)(3−j) ≤

ηe tan ϕ+sin θ2
(i−sin θ1+2 sinθ2)

, b > l2
(14b)

The parameters in the equation have the same meanings as mentioned previously.
When both the DLC and the DLDC are zero, the equation is completely consistent with the
calculation results of the VBS theory. Equation (14b) establishes the relationship between
the parameters of the DVBS and the disturbance load under the condition of sliding
instability. In Equation (14b), the left side of the equation only contains the DLC and DLDC,
which represent the disturbance factors. The right side of the equation represents the block
parameters of the DVBS, which characterize the critical conditions under which sliding
instability does not occur in the DVBS. This equation establishes the relationship between
the parameters of the DVBS and the disturbance load during sliding instability.

2.4.4. Analysis of Sliding Instability

Selecting the relevant research results for parameter values [27], let θ1 = 2◦, θ2 = 0.5◦,
i = 0.5, q1 = 0.5 MPa, ηc = 0.3, ηe = 1. We now analyze the impact of different lump rates,
the DLC, and the DLDC on the instability of block sliding.

1. Effect of the Lump Rate on Sliding Instability

According to the above parameters and Equation (14b), the relationship between the
lump rate and the friction coefficient is calculated for DLC = 0.75, with varying DLDCs of
0, 0.25, 0.5, 0.75, 1, 1.25, 1.5, and 1.75.

As shown in Figure 7, when the DLC and the DLDC are both zero, the calculation
results and trends of the lump rate and friction coefficient in this DVBS model are the
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same as those in the traditional VBS model. When the DLDC is constant, the friction
coefficient has a linear relationship with the lump rate. As the lump rate increases, the
friction coefficient required to ensure the stability of the DVBS without sliding increases.
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2. Effect of Disturbance load on the Sliding Instability

Figure 8 shows the relationship between the DLDC and the friction coefficient for
DLCs of 0, 0.25, 0.5, 0.75, 1, 1.25, 2, 3, 4, and 10.
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As shown in Figure 8, when b ≤ l2, with the increase in the DLC, the required friction
coefficient for point A to maintain stability in Figure 3 increases. Under the same DLC, the
required friction coefficient for maintaining the stability of the DVBS increases rapidly with
the increase in the DLDC following a power function. The larger the DLC, the greater the
influence of the variation in the DLDC on the required friction coefficient for maintaining
the stability of the DVBS. When b > l2, the required friction coefficient for point A to
maintain stability decreases rapidly before slowly increasing again. The main reason for
this phenomenon is that, when the disturbance load generated by upward mining acts
on block C, block B completes its reverse rotation, and block C begins instead to rotate
in reverse. The corresponding horizontal thrust first increases slowly and then increases
rapidly before increasing slowly again. The range of variation in the required friction
coefficient for maintaining structural stability is relatively small. When the DLC increases
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from 0.5 to 10, the maximum required friction coefficient only increases from 0.55 to 0.68.
From Figure 8, it can be observed that when the disturbance load spans two blocks, the
maximum required friction coefficient for maintaining the stability of the DVBS is highest.
In this scenario, the coefficient is greatly affected by the variation in the disturbance load,
making it the most prone to instability.

3. Determination Method for Upward Mining Based on Stability of the DVBS

Under the influence of the abutment pressure on the upward mining working face, the
instability conditions of the DVBS can be calculated. If the load is too large, the structures
become unstable, leading to the collapse of personnel and equipment in the upward
mining working face. Conversely, if the load is within a safe range, upward mining can be
carried out safely. Therefore, a feasibility determination method for upward mining can be
proposed based on the aforementioned model.

3.1. Proposal of the Method

Based on the DVBS model of interburden strata, a feasibility determination method
for upward mining is proposed, with “the stability of the DVBS” as the core. The specific
steps are as follows:

Step 1: Obtain the rock column and basic physical and mechanical parameters based on
the geological information of the mining area, including the mining height of the lower coal
seam, the elastic modulus, thickness, bulk density, and tensile strength of interburden strata.

Step 2: Use the key stratum theory [27] to calculate the loads q1 and q2 acting on the
rock strata structures before beginning upward mining:

q1= q2 = (qn)1 =
E1h3

1(γ1h1 + γ2h2 + . . . + γihi + . . .+γnhn)

E1h3
1 + E2h3

2 + . . . + Eih3
i + . . .+Enh3

n
(15)

where hi, γi, Ei, and Rti represent the thickness, volume weight, elastic modulus, and tensile
strength of the i-th rock stratum, respectively (i = 1, 2, . . ., n).

Step 3: According to the key stratum theory and the determination equation of the
controlling stratum [27], determine the position of the rock stratum where the VBS is
located. Based on the mining pressure observation results or the periodic weighting step
calculation equation [20], determine the length of the VBS:

qn+1 < qn

γn+1
n
∑

i=1
Eih3

i < En+1h2
n+1

n
∑

i=1
hiγi

lj+1> l j

(16)

where lj is the breaking span of the j-th hard rock stratum (j = 1, 2, . . ., k).
Step 4: Calculate the propagation and attenuation of disturbance load in rock layers

using the following equation [19]:

qa = 0.637kiγD

arctan
x0l0

z
√

4x4
0 + l2

0 + 4z2
+

l0z
(√

4x4
0 + l2

0 + 4z2 −
√

l2
0 + 4z2

)
2x0

(
l2
0 + 4z2

)
 (17)

where x0 and l0 are, respectively, the width and length of the abutment pressure of the
upward mining working face, m; ki is the abutment pressure concentration coefficient; and
z is the depth from the floor of the upward mining coal seam to the upper surface of the
DVBS, m.

Step 5: According to the stability determination Equations (13b) and (14b) for the
DVBS, determine whether upward mining causes instability in the DVBS to assess the
feasibility of upward mining.
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Due to the requirements of the VBS model, which serves as the basic model, that the
overburden strata include hard rock strata and form load-bearing structures [27], both
the DVBS model proposed based on the VBS model and its corresponding determination
method are also subject to the same prerequisite conditions. In other words, this method
is applicable to situations where the main roof rock stratum is thick and hard, as well as
situations without a false roof or immediate roof. These situations are quite common in
longwall mining; thus, this method is universally applicable.

3.2. Application of the Method
3.2.1. Engineering Background

Due to historical reasons, Baijiazhuang Coal Mine conducted underground mining
on coal seam No. 8 with a thickness of 3.8 m. Then, upper coal seam No. 6 was mined
using the upward mining method. After the completion of mining coal seam No. 6, it
was decided to mine coal seam No. 7 as well. Coal seam No. 7 is located between coal
seams No. 6 and No. 8, with a thickness of 0.7–1.3 m and an average thickness of 0.8 m.
It is buried at a depth of 95.4–177.8 m, with an average depth of 136.6 m. The distance
between coal seams No. 7 and No. 6 above is 5.4 m, and the distance to coal seam No. 8
below is 22.7 m. The interburden strata between coal seams No. 7 and No. 8 are mainly
composed of medium–hard and hard rocks. The structures of the surrounding rock strata
of the adjacent coal seam roof and floor, as well as the physical and mechanical parameters
of the surrounding rock strata, are shown in Figure 9.
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3.2.2. Feasibility Determination for Upward Mining

In the overburden strata, there are hard rock strata that can form stratified structures,
and the proposed new method is applicable. According to the actual working conditions of
the Baijiazhuang Coal Mine, when the upper coal seam working face passes through the
area affected by interburden strata structures, the concentration coefficient of the advance
abutment pressure on the working face is taken as 1.5, the environmental influence factor
is taken as 0.8, and the rotation angle is taken as 2◦. Combining this information with the
results shown in Figure 9, according to the calculation Equation (16) of key strata [27], we
determined that limestone strata with thicknesses of 3.8 m and 7.5 m could form a VBS.
The rock block lengths of the VBS are 12.85 m and 16.32 m, respectively, and the lump rates
are 0.30 and 0.46, respectively.

According to Equation (17), the disturbance loads caused by advance abutment pres-
sure on the DVBS between the upper and lower limestone strata are 3 × 106 N and
7 × 105 N, respectively. Then, it can be inferred that the disturbance factors of the two
limestone strata are 2.14 and 1.26, respectively. They are much smaller than the critical
values of rotation instability calculated based on Equation (13b) for determining rotation
instability, which are 4.44 and 4.08. Therefore, there is no occurrence of rotation instability
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in the DVBS. According to the calculation based on Equation (14b) to determine sliding
instability, the friction coefficients for the DVBS of the upper and lower strata, where no
sliding instability occurs, are 0.78 and 1.22, respectively. Interpreting the actual measure-
ments and research [37], we find that the range of friction coefficients for the roof rock
strata structures spans from 0.6 to 1.24. The primary load-bearing structures are formed by
the upper 7.5 m limestone, and the critical friction coefficient for the DVBS in the upper
part, where no sliding instability occurs, is 1.22. This friction coefficient value is within
the upper limit, indicating a low probability of sliding instability. Therefore, based on the
above, coal seam No. 7 can be mined upward.

3.2.3. Comparison with Traditional Determination Methods

The feasibility of upward mining for coal seam No. 7 was assessed using the traditional
ratio value method, statistical method, and “three-zone” method. The results obtained
from the balanced surrounding rock method were also included for comparison.

The rock strata between coal seams No. 7 and No. 8 are hard rock strata, and the
critical mining influence factor is set at 8 [4]. The actual mining influence factor for upward
mining of coal seam No. 7 is 5.7, which is less than its critical mining influence factor of 8.
Additionally, the actual OB/IB value is 6.3, which is also lower than the critical value of
7. Therefore, according to the ratio value method, it is determined that coal seam No. 7
cannot be mined upward.

According to Equation (1), the minimum coal seam spacing required for upward
mining is calculated to be 20.6 m, which is less than the actual coal seam spacing of 21.7 m.
Therefore, based on the statistical method, it is determined that coal seam No. 7 can be
mined upward.

According to Equation (2), the minimum coal seam spacing required for upward min-
ing is 15.8 m, which is lower than the actual coal seam spacing of 21.7 m. Therefore, based
on the “three-zone” method, it is determined that coal seam No. 7 can be mined upward.

The bulking coefficient K1 is taken to be 1.3 [27]. The balanced rock stratum is lime-
stone, with a thickness hp of 7.5 m. According to Equation (3), the calculated balanced
height of the surrounding rock is 20.2 m, which is lower than the coal seam spacing of
21.7 m. Therefore, it is determined coal seam No. 7 can be mined using the balanced
surrounding rock method.

In summary, the ratio value method determines that coal seam No. 7 cannot be
mined via upward mining, while the statistical method, the “three-zone” method, and the
balanced surrounding rock method determine that coal seam No. 7 can be mined using
upward mining. The results of the new method proposed in this paper are consistent with
those of statistical methods, the “three-zone” method, and the balanced surrounding rock
method. This validates the accuracy of the new method. Moreover, the result of the ratio
value method indicates that it is not feasible to mine the seam, while the results of the
statistical method and the balanced surrounding rock method indicate feasibility, even if
the values remain in a critical state. In practical mining, these determination results may
misguide mining and increase the risk of uncertainty. The reason for these phenomena is
that these methods are essentially empirical and cannot accurately reflect the mechanical
state of the rock structures. The new method reflects stability through the mechanical state
of the rock structures, resulting in more accurate and reliable results being obtained. It has
a positive significance for helping coal mines make correct decisions in production practice.

4. Stability Simulation of Interburden Strata Structures in Upward Mining
4.1. Simulation Program

To verify the accuracy of the DVBS model of interburden strata and the feasibility
determination method of upward mining, a physical simulation experiment and numerical
simulation method were used to study the stability of the interburden strata structures in
coal seam No. 7’s upward mining.



Energies 2023, 16, 7190 14 of 18

The physical simulation experiment used a plane-strain-simulating test bench with
dimensions of 3.0 m × 2.5 m × 0.2 m. The geometric similarity ratio is 100:1, the time
similarity ratio is 10, and the density similarity ratio is 1.6. Quartz sand is used as the
aggregate for similar materials, lime and gypsum are used as cementitious materials, borax
is used as a retarding agent, and mica powder is used to create layering [38]. The mining
length of the model is 110 mm, and mining of 3 cm is carried out every 0.8 h, which is
equivalent to a daily advance of 6 m along the working face. The experimental model is
shown in Figure 10a.
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Using the UDEC5.0 software for numerical simulation, the computational model
is shown in Figure 10b. The model has a length of 400 m and a height of 50 m. Each
working face of the coal seam has a continuous advance distance of 200 m. There are 100 m
coal pillars on both sides of the model. The lower and lateral parts of the model adopt
displacement boundaries, while the upper portion has a compensating load of 2.99 MPa.
The Mohr–Coulomb constitutive model was used for the analysis.

Mining plan: First, mine the lower coal seam, No. 8. After the stability of the rock
strata movement is ensured, proceed with mining the upper coal seam, No. 6. Finally, mine
the middle No. 7 coal seam.

4.2. Evolution of Interburden Strata Structures
4.2.1. Result of Physical Simulation

In order to study the movement of the interburden strata structures caused by upward
mining, the displacement and rotation angles of the interburden strata structures were
measured. Figure 11 illustrates the movement of interburden strata structure blocks before
and after upward mining.

According to Figure 11a,b, after the mining of coal seam No. 8, the angle between the
left rock strata structures block and the horizontal direction was 13.5◦. After coal seam No.
6 had been mined, this block did not move. Conversely, after mining coal seam No. 7, the
angle between this block and the horizontal direction decreased by a value between 0.9◦ to
12.6◦, and the rock strata structures subsided by about 5 mm. Therefore, we concluded that
the upward mining of coal seam No. 6 had almost no impact on the left interburden strata
structures of the goaf of coal seam No. 8 coal, while there was significant subsidence and
rotation of the interburden strata structures during the upward mining of coal seam No. 7.

As shown in Figure 11c,d, during the upward mining of coal seam No. 7, the right
interburden strata structures rotated by 0.2◦ and subsided by 4.7 mm. The separation
between the interburden strata (shown in blue) was noticeably reduced, with reductions
of 3.1 mm and 1.8 mm. The upward mining of coal seam No. 7 caused compaction of
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the interburden strata and rotation and subsidence of the rock strata structures, but no
instability or failure occurred.
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4.2.2. Result of Numerical Simulation

A further numerical simulation was used to study the movement and stability of
interburden strata structures during the upward mining of coal seam No. 7. Figure 12
presents the simulated results of the evolution of interburden strata structures below coal
seam No. 7 after the upward mining of coal seams No. 6 and No. 7.
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As shown in Figure 12, after the mining of coal seam No. 8 in the lower part, stable
interburden strata structures were formed between coal seams No. 7 and No. 8. After the
upward mining of coal seam No. 6, interburden strata structures were slightly compressed
due to the influence of the mining above. The separation distance near the observation
point decreased from 17 cm to 16 cm, while the angle θ between the rock block and the
horizontal direction remained unchanged at 6.8◦. After the upward mining of coal seam
No. 7, the rock blocks in the interburden strata structure sank and rotated. The separation
distance near the observation point decreased from 16 cm to 14 cm, and the angle between
the rock block and the horizontal direction decreased from 6.8◦ to 5.7◦. The numerical
simulation study showed that the upward mining of coal seam No. 7 caused the sinking
and rotation of the blocks in the interburden strata structures, but the structures remained
stable and no instability occurred. The results of physical simulation experiments and
numerical simulation are consistent, verifying the correctness of feasibility determination
for upward mining.
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5. Conclusions

This paper establishes a DVBS mechanics model of interburden strata in upward
mining. It deduces the instability conditions and mechanisms of this model and establishes
a quantitative relationship between the disturbance factor of upward mining and rock
structure parameters such as the lump rate, rotation angle, and uniaxial compressive
strength. It proposes a feasibility determination method for upward mining based on the
stability of the DVBS and applies it to upward mining in coal seam No. 7 of Baijiazhuang
Coal Mine. The stability of the interburden strata structures in coal seam No. 7 during
upward mining was studied using physical simulation and numerical simulation. The
results are as follows:

1. Together, the DLC and the DLDC form the disturbance factor in upward mining,
which affects the stability of the DVBS. There are two mechanisms of instability in
the DVBS during upward mining: rotation instability and sliding instability. When
the disturbance load crosses the key blocks of the DVBS, the DVBS is most likely to
experience sliding instability. When the disturbance load is entirely applied to the key
blocks of the DVBS, rotation instability is more likely to occur.

2. Using the proposed method, it is determined that the 7.5 m limestone in the inter-
burden strata structures is the primary load-bearing stratum, and its disturbance
factor in upward mining is 2.14, which is much smaller than the critical value of
4.44 for rotation instability, indicating that rotation instability will not occur. The
critical friction coefficient of this DVBS is 1.22, which is close to the upper limit of the
empirical range of friction coefficients from 0.6 to 1.24, indicating a low probability of
sliding instability. Therefore, it is determined that the interburden strata structures are
stable and upward mining can be conducted in coal seam No. 7. The results obtained
using this method differ from those obtained using the ratio value method but are
consistent with the results obtained using the statistical method, “three-zone” method,
and balanced surrounding rock method.

3. Simulation results show that upward mining would cause the sinking, rotation, and
compaction of interburden strata structures. After upward mining in coal seam No. 7,
the key blocks of the interburden strata structures rotated by 0.2◦ to 1.1◦, with a
maximum subsidence of 500 mm and a maximum separation compaction of 310 mm.
Although there was movement in the interburden strata structures, it remained stable,
further verifying the accuracy and applicability of this new method.

When there are rock strata structures in the interburden and the rock strata structures
form a VBS, the new method will be applicable. Compared to traditional determination
methods, the proposed model and method reflect the effect of upward mining disturbance,
resulting in more accurate and reliable results. It has a positive significance in terms of
improving the safety of upward mining practices.
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