energies

Article

Transient Stability Analysis for a Multi-VSC Parallel System
Based on the CFND Method

Yue Li !, Yanghong Xia 1*(J, Junchao Ma 2 and Yonggang Peng !

check for
updates

Citation: Li, Y.; Xia, Y.; Ma, J.; Peng, Y.
Transient Stability Analysis for a
Multi-VSC Parallel System Based on
the CFND Method. Energies 2023, 16,
7243. https://doi.org/10.3390/
enl6217243

Academic Editor: Alon Kuperman

Received: 21 September 2023
Revised: 15 October 2023
Accepted: 23 October 2023
Published: 25 October 2023

Copyright: © 2023 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

1 College of Electrical Engineering, Zhejiang University, Hangzhou 310058, China

2 State Grid Zhejiang Electric Power Co., Ltd., Research Institute, Hangzhou 310014, China
*  Correspondence: royxiayh@zju.edu.cn

Abstract: Because of the control complexity of voltage source converters (VSCs), transient stability
analysis of multi-VSC parallel systems is challenging, and there are still no effective methods to solve
this problem. Inspired by the decoupling principle and combined with the normal form method,
an innovative coupling-factor-based nonlinear decoupling (CFND) method is proposed. According
to the coupling factors that can be used to evaluate the nonlinear coupling degree among different
state variables, the CFND method approximately transforms a high-order nonlinear multi-VSC
parallel system into multiple decoupled low-order modes. Thus, the transient stability of the original
high-order multi-VSC system can be reflected indirectly by the mature inversing trajectory method
and the phase plane method. The CFND method has universality, flexibility, and insensitivity to
system order, and no need to construct corresponding Lyapunov functions for different nonlinear
systems, breaking through the inherent limitations of traditional analysis methods. Furthermore,
this paper derives a reduced-order large-signal model and the corresponding truncated model for a
single VSC grid-connected system. The effectiveness of the reduced-order model is verified through
simulation waveforms and ROAs partitioning. Subsequently, a generalized model of the multi-VSC
grid-connected system is developed. Finally, taking the grid-connected system with three VSCs as an
example, the proposed CFND method is used to analyze typical operation cases, and the conclusions
of transient stability analysis are verified using the hardware-in-loop (HIL) experiments.

Keywords: transient stability; multiple VSCs; coupling factors; nonlinear decoupling

1. Introduction

With urgent carbon reduction requirements, an increasing number of renewable
sources are integrated into the power grid through power electronic devices. Compared
with the power system mainly composed of synchronous machines, the multi-voltage-
source-converter (multi-VSC) parallel system lacks inherent inertia and damping, and its
dynamics are more dependent on the adopted digital control algorithms. Hence, system
state variables such as voltages and frequencies can be easily changed in real-time and
present complex dynamic trajectories when the system suffers a large disturbance. This has
led to increasing public concern about power system stability [1-3].

Generally, stability analysis is categorized into steady stability and transient stability,
which are also known as small-signal stability and large-signal stability. Small-signal
stability adopts the linear theory to analyze the system dynamics around the operation
point, which mainly focuses on the ability of the system to maintain stable operation under
small disturbances. There has been a variety of literature on small-signal stability analysis
for a single VSC or multiple paralleled VSCs [4-9]. Eigenvalue-based [7,8] and impedance-
based [9] stability analyses are conducted to verify various control strategies. However,
it is not sufficient for the relatively mature small-signal stability analysis to evaluate the
stability of a system that may be subjected to extreme disturbances.

In the large-signal stability analysis, the ideal analysis method is to find the exact
analytical solution. However, for a high-dimensional nonlinear differential equation system,
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even finding an approximate solution is quite difficult. The commonly used methods
for transient stability analysis of power systems can be mainly classified into numerical
methods, equal area methods, Lyapunov methods, and modal analysis methods. The
numerical method mainly involves establishing an accurate model for the system, using
computational methods to integrate and solve differential and algebraic equations, and
obtaining numerical solutions or operating trajectories for each state variable. This method
has high accuracy, but it requires a lot of computational power. Especially when dealing
with large-scale and high-dimensional systems, the computational complexity of numerical
methods significantly increases, requiring a large number of computational resources
and time. In addition, numerical methods are suitable for determining the stability of
a system with a certain model and cannot conclude the stability mechanism from the
perspective of physical models. Although the Lyapunov function can be used for transient
stability analysis of various high-order nonlinear systems [10], in terms of stability domain
judgment, the ROA obtained by the Lyapunov method is mostly elliptical, while the
actual system has various forms of ROA. Therefore, as the order of transient stability
analysis issues increases, the analysis results of the Lyapunov method gradually become
conservative and are not suitable for the precise division of transient stability domains.
The high-order modal analysis method, as a continuation of small-signal modal stability
analysis methods, is an important research hotspot in the current nonlinear field. Currently,
it can be mainly divided into normal form methods, Kalman linearization methods, and so
on. The normal form method was initially established by Poincaré, aiming to simplify the
dynamics of nonlinear systems by continuously using approximate identity transformations
of coordinates, which were selected to eliminate nonresonant terms of corresponding orders.
Ref. [11] proposed a normal form method that extends to the cubic term and is applied
to transient stability analysis of a 2-zone 4-machine system. The Kalman linear method
involves embedding a nonlinear system into an infinite dimensional linear model and
analyzing it using linear theory to obtain information such as higher-order modes and
nonlinear participation factors [12]. However, most of the current high-order modal analysis
methods are limited to converting high-order nonlinear systems into the superposition of
linear modes, and then using mature linear methods for analysis, making it difficult to
provide specific ROA and effective transient stability judgment conclusions.

Due to the limitations of high-order nonlinear system transient stability analysis
methods, existing work mainly focuses on the second-order model development for the
single VSC and the stable region calculation. Ref. [13] develops a reduced-order nonlinear
model of the VSC and clarifies the negative effect of voltage sag owing to the nonexistence
of stable operation points. However, the existence of the stable operation point is only a
necessary condition, and the mechanism by which the system cannot converge to the stable
operation point is not revealed. Based on the reduced-order model, a PLL is considered to
be the key factor of system instability, and the adoption of a low-order PLL is proposed
as an adaptive control method to improve stability [14]. The equal area criterion (EAC),
the improved equal area criterion (IEAC), and the Lyapunov methods are compared
in [15] regarding the advantages and disadvantages as well as the accuracy of stable
region estimation. The results show that the stable region obtained based on Lyapunov
is relatively conservative, while the EAC may lead to an erroneous conclusion owing to
ignoring the unfavorable influence of negative damping. In contrast, the stable region
obtained by the IEAC is in better agreement with the simulation results. In addition,
ref. [16] comprehensively summarizes the current status of transient stability analysis of a
single VSC under various control modes.

The stability analysis is more difficult owing to the strong nonlinearity and complexity
of dynamic interactions in multi-VSC parallel systems [4,5]. The transient stability of the
paralleled synchronous and VSG (SG-VSG) system and the paralleled VSG system are
analyzed and compared in [17]. However, that paper focuses on the transient stability
between two machines, which cannot be easily generalized to multiple machines. In
large-scale converter-based wind farms, the preconditions for the existence of steady-state
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operation points in the low-voltage ride-through (LVRT) process are calculated and sum-
marized [18]. Furthermore, the innovative Lyapunov’s direct method [19] and the normal
form (NF) method [20] are proposed and adopted for multi-VSC system transient stability
analysis. However, the computational complexity and scalability of these two methods
still need to be improved. Moreover, the nonlinear modal decoupling (NMD) method is
developed to construct decoupled oscillations to analyze the initial multi-oscillation sys-
tem [21]. Nonetheless, this method applies only to the conventional power grid dominated
by synchronous generators and considers the multi-oscillations system whose Jacobian
matrix has only complex-valued eigenvalues. In summary, transient stability analysis for
power systems dominated by multiple VSCs needs to be further promoted and explored.

To fill the gap in transient stability analysis for multi-VSC parallel systems with strong
nonlinear features, this paper proposes the coupling factor-based nonlinear decoupling
(CFND) method to decouple the high-order nonlinear model to numerous decoupled
low-order modes, where coupling factors are developed to evaluate the coupling degree
between different state variables. After that, through mature analysis methods for low-
order nonlinear equations, including the trajectory reversing method and the phase plane
method, the transient stability of the multi-VSC parallel system can be indirectly reflected
by the decoupled low-order modes. In addition, a case of a three-VSC parallel system
is analyzed as an illustration for transient stability analysis, and experiments verify the
results. The results show that the decoupled modes can indirectly and accurately reflect the
stability of the original high-order strong coupling nonlinear system.

This paper elaborates on the proposed method and experiments through five sections.
Section 2 introduces the CFND method. Section 3 develops the case studies and conducts
discussions. In Section 4, hardware-in-loop (HIL) experiments are conducted to verify the
theoretical analysis. Conclusions are summarized in Section 5.

2. Coupling-Factor-Based Nonlinear Decoupling Method for Stability Analysis

The conventional small-signal stability analysis methods retain only the linear char-
acteristics of the system near the equilibrium point, which is oversimplified under large
disturbances. In addition, the methods cannot provide information about the exact distur-
bance range that the system can tolerate. This may bring a nonnegligible error and lead to
inaccurate stability conclusions. However, high-order nonlinearity poses a challenge to the
evaluation of the system’s region of attraction (ROA). This section introduces the method of
decoupling the high-order nonlinear equations into numerous first-order and second-order
modes and reflects the original system’s ROA by numerous decoupled modes.

2.1. Linear Transformation

The state space equation of a system [11] can be established as

X = F(X), 6)

where X = [x1,x,,- - ,xn] represents the state variable vector of the system and F(X) =

[f1(X), f2(X), -, fn(X)]" is the state equations matrix of the system.

Compared with the small-signal stability analysis method, linearizing the equations
around the operation point, if the dominant nonlinear features of the system can be further
covered, the reliability of the stability analysis conclusion will be improved. However,
the higher the nonlinear order is considered, the more limited the nonlinear analysis tools
will be, and the computational complexity will increase exponentially. Hence, the degree
of retention of the system nonlinearity involves a tradeoff between the reliability of the
conclusion and the realizability of the analysis.

In general, retaining the nonlinear quadratic terms for typical power electronic devices
can typically reflect the nonlinear characteristics of the system. For example, a constant
power load and DC/DC converter are typical quadratic nonlinear systems. Thus, the



Energies 2023, 16, 7243

4 0f22

nonlinear quadratic terms in the equations are retained to improve the completeness of the
model, which can be represented as

X = AX + H(X), )

where matrix A is the Jacobian matrix of F(X), H(X) = [X"H;X, X"H;X,--- ,X"H,X] !
represents the quadratic terms of the system and H; is the Hessian matrix. Similarity
transformation can be performed as

X = px1, 3)

[1] 0] x[;,]} T

where P is the eigenvector matrix and X = {xl JXy e, represents the state

variable vector after the linear transformation (also named the primary transformation).
Thus, the system equations can be derived as

. T
X1 — Ax!1 4 p-1 [X“]TPTHlprﬂ, .., x0T pTy, pxi1

4
— AXIU 4 {X{l]TMlX{II,X[I]TMZX[I],_ . -,X[”TMnX“]] @

where matrix A is the eigenvalue matrix. We define matrix Q; = (PTHiP) ; thus, M]- =
N (P

The systems’” small-signal stability can be determined by checking whether positive
eigenvalues exist in A. If the eigenvalues are positive or have a zero real part, the system is
unstable or critically stable, and this conclusion is trivial. Therefore, this paper presupposes
that all the system’s eigenvalues are negative. In theory, similarity transformation can be
regarded as a linear decoupling method.

2.2. Classification of Variables Based on Coupling Factors

To keep the dominant nonlinear characteristics of the system and reduce the complexity
of analysis as much as possible, the system is decoupled into a series of modes represented
by the first- and second-order differential equations. The decoupled state equations should
be of the form

Xt = Ax2 4 K (x2) + o(x2°), ©)

T
where X2 = [xﬁz],xf], s ,x,[f]} represents the state variable vector after the nonlin-
T
ear quadratic transformation, and K (Xm) — {X[Z]TKIX{Z], X[Z]TKZX{ZI, e, X{Z]TK,,X[Z]} )

o (X{2]3) represents polynomials of higher degree concerning X!2. This paper assumes that

the cubic term has limited influence on the stability analysis conclusion and can, therefore,
be ignored.
2]

If other state variables have limited influence on state variable xl[z] , x;" can be consid-
ered an “isolated state variable”, and the corresponding state space equation is

2
i = el K («P) ©)

i

where the three subscripts of K; ;; represent the matrix K; and the corresponding row and
column numbers in turn.
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If the coupling effect between two state variables cannot be ignored, they can be
considered as a coupling pair. The equations are

2] 2

i

2
+ Ki,ii (xl[z]) + (Ki,ij + Ki,ji)xz[

2 2 2\ ? 2
x][' = Afx][ K (xz[ }) + (Kjj + Kjji)

2
xl[Z] = Ajx ]x][-z] + Ki,jj (xm)

j
2 g (22
H Kj i (x j )
Variables whose eigenvalues are complex conjugate numbers are generally considered
to have strong relations and should be regarded as coupling pairs. The classification of the
state variables with negative real eigenvalues depends on the coupling strength between
variables, which the coupling factor can measure. The coupling factor between the state

1[2] and x][-z] can be defined as

@)

variables x

_ M Myl Mg + M
A Al

Ci; (8)
where M, ;; represents the element in the matrix M; and where the last two subscripts
indicate the row and column numbers. In addition, A; and A; are the i-th and j-th eigen-
values of the matrix A. We select the variables with the largest coupling factors from the
unpaired state variables and classify them as the coupling pair. Then, the above operations
are repeated until the coupling factors between the remaining variables are lower than the
threshold or there is only zero or one unpaired variable left. Therefore, the state variables
are classified into two categories: coupling pairs whose influence on each other cannot be
omitted as (7) and isolated variables that mainly incorporate their own effects as (6).

2.3. Nonlinear Transformation Derivation

According to (4), from the perspective of primary terms, the changing trend of each
state variable is related only to itself. However, the quadratic terms of different variables
are still coupled together. This paper’s purpose of nonlinear decoupling is to differentiate
the state variables in quadratic terms after decoupling, which cannot be obtained by a
linear transformation. Consider the nonlinear transformations:

x1 — xi2 + T(X{ZI), )

where T(Xm) = [X{Z] TT1X[2], X2l TTZXIZ], e, X[Z]TT,,X[Z]} T. According to the expected
decoupled state equations as (6) and (7), isolated variables incorporate only their own
influence on the quadratic terms, and coupling variables incorporate only their paired
variables” influence on the quadratic terms. Therefore, uncorrelated variables should be
reflected as zero in the coefficients of the quadratic terms. Moreover, to possibly preserve
the original system information, the quadratic terms” coefficients of the retained terms

should be consistent with the original system, which can be expressed as (10) and (11).

For isolated state variable xlm, the coefficients of quadratic terms are as in (10), where

je{1,2,--- ,NLke{1,2,--- ,N},jAiork #i.

Kiii = M; i
4 o 10
{ f (10)

2]

For coupling pair variables, x;~ and x][z], the coefficients of quadratic terms are as in
(11), where k € {1,2,--- ,N},1 € {1,2,--- ,N}and k,I #i,],

Kiii = M, Kjjj = M jj
Kiij = Miij, Kiji = Miji, Kjij = Mjij, Kj ji = Mjji (11)
Ki =0
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Substituting (9) into (4) leads to

8T<X{2])

I+ oxt2l

] xi2! — A[XE 4 1(X) ]+ x4 r(x)]. (12)

Combining (5) and (12), we obtain

ox12!

175 () 0(3))
= A[XZ4T(x)] + M[xE 4 7(x2) .

(13)

For the quadratic terms of (13), the expression can be derived for the i-th equality of
the matrix:

T
X2 x| [E)T(X[X; )] [Alxgz]A2x£2]~-'Ale[\2,]}
i

(14)
_ 2 xTxiE iy e
Expanding the above expression yields
n n
Z Z K jxx; 2]x1[<2 + Z [/\'x[z] D (Ti]'k + Tikj)xl[{z]]
e = (15)

AZ? 12k 1T,]kx[2]xk +Z7 1Zk 1 1]kx][2]x][<2]‘

By shifting the terms of (15), the following can be deduced:

Z] 1Zk 1( ijk — 1]k) [2] 2] 12]( 1 /\k) ljkx]m ]EZ] (16)

Thus, if Aj + Ax # A;, the nonlinear transformation matrix can be deduced as

Ki jic — M ji

17
Ai—Aj— Ay 17)

Tijk =

By nonlinear transformations as (9) and (17), the original high-order system can be

decoupled into multiple low-order modes as (6) and (7), the ROA of which can be analyzed
by the mature trajectory reversing method and phase plane method.

2.4. Transient Stability Assessment

Transient stability can be determined by calculating whether the initial point lies
in the ROA of the steady-state operation point. According to the decoupling process
described in the previous sections, the system undergoes linear transformation from the
initial model in the X-domain to the linear decoupling model in the X!"-domain, and
nonlinear transformation from the X!"-domain to the nonlinear decoupling model in the

X2l domain. The initial point X in the X-domain can be calculated by solving X=0
in (1). Then, similar to the process of model decoupling, it is intuitive to determine the
initial point XB” in the X'I-domain by the similarity transformation in (3). For nonlinear
transformation as (9), the initial point XE,Z] in the X!?\-domain can be calculated by setting

X{,ﬂ as the iteration starting point through the Newton—Raphson method.

For the decoupled first-order quadratic modes in (6), the ROA can be calculated by
2] 2

the corresponding x;~ — x; ] diagram. As shown in the diagrammatic sketch in Figure 1a,

the curve intersects the abscissa axis at points 2 and b. When X[z] € (—o0,a),x [ N 0, x[ ]

will gradually destabilize by moving toward point 2. When xl[z] € (a,b),x [ I < 0, x[ Jalso

gradually moves toward point 2. When x[z] € (b, +c0), x [ IS 0, xm moves toward the

right axis and loses stability. Upon synthe51zing the derlvatlve signs of the above three
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intervals, the ROA of the state variable xlm is (—o0,b), which means that when the initial
point is in this interval, the state variable returns to the stable operating point.

12]
- 12 X,
x[ ]

i d A
5 /S
N

a~__b "

(a) (b)

Figure 1. ROA diagrammatic sketch. (a) First-order mode. (b) Second-order mode.

For the decoupled second-order quadratic modes as (7), the ROA can be calculated by
the trajectory reversing method and the phase plane method, and the diagrammatic sketch
is shown in Figure 1b. If the initial point is within ROA, as with the green triangle in the
figure, the mode can maintain transient stability. However, if the initial point is outside
ROA, as with the red triangle in the figure, the mode is unstable.

In summary, the proposed CFND method calculates the coupling factors to evaluate
the coupling degree between different variables and decouples the original high-order
nonlinear system into multiple low-order quadratic modes. Thus, mature methods can be
adopted to analyze the low-order modes, and the transient stability of the initial system
can be reflected indirectly. The complete flow chart of the CFND method is summarized in
Figure 2.

:‘ Develop the model retaining the quadratic terms as equation (2) . )

{  Calculate initial condition (X¢) for (2) by solving X = 0. |
Ot

1 Perform similarity transformation as (3) and obtain the linear Linear

\  decoupling model as (4). Check the negative cigenvalues. E transformation
1

L Initial condition transforms to Xu] P lX y

_____________________________________________

{ For variables with complex conjugate eigenvalues, coupling pairs }  Classification of

i are marked. Thc coupling factors between the state variables with | variables based
| p on coupling
factors

_________________________________________

——————

- — - -
. --=Coupling factors between the remaining =~ _ I Select the two |

«z27 wvariables are lower than the threshold or ~~~._i variables with the |

Tees ..thm e is only 0 or 1 unpaired v anable lt:ﬂ;r> —e-smTTON  largest factors as I
1. "coupling pair". ,'

- =T s SR L

(Xlz]) in X[2l-domain. Adopt the trajectory reversing method andl
l phase diagram to analyze the decoupled low-order mode’s ROA. l Transient
stability

Figure 2. Flow chart for the nonlinear decoupling stability analysis method.

3. Modeling and Transient Stability Analysis for a Multi-VSC Parallel System
3.1. System Description and Mathematical Model of the Single VSC

In this paper, the transient stability of the multi-VSC parallel system is targeted. To
coherently derive a reduced order model for the multi-VSC parallel system, taking a
single VSC grid-connected system as an example, the topology and control strategy of the
adopted grid-following VSC are introduced, and the reduced-order model of the single
VSC is obtained.
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Figure 3 represents the simplified diagram and the adopted control method for each
VSC. For VSC in grid-following mode, there is usually a large capacitor or a control part
adopted to stabilize the DC voltage, so the DC side can be considered an ideal voltage
source, the voltage of which can be represented as V;;.. On the AC side, the VSC is filtered
by the inductor (Ls). After that, the VSC is connected to the weak grid by line impedance
(Z1ine)- The weak grid consists of the ideal voltage source (v;) and grid impedance (Z¢). The
amplitude and phase of the grid voltage vs can be represented as V; and 0;, respectively. In
terms of the control strategy, the VSC measures the three-phase current (iysc) and the point
of common coupling (PCC) voltage (vcc) to the PLL to obtain a phase p;;. Through Park
transformation, iysc can be transferred to the active current (i) and the reactive current (i,).
The active current reference is I*_ ., and the reactive current reference is I;‘scq. The current

vscd’
is regulated by the PI controller to achieve zero-steady-state error.

L,z
T ~J - >

Vdc | — lvsc 4 pcc$
‘EI abc/dg|<+—| PLL
PWM ; .

E" l“il L pﬂ.

9])]] dq/ ‘—®j'— ]1:r(f
- abc 4_Iﬁ|<_®‘_ Ivscq

Figure 3. Simplified single-line diagram and the adopted control method of VSC. Steady-state values

Z

G

ine

Vg V

Yy
T«

are marked with *.

Figure 4 shows the control principle of the PLL, where ky;;p and ky;; represent the
proportional and integral parameters of the PI controller. Due to the presence of PI control
and frequency integration, the disturbance of v, will be transmitted to 6p;; through two
integrators. Therefore, the PLL cannot achieve instant phase locking. In addition, due to the
presence of line impedance and weak grid impedance, there is complex coupling between
different parallel VSCs as well as between the VSC and the grid, making the transient
stability analysis of multi-VSC systems more complex.

1/ sp——

vpccg k

pil
pliP 1 / A >

ok
L8]
L]
I~
>
» O
&
Y

kaI >{1/ s

Figure 4. Block diagram of the PLL control. Steady-state values are marked with *.

To facilitate modeling, the amplitude and phase representation is used for impedance,
voltage, and current, which can be represented as

Ziine = Ry + j Xy = Z;e/¥1, (18)
Zg = Rg + jXg = Zgel%, (19)

ipse = Ivscmej(el) = (I;;kscd +jI;scq>ej(9pll) = Ivscmej(epll+¢[) (20)
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The utility grid composed of an ideal voltage source and grid impedance in series can
be converted into the current source form, where

v _ Vee j(0s—gs)
= — = = S 8
Is Zc def(Pg Lme (21)
The bus voltage can be represented as
vg = (is +ivsc) ZG (22)

Thus, the voltage of the PCC can be represented as
Upce = Vg + TvscZine (23)
For simplification, define
Zn = ZG + Zijne = Run + jXin = Ze/?" (24)

Combining (18)—(24), the projection of PCC voltage on the phase-locked angle can be
derived as

Opece 1 = (Lisoq + jlineg ) (R + X (wpn ) ) + LomZg (cos(=0) + jsin(~8))  (25)

where wy; is the angular frequency and w* is the rated angular frequency value. Awy
indicates the deviation between the system frequency and the rated frequency. Power angle
(9) can be defined as

6= Gp” —6; = / (wp” — w*)dt = /A(Uplldi’ (26)

The control principle of PLL is to achieve phase lock using a PI controller to make
the projection value of the g-axis PCC voltage zero. The g-axis voltage can be derived as
follows:

Opecq = img (0pece 7)) = e Xon (pir) + Liseg R — LonZgsin(5) 27)

where img represents taking the imaginary part. Generally, the system frequency is rela-
tively close to the rated frequency, thus

X(wp”) ~ X(w*) + YBw,y (28)

When Z,, (jwp”) displays the inductive characteristic, X(w*) = Lyw* and ¥ =

Ly > 0. When Z,, (jwp”> displays the capacitive characteristic, X(w*) = ﬁi* and

— 1
Y=clo>o

To simplify the expression and highlight the components of the g-axis voltage projec-
tion value, define the constant component as Py, = I, Xm (w*) + I;jschm, thus the g-axis
PCC voltage can be represented as

Vpeeq = P — IsmZgsin(6) + I;‘schAwp” (29)

According to the PLL control principle shown in Figure 4, the state-space model can
be represented as

pll

dx
pll K
—ar — Kpll10pcc
{d@ dt* p peeq (30)
2 = W'+ Xy + KpiipUpeeq

where x,; is the space variable introduced by the PLL integrator controller.
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According to (26), considering the PLL control strategy, expressions about power angle

can be derived as is
7 = Bwpi = Xpi + KpiipUpeeg (31)

Combining (29) and (31), this can be derived:
opecq = (1/ (1= scaYKpiip ) ) (P + Foca Y Xpn — I Zgsin(6) ) (32)

Combining (30)—(32), the reduced-order big-signal model for the single VSC system
can be developed as

dx
T’Z” = KP”I (1/ ( vschKP”P)) P+ I;scdyxpll o Istgsm )

(33)
% = s+ Koup (1/ (1= Lo YKpuip ) ) (P + Tyt = I Zgsin(5))

The big-signal model can be represented in Figure 5.

]1 sed Y
P + vpcrg 5
1 K > » >
< piIP o, 1 / Ay
K, .pll/s
plil / po
1 7 . sin(o)

Figure 5. Block diagram of the reduced-order big-signal model for the single VSC system. Steady-state
values are marked with *.

Trigonometric functions in large-signal models pose challenges for transient stability
analysis. Consequently, Taylor expansion is applied to derive the second-order and cubic-
order truncated models based on the reduced-order large-signal model.

The state variable can be expressed as a combination of the steady-state quantity and
the incremental value, as 6 = 6* + Ad, where 6* and Ad represent the steady-state and the
incremental value, respectively. Taylor’s expression about the trigonometric function sin(J)
is as follows:

sin(8) = sin(6*) + cos(6*)AS — %sin(5*)(A 5)? — 6cos(5*)(A5)3 + (34)
= sin(0*) + k1 A8 + ko (A6)? + k3 (Ad)° +
where coefficients are k1 = cos(6*),kr = —3sin(6*), ks = — Lcos(5*).
Combining (33) and (34) by truncating the system model to the quadratic term from
the steady-state operating point, the reduced-order quadratic truncation model for a single
VSC grid-connected system can be derived as follows:

dA
dip” = KPZHA (BA(S + C(A(S) + DAXPH)

403 — Ay + Kypk (BA(S +C(06) + DAxp,l)

(35)

Similarly, by truncating the system model to the cubic term, the reduced-order cubic

truncation model for a single VSC grid-connected system can be derived as follows:
dhxp Ky

at N (1 IvschKP”P>

das _ Kur (
Axpll + (1 I:schKP”P) I

( I Y A — T Zg [klA(s + ko (86)2 + k3 (A3) } )

3 (36)
YAx — LonZg {klA(s + ko (AS)? + k3 (AS) } )

vscd
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Thus, the reduced-order large-signal model, along with the corresponding quadratic
and cubic truncation models, for the single VSC grid-connected system is derived.

In the case of single VSC grid-connected systems, the reduced-order large-signal model
is second-order, enabling direct application of mature phase diagram or inverse trajectory
methods for transient stability analysis. However, as the number of VSC devices connected
to the system increases, the number of system nodes grows, and the system order increases
significantly. Consequently, the phase diagram method and inverse trajectory method used
for analyzing low-order systems cannot be directly applied to assess the transient stability
of the system.

3.2. Performance Verification for the Reduced-Order Model

To verify the effectiveness of the reduced-order model for the single VSC grid-connected
system, in the case when grid voltage drops suddenly from 311 V to 31.1 V, the model can
be verified by comparing response curves of the power angle, system frequency, and g-axis
voltage (vpceq), adopting the accurate switch tube model and the reduced-order model
through simulation. Simulation comparison diagrams are shown in Figure 6.

012 F T T T T T T T T B 316 T T T

0.1r

0.08 -

0.06

power angle(rad)

0.04 -

0.02

[
w
T
L

angular frequency(rad/s)
[ w2
E I

=== (ransient response curve with switch model
=== transient response curve with switch model .
R === (ransient response curve with reduced-order model
== transient response curve with reduced-order model
T T T T ;

) ) . 312 ) . T T T T 7 T
02 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 0.2 0.4 0.6 0.8 ) 1 12 1.4 1.6 1.8 2
time(s) time(s)

(a) (b)

6

0r

g-axis voltage at PCC (V)
< (%3

2t B
= === fransient response curve with switch model
-4 == (ransient response curve with reduced-order model |
02 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
time(s)
(0)

Figure 6. Simulation comparison diagrams with switch tube model and reduced-order model when
grid voltage drops from 311 V to 31.1 V. (a) Power angle curves. (b) Angular frequency curves.
(c) Q-axis voltage at PCC.

According to Figure 6, when the voltage amplitude of the power grid abruptly de-
creases from 311 V to 31.1 V, the reduced-order model exhibits notable correspondence
and robust consistency with the simulation waveforms of the switch tube model. This
suggests that the reduced-order model adequately captures the dynamics of the original
system. Consequently, when conducting transient stability analysis on system-level en-
tities, employing a reduced-order model for the analysis of system transient stability is
feasible, given that the control bandwidth distinction between the inner and outer loops is
sufficiently large.

In addition, the ROAs are obtained using the mature inverse trajectory method based
on the reduced-order large-signal model, quadratic truncation model, and cubic truncation
model. The comparison curves can be observed in Figure 7.
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Figure 7. Comparison of ROAs obtained using the large-signal model, quadratic truncation model,
and cubic truncation model.

Figure 7 illustrates the ROAs obtained from the reduced-order large-signal model
(yellow curve), quadratic truncation model (blue curve), and cubic truncation model
(purple curve) for the single VSC grid-connected system. The ROAs represented by these
curves exhibit significant proximity, indicating the potential use of a truncated model for
simulating system characteristics and conducting transient stability analysis. Additionally,
the boundaries of the ROAs obtained from the quadratic and cubic truncation models
closely align with the inner and outer boundaries of the ROA obtained from the large
signal model, respectively, which suggests a high degree of overlapping. Consequently,
adopting the quadratic truncation model not only reduces computational complexity but
also ensures adequate fitting accuracy.

3.3. Reduced-Order Derivation for the Multi-VSC Parallel System

Currently, most renewable energy sources are connected to the power grid through
grid-following VSCs. Thus, this paper primarily focuses on modeling and transient stability
analysis for scenarios involving multiple grid-following VSCs connected to the grid. Since
the VSCs employ a similar control strategy, the circuit model and control strategy of
multi-VSCs connected to the grid will not be extensively discussed further. Each grid-
connected VSC will be labeled sequentially as 1,2,...,N,k € {1,2,...,N}. The symbol
representation of circuit parameters and control parameters in a multi-VSC grid-connected
system follows the same as those defined in a single VSC grid-connected system. Ly
and Zj;,, i respectively denote the filtering inductance and line impedance associated with
the k-th VSC circuit. Other parameters follow a similar pattern and will not be reiterated.
To simplify the circuit topology of a multi-VSC grid-connected system, a similar circuit
transformation is employed to convert the series combination of the ideal voltage source
and grid impedance into a current source form. Figure 8 presents the corresponding
schematic for the simplified circuit topology of the multi-VSC grid-connected system.

Bus voltage in the multi-VSC grid-connected system can be derived as

Ug = (is + Zf\il ivsc,i) Zg (37)

The measured voltage at the PCC of each VSC, which is used for the PLL of each VSC
itself, can be expressed as

Upeck = Vg + lvsc,kzline,k = (Zs + 21’:1 lvsc,i>ZG + lvsc,kzline,k (38)
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Each VSC’s PLL is regulated by locally measuring voltage information. As a result of
different line impedances, the active and reactive current reference values for VSCs and
angles detected by VSCs are different. Figure 9 displays the phase angle diagram for the
grid-connected system with multiple VSCs.

1 | 7
Zhne,l Zh‘me,k ZJinz,N + ZG line.k line,N +
. + v
. 1 ) .
vsc.l l"S‘Uk + e N Vg VS C vse,k +IVSC"N y |:
Vpc(:,k - v])('c.l\
(a) (b)

Vpec = Tl (05— #2) (Rg + ]Xg(w*)) + (I;scd,k +jI;scq,k) o/ Opit) (Rm,k + Xk (Wpll,k) ) +

Figure 8. Simplified system for the transient stability analysis. (a) Simplified structure diagram of the
multi-VSC parallel system. (b) Equivalent circuit.

Figure 9. Diagram of power angles in the multi-VSC grid-connected system.
For simplification, define
Zak =26 + Ziinek = Runje + Xusj = Zyn e/ 7% (39)
Thus, the voltage of PCC can be derived as
(40)

Zi:1,~~,k—1,k+1,~~N Ivscm,ie]( Pl 9ii) (Rg + ]Xg (a)pll,i))

The control principle of the PLL in each VSC involves using a PI controller to make the
g-axis voltage zero, ultimately determining the phase at PCC. Therefore, the g-axis voltage
at each PCC can be expressed as

Opeeg e = img <0pCc,keij(6p”'k)) (41)

Thus, the g-axis voltage can be derived as

UPCCW( = I;SCd,karl (w}””,k> + I;Jkscq,kRm,k - Isngsm((sk)

+ L

. 42
Losem,i {COS(%‘;‘ + 0; — ) Xy (wpll,k> + sin(g@;; +6; — 5k)Rg} “2)
i=1,+ k—1k+1,N
where 6y = 6, x — 05 represents the power angle of the k-th VSC. According to (42), the
PCC voltage of the k-th VSC is influenced not only by its own loop’s current reference value

as well as the grid current and grid impedance but also by the current and impedance on
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other VSC lines. It is illustrated that coupling of the frequency and phase between multiple
VSCs occurs and that the complexity of the whole system is dramatically improved.

In the multi-VSC grid-connected system, considering the control principle of PLL,
similar state-space model can be developed for the k-th VSC:

dx

pllk __

{ s A Kpiirk0peeq k (43)
T = Ypik + Kpiip kOpeeq k

where x, ; represents the state variable introduced by the integrator controller in the
k-th VSC.

Taking the example of a grid-connected system comprising two VSCs, the correspond-
ing large-signal block diagram is depicted in Figure 10.

I, Z,sin(o,) I,Z,sm(d,)
» 5] IDm 2 A vpccq 2 52
- T - N
K pllP,1 1 / S > a@‘EKﬂP.z >
+ .
Kpff{.l ~1/s X Ao pr,: 1/ s .
Pl pill 1.2
I:scd,ly:n,l I:'sm’ 2%m2
Imscm_jR Sil’l(()} - (5‘1 + (Pj) [ ( Eg }‘_ Ivsrm,le Sin((gl - 52 + ¢:,1) < ( é‘g )‘
Coupling+ = 52 51
part [ X, () 2055, 0, 9, | [ X, (07) 00506, 5, ) Jer
Aw,, Ao

L Y 005(3, =6, +9,,) Je—r & L Y, €08(5, -8, +9,) e

Figure 10. Large-signal block diagram of the grid-connected system comprising two VSCs. Steady-
state values are marked with *.

The multi-VSC grid-connected system, as depicted in Figure 10, exhibits high-order
nonlinear characteristics and involves complex phase angle nonlinear coupling in its large
signal model. Their inherent traits pose challenges in directly analyzing the transient
stability of the multi-VSC parallel system.

3.4. System Transient Stability Analysis Based on CFND

This paper illustrates a three-VSC parallel system to analyze the transient stability.
All state variables can be expressed as steady-state quantities (denoted by the symbol *)
superimposed on the variable quantities (denoted by A), such as J; = k. + Ady. Taylor
expansion can be utilized for a model approximation when dealing with nonlinear func-
tions, such as trigonometric functions, in large-signal models. Due to the comparison of
the ROAs obtained from the single VSC reduced-order model and the quadratic and cubic
truncation models in the previous section, it is shown that truncating to the quadratic term
is sufficient to reflect the characteristics of the original system. Therefore, in the analysis of
the multi-VSC grid-connected system, the truncated to quadratic Taylor expansion is used
for model approximation. The relevant expansion equations are

sin(8g) = sin(dpy ) + cos(Opy ) ASy — sin(ék*)%(AcSk)z +-- (44)

sin(;; + 0; — d)
= sin((pi,i + 0j — (5k*) + COS((Pi,i +2‘5i* - 5k*)(A5i - A‘Sk) (45)
—sin (@i + i — ) 5 (A6 — A&) "+ - -
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In general, the frequency difference of VSCs in the system is slight. For simplification,
if wpx & ws, it can be derived that X(wp”,k) ~ X(ws) 4+ YAw. When X(a)p”,k) is

inductive, Y = L, where L is the equivalent inductance. When X (wpll/k> is capacitive,

Y = C, where C is the equivalent capacitance [22]. For the sake of simplification, this
paper mainly addresses the transient stability problem with slow outer loop dynamic
characteristics, thus ignoring the influence of the fast current inner loop and the line
dynamics [17]. Combining (42), (44) and (45), the expression of the PCC point voltage
truncated to the quadratic term after Taylor transformation is as follows:

‘ 2
Ao = m{—lsng [cos(ék*)Aék — sin (0« ) 3 (ASk) } + Lo 1 Ym kDX pit
+ ) Losem,i[(—sin(@ii 4 0i — Oi) (AS; — Ady)
i=14+ k—1k+1,-N (46)

2
—08 (@i + i — 1) 3 (A5 — AGy) )Xg(w*)
. 2
+ (COS(%'J + 8i1 — 0 ) (AS; — ASE) — sin(@jj + 6is — O ) 5 (A6 — ASy) )Rg} }
Combining (43) and (46), the nonlinear model truncated to the quadratic term of the
three-VSC parallel system is developed. The form of the model is (2), and the proposed

nonlinear decoupling method is utilized for stability analysis. The parameters adopted
by the system are shown in Table 1. The state variables of the system can be expressed as

T
X = [Axpu,thAxpu,z, Aoy, Axpy 3, Ma} .

Table 1. Parameters of the system.

Parameters Value

Grid voltage amplitude V 311 V.
Active current reference I\ . i1/ L. 427 L. i3 10 A,20 A,50 A

Reactive current reference I\ . ok 0A,0A,0A
Line impedance Rj;k, Ly 0.010,1.5mH
Grid angular frequency ws 314 rad/s

Grid impedance Rg, Lg 0.01 O, 0.4 mH

PLL parameters Ky;px, Kpnpk 0.3,6.4

Current controller Kipy, K;j ¢ 25 x1073,0.25

Steady-state values are marked with *.

To verify the proposed method’s effectiveness, transient stability assessments are
conducted for three cases with different operation points.

CASE I: For the case when the grid voltage amplitude suddenly drops from 311 V (1.0
pu) to 31.1 V (0.1 pu), the state equations after decoupling can be obtained, and the initial
operation point (X%Z]) can be calculated, as shown in the Table 2.

Table 2. Initial operation points for different operation statuses.

Operation Status

Initial Operation Point XBZ]

311Vto 311V

—0.84 —j7.11; —0.80 +{7.11; 0.40 — j3.42; 0.40 +
j3.42; 0.57 +9.15; 0.58 —{9.15.

40Vto311V

—0.14 - 2.60; —0.14 +j2.60; 0.14 — 1.18; 0.14 +
j1.18; 0.15 - 2.93;0.15 +j2.93.

311Vto311V

85.06;, —44.30; 48.73; —87.30; —45.80; —49.89.
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Since most of the coefficients in decoupled equations are complex, separating the
real and imaginary parts for stability analysis in the real number domain is helpful. For
quadratic differential equations, the mature trajectory reversing method and the phase
diagram can be used to obtain the ROA.

The ROA of the coupling pair xgz], x?} is shown inside the blue curve in Figure 11a,
and the phase diagram is shown in Figure 11b. The system gradually stabilizes when the
initial point lies within the blue curve range. Conversely, when the initial point is outside
the ROA, the system diverges and cannot be stabilized. As Figure 11 shows, the two initial
points are marked by red triangles outside the stability region, so the analysis illustrates
that the system faces large-signal instability when the voltage drops from 311 V to 31.1 V.

=)

=
B
& & A N o N B & ©
=t
>

s
|
f
1

Figure 11. Transient stability analysis of the coupling pair x?], xgzl and the initial points for 311 V to

31.1V (inred) and 40 V to 31.1 V (in green). (a) ROA. (b) Phase diagram.

Furthermore, the phase diagrams of the coupling pairs xgz] and xf], xéz} and xgz], as
well as the corresponding initial points, are shown in Figure 12. The phase diagrams
illustrate that these two pairs of state variables are globally stable.

CASE II: For the situation when the grid voltage amplitude drops from 40 V to 31.1V,
the system parameters and steady-state operation point are the same as in case I. Therefore,
the ROAs corresponding to the two cases are consistent.

As shown in Figure 11a,b, the green triangles indicate the initial points when the grid
voltage amplitude drops from 40 V to 31.1 V. It can be concluded that the initial points are
inside the ROA. Thus, there will be no instability when the grid amplitude drops from 40 V.

CASE III: Compared with the transient process of sudden voltage drop from 311 V
to 31.1 V, the model parameters (voltage amplitude), the steady-state operation point,
and the initial operation point significantly change when the grid voltage rises abruptly
from 31.1 V to 311 V. The eigenvalues corresponding to the model are all real roots. The
nonlinear decoupling method combines the two pairs of state variables with large coupling
factors into coupled pairs. The remaining variables with limited coupling factors are kept
as isolated variables. The phase diagrams of the coupling pairs xgz] and xg], xgz} and xéﬂ
are shown in Figure 13. The phase diagrams of these two coupling pairs are stable over a
wide range, which prevents instability. The red triangles are still used to mark the initial
positions of the corresponding state variables.

For isolated variables xgz] and xf] , the diagram of x&” - xgz] can be calculated to view
the ROA. As shown in Figure 14a, the curve intersects the axis at points 2 and b, and the
red triangle marks the initial point. It can be easily proved that the ROA of xgz] is (a, +00),
which means that when the initial point is in the interval, the state variable returns to
the stable operating point. According to Figure 14b, the ROA of the state variable xz[f}
is (—oo,b), and the initial point lies within the region. Hence, for a sudden voltage rise
from 31.1 V to 311V, all six variables are in stable regions, so the system is robust against
large-signal instability.
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Figure 13. Phase diagrams and the initial points for 31.1 V to 311 V. (a) Coupling pairs xgz],xg].

(b) Coupling pairs xgz] , xéz] .

A comparison of the above three cases indicates that large-signal instability occurs in
the system when the grid voltage amplitude drops from 311 V to 31.1 V, but the system can
maintain stability in the process of recovery from 31.1 V to 311 V. The cases also confirm
that the large-signal stability of the nonlinear system needs to be analyzed by combining

the initial and operation points.
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Figure 14. ROA of the isolated variables for 31.1 V to 311 V. (a) Isolated variable xgz]. (b) Isolated
2]

variable x; .

4. Hardware-in-Loop Experiments

Corresponding HIL experiments are conducted to verify the effectiveness of the
proposed method. The circuit is built in RTLAB, and the control strategy is implemented
in TMS320F28335DSP. Figure 15 shows the experimental equipment and signal flow. The
circuit parameters and the control parameters are the same as in Table 1.
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Figure 15. HIL experimental equipment.

The experimental topology is consistent with Figure 8, where three VSCs are connected
to the weak grid by line impedances. The sudden change in the grid voltage amplitude
represents the large signal disturbance faced by the system.

As the voltage amplitude drops from 311 V to 31.1 V, the corresponding waveforms
are shown in Figure 16. Initially, the system is in the normal operation status. The grid
voltage is 311 V, and the output current values of the three VSCs are consistent with the
current reference values. The output phase angles of the VSCs are kept constant, which
indicates that all the VSCs remain synchronized with the grid. When the grid voltage
drops significantly to 0.1 pu, the output currents of VSC1 and VSC2 show a larger ripple.
The phase angles deviate from the grid voltage and return around the initial values after
experiencing a specific step. In contrast, the output current of VSC3 shows apparent
oscillation, and its phase angle continues to increase until it exceeds the expression limit
of the figure and cannot maintain stability, indicating that VSC3 has lost synchronization.
Since the output current of VSCs has a significant fluctuation or oscillation and VSC3 has
been out of step, the bus voltage cannot present the typical sinusoidal waveform, and the
whole system is in a state of transient instability. Throughout the process, large changes in
the bus voltage promote transient instability of the system, in which the VSC with a larger
output current exhibits more prominent instability.

When the grid voltage is restored from 31.1 V to 311 V, the output currents of different
VSCs and the phase angles are shown in Figure 17.

According to Figure 17, the bus voltage recovers from 31.1 V to 311 V. Different
from the process of voltage sag, Figure 17a shows that the voltage can maintain a stable
sinusoidal waveform after recovery. Based on the output current waveforms of the VSCs,
the output current can be maintained near the reference value before and after the voltage
change. After the bus voltage recovers to the rated value, there is a specific reduction in the
current ripple. In addition, the PLL tracking phase angles of the three VSCs exhibit a slight
decrease, but all of them return to stability. The case represents the inverse process of the
voltage drop, and the waveforms indicate that the system can remain stable under a wide
range of fluctuations. Although the control and circuit parameters are unchanged, there are
great differences in the transient stability caused by the voltage drop and voltage recovery.
Thus, for a nonlinear system, the transient stability must be analyzed in combination with
the specific operation points and the corresponding stability region.

Similarly, when the grid voltage sags from 40 V to 31.1 V, the corresponding output
current and phase angles are as shown in Figure 18, and the system can still maintain
transient stability. During the drop in the voltage amplitude, the output current values
remain equal to the reference values. Since the voltage amplitude does not change much,
the transient performance of the output current change is relatively smooth. The tracking
angles of VSC1 and VSC2 can be stabilized after a small oscillation, and the tracking angle of
VSC3 can also be stabilized after a relatively large oscillation. The experimental results are
consistent with the theoretical analysis, indicating that the system can maintain transient
stability when the initial operating point lies within the stable region.
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Figure 16. Experimental results of VSCs when the voltage drops from 311 V to 31.1 V. (a) Grid
voltage waveforms. (b) Active and reactive power waveforms of VSC1. (c) Active and reactive power
waveforms of VSC2 and VSC3. (d) Phase angle of VSC1,2,3.
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Figure 17. Experimental results of VSCs when voltage recovers from 31.1 V to 311 V. (a) Grid voltage
waveforms. (b) Active and reactive power waveforms of VSCI1. (c) Active and reactive power
waveforms of VSC2 and VSC3. (d) Phase angle of VSC1,2,3.
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Figure 18. Experimental results of VSCs when the voltage drops from 40 V to 31.1 V. (a) Grid voltage
waveforms. (b) Active and reactive power waveforms of VSCI1. (c) Active and reactive power
waveforms of VSC2 and VSC3. (d) Phase angle of VSC1,2,3.

5. Conclusions

In this paper, the CFND method is proposed to investigate the transient stability of
the multi-VSC parallel system. The CFND method evaluates the coupling degree between
different state variables according to coupling factors and decouples the high-order model
into several first-order and second-order modes. Directly using a full-order model analysis
for multi-VSC grid-connected systems can introduce a significant computational burden.
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From the perspective of practical engineering applications, it is necessary to perform
reasonable reduction and simplification for the VSC model. Thus, the reduced-order
large-signal model and truncated model of the single-VSC grid-connected system are
derived, and the effectiveness of the reduced-order model is verified through simulation
waveforms and ROA partitioning. Subsequently, a reduced-order model of the multi-VSC
grid-connected system is obtained through circuit equivalence. Taking the system with
three VSCs as an example, the proposed CFIND method is used to analyze typical operating
conditions of the system, and the conclusions of transient stability analysis are verified
using the HIL experiments.

Theoretical analysis and experimental results indicate that significant voltage fluc-
tuations in the power grid can lead to transient instability in multi-VSC grid-connected
systems. VSCs with higher active power output are more likely to experience transient
instability. When the system voltage collapse is inevitable, control measures can be con-
sidered to make the voltage amplitude of the power grid drop multiple times in stages,
which helps each VSC maintain synchronization with the power grid and helps the system
to restore stable operation after the fault is cleared in the later stage.
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