Optimal Planning and Deployment of Hybrid Renewable Energy to Rural Healthcare Facilities in Nigeria
Abstract
:1. Introduction
2. Literature Review
- We design an optimum grid-tied energy system configuration to suffice for the energy requirements of some specific rural healthcare centres in Nigeria.
- We adopt LF dispatch strategies to account for the deficiency of energy supplied, while ensuring optimal system operations and reductions in energy wasted.
- The developed optimum grid-tied configuration and the adopted dispatch strategies contribute to an overall reduction in emissions.
- We make an initial attempt to integrate the HRES into the national grid through healthcare centres in Nigeria.
3. Methodology
3.1. Geographical Data of Selected Locations
3.2. Renewable Energy Resource Assessment
3.2.1. Solar Global Horizontal Irradiance (GHI)
- β = the slope of the surface [°];
- ρg = the ground reflectance, which is also called the albedo [%];
- = the beam radiation [kW/m2];
- = the diffuse radiation [kW/m2];
- Rb = the ratio of beam radiation on the tilted surface to beam radiation on the horizontal;
- Ai = measure of the atmospheric transmittance of beam radiation.
3.2.2. Wind Speed Data
- Uanem = the wind speed at anemometer height [m/s];
- Uhub = the wind speed at the hub height of the wind turbine [m/s];
- zhub = the hub height of the wind turbine [m];
- zanem = the anemometer height [m];
- zo = the surface roughness length [m].
3.3. Energy Needs Assessment of PHC in the Selected Sites
3.4. Homer Software Description and Input Data
3.4.1. Load Profile
3.4.2. Grid Supply
3.4.3. Techno-Economic Data and Specifications
3.5. System Component Modelling for Hybrid Systems
3.5.1. PV Model
- I = load current
- IL = photovoltaic current
- Io = reverse saturation current
- q = electronic charge
- k =Boltzmann constant
- T = absolute temperature
- A = factor of the diode quality
- RS = series resistance
- RSH = parallel resistance
- VOC = open circuit voltage
- YPV = the rated capacity of the PV array, meaning its power output under standard test conditions [kW];
- fPV = the PV derating factor [%];
- = the solar radiation incident on the PV array in the current time step [kW/m2];
- = the incident radiation at standard test conditions [1 kW/m2];
- αP = the temperature coefficient of power [%/°C];
- Tcell = the PV cell temperature in the current time step [°C];
- Tc,STC = the PV cell temperature under standard test conditions [25 °C];
3.5.2. Wind Model
3.5.3. Diesel Generator
3.5.4. Battery Energy Storage
- = load demand;
- = battery self–discharging rate;
- = inverter efficiency;
- = inverter efficiency;
- = total power generated by the RE sources at time t;
- = power output of PV panel;
- = output power of the wind turbine;
- and = number of PV modules and wind turbines, respectively.
- Q1 = available energy [kWh] in the storage component at the beginning of the time step;
- Q = total amount of energy [kWh] in the storage component at the beginning of the
- Qmax = total capacity [kWh] of the storage bank;
- c = the storage capacity ratio [unitless];
- k = the storage rate constant [h−1];
- Δt = the length of the time step [h].
3.6. Dispatch Control Strategies
4. Results and Discussion
4.1. Optimum System Configurations
4.2. Electrical Energy Output of Optimum System Configuration
4.3. Pollution and Emission Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
PHC Centers | Okuru-Ama | Agbalaenyi | Dosso | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Load Description | Qty | Total Power (W) | Total on-Time (h/d) | Total Energy (kWh/d) | Qty | Total Power (W) | Total on-Time (h/d) | Total Energy (kWh/d) | Qty | Total Power (W) | Total on-Time (h/d) | Total Energy (kWh/d) |
Multi-purpose refrigerators | 1 | 330 | 18 | 5.94 | 1 | 330 | 18 | 5.94 | 2 | 660 | 16 | 10.56 |
Lab refrigerators | 1 | 90 | 17 | 1.53 | 1 | 90 | 17 | 1.53 | 1 | 90 | 17 | 1.53 |
Surgical lights | 2 | 18 | 4 | 0.072 | 2 | 18 | 4 | 0.072 | 2 | 18 | 4 | 0.072 |
Televisions | 2 | 160 | 7.5 | 1.2 | 6 | 480 | 8 | 3.84 | 6 | 480 | 7 | 3.36 |
Ceiling fans | 13 | 910 | 11 | 10.01 | 10 | 700 | 11 | 7.7 | 13 | 910 | 11 | 10.01 |
Water pumping machines | 1 | 746 | 3 | 2.238 | 1 | 786 | 3 | 2.358 | 1 | 786 | 3 | 2.358 |
Lighting—indoor | 27 | 405 | 9 | 3.645 | 17 | 255 | 9 | 2.295 | 20 | 300 | 12 | 3.6 |
Lighting—outdoor | 14 | 560 | 12 | 6.72 | 13 | 520 | 12 | 6.24 | 15 | 600 | 12 | 7.2 |
Centrifuge | 1 | 250 | 3 | 0.75 | 2 | 500 | 3 | 1.5 | 2 | 500 | 3 | 1.5 |
Haematology mixer | 1 | 30 | 5 | 0.15 | 1 | 30 | 5 | 0.15 | 1 | 30 | 5 | 0.15 |
Haematology analyser | 1 | 220 | 5 | 1.1 | 1 | 220 | 5 | 1.1 | 1 | 220 | 5 | 1.1 |
Desktop computer | 1 | 160 | 6 | 0.96 | 1 | 160 | 6 | 0.96 | 2 | 320 | 6 | 1.92 |
Mobile charger | 6 | 90 | 6 | 0.54 | 8 | 120 | 3 | 0.36 | 6 | 90 | 2 | 0.18 |
Vacuum aspirator | 1 | 38 | 2 | 0.076 | 1 | 38 | 2 | 0.076 | 1 | 38 | 2 | 0.076 |
Oxygen concentrator | 1 | 300 | 3 | 0.9 | 1 | 300 | 3 | 0.9 | 1 | 300 | 3 | 0.9 |
AC | 2 | 2238 | 6 | 13.428 | 2 | 2238 | 6 | 13.428 | 3 | 3357 | 6 | 20.142 |
Microscope | 1 | 30 | 6 | 0.18 | 5 | 100 | 2 | 0.2 | 6 | 120 | 2 | 0.24 |
Printer | 1 | 50 | 6 | 0.3 | 1 | 50 | 6 | 0.3 | 2 | 100 | 6 | 0.6 |
VCR | - | - | - | - | 1 | 20 | 2 | 0.04 | 1 | 20 | 2 | 0.04 |
Ultrasound machine | - | - | - | - | 1 | 800 | 2 | 1.6 | 1 | 800 | 2 | 1.6 |
Radio—standby | - | - | - | - | 1 | 2 | 24 | 0.048 | 1 | 2 | 24 | 0.048 |
Radio–transmitting | - | - | - | - | 1 | 30 | 4 | 0.12 | 1 | 30 | 4 | 0.12 |
TOTAL | 6625 | 129.5 | 49.739 | 7787 | 155 | 50.757 | 9771 | 154 | 67.306 |
PHC Centers | Ejioku | Kadassaka | Damare-Polo | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Load Description | Qty | Total Power (W) | Total on-Time (h/d) | Total Energy (kWh/d) | Qty | Total Power (W) | Total on-Time (h/d) | Total Energy (kWh/d) | Qty | Total Power (W) | Total on-Time (h/d) | Total Energy (kWh/d) |
Multi-purpose refrigerators | 1 | 200 | 7 | 1.4 | 1 | 300 | 10 | 3 | 1 | 200 | 10 | 2 |
Lab refrigerators | 1 | 80 | 11 | 0.88 | 1 | 60 | 18 | 1.08 | 1 | 90 | 10 | 0.9 |
Surgical lights | 1 | 40 | 3 | 0.12 | - | - | - | 0 | - | - | - | 0 |
Television | 2 | 200 | 10 | 2 | 1 | 80 | 6 | 0.48 | 1 | 80 | 10 | 0.8 |
Ceiling fans | 12 | 840 | 13 | 10.92 | 7 | 420 | 8 | 3.36 | 8 | 560 | 10 | 5.6 |
Water Pumping machines | 1 | 1119 | 3 | 3.357 | - | - | - | 0 | - | - | - | 0 |
Lighting—indoor | 8 | 120 | 15 | 1.8 | 8 | 120 | 8 | 0.96 | 14 | 210 | 13 | 2.73 |
Lighting—outdoor | 8 | 192 | 12 | 2.304 | 6 | 240 | 12 | 2.88 | 10 | 400 | 12 | 4.8 |
Centrifuge | 1 | 245 | 5 | 1.225 | 1 | 242 | 3 | 0.726 | - | - | - | 0 |
Haematology mixer | - | - | - | 0 | 1 | 28 | 4 | 0.112 | 1 | 30 | 4 | 0.12 |
Haematology analyser | 1 | 230 | 3 | 0.69 | 1 | 230 | 4 | 0.92 | 1 | 220 | 2 | 0.44 |
Desktop computer | 1 | 200 | 5 | 1 | 1 | 150 | 5 | 0.75 | - | - | - | 0 |
Mobile charger | 10 | 200 | 9 | 1.8 | 4 | 80 | 6 | 0.48 | 11 | 165 | 10 | 1.65 |
Vacuum aspirator | 1 | 40 | 3 | 0.12 | 1 | 40 | 2 | 0.08 | - | - | - | 0 |
Oxygen concentrator | 1 | 300 | 3 | 0.9 | 1 | 270 | 2 | 0.54 | - | - | - | 0 |
Lab autoclave | - | - | - | 0 | 1 | 1500 | 2 | 3 | - | - | - | 0 |
Microscope | 2 | 60 | 4 | 0.24 | 2 | 40 | 6 | 0.24 | 1 | 30 | 4 | 0.12 |
Printer | 1 | 50 | 4 | 0.2 | - | 0 | - | - | - | 0 | ||
VCR | - | - | - | 0 | 1 | 20 | 4 | 0.08 | - | - | - | 0 |
Ultrasound machine | - | - | - | 0 | 1 | 800 | 2 | 1.6 | - | - | - | 0 |
Standby | - | - | - | 0 | 1 | 2 | 24 | 0.048 | - | - | - | 0 |
Transmitting | - | - | - | 0 | 1 | 30 | 4 | 0.12 | - | - | - | 0 |
Incubator | 1 | 500 | 6 | 3 | 1 | 400 | 5 | 2 | - | - | - | 0 |
Hf radio transmitter | 2 | 60 | 7 | 0.42 | - | - | - | 0 | - | - | - | 0 |
Electric sterilizer (autoclave) | 1 | 100 | 3 | 0.3 | - | - | - | 0 | 1 | 150 | 2 | 0.3 |
Cd4 machine | 1 | 200 | 4 | 0.8 | - | - | - | 0 | - | - | - | 0 |
X-ray machine | 1 | 200 | 3 | 0.6 | - | - | - | 0 | - | - | - | 0 |
Blood chemical analyser | 1 | 50 | 2 | 0.1 | - | - | - | 0 | - | - | - | 0 |
Blood bank regulator | - | - | - | 0 | 1 | 70 | 18 | 1.26 | - | - | - | 0 |
Suction apparatus | - | - | - | - | 1 | 100 | 2 | 0.2 | - | - | - | 0 |
Air conditional | - | - | - | - | - | - | - | - | 1 | 1119 | 10 | 11.19 |
TOTAL | 5226 | 135 | 34.176 | 5122 | 153 | 23.916 | 2135 | 87 | 30.65 |
References
- Volotkovskaya, Y.; Volotkovskaya, N.; Semenov, A.; Semkova, A.; Fedorov, O.; Vladimirov, O. Analysis of the global energy resource market. In E3S Web of Conferences; EDP Sciences: Les Ulis, France, 2020; Volume 178, p. 01058. [Google Scholar] [CrossRef]
- Defining Energy Access: 2020 Methodology—Analysis—IEA; IEA: Paris, France, 2023.
- Moss, T.; Bazilian, M.; Blimpo, M.; Culver, L.; Kincer, J.; Mahadavan, M.; Modi, V.; Muhwezi, B.; Mutiso, R.; Sivaram, V.; et al. The Modern Energy Minimum: The Case for a New Global Electricity Consumption Threshold. Available online: https://www.rockefellerfoundation.org/wp-content/uploads/2020/12/Modern-Energy-Minimum-Sept30.pdf (accessed on 25 June 2023).
- Küfeoğlu, S. SDG-7 Affordable and Clean Energy. In Emerging Technologies: Value Creation for Sustainable Development; Springer International Publishing: Cham, Switzerland, 2022; pp. 305–330. [Google Scholar] [CrossRef]
- Statista Research Department. Global Electricity Consumption by Country 2019; Statista: New York, NY, USA, 2023. [Google Scholar]
- Olatomiwa, L.; Sadiq, A.A.; Longe, O.M.; Ambafi, J.G.; Jack, K.E.; Abd’Azeez, T.A.; Adeniyi, S. An Overview of Energy Access Solutions for Rural Healthcare Facilities. Energies 2022, 15, 9554. [Google Scholar] [CrossRef]
- Akbas, B.; Kocaman, A.S.; Nock, D.; Trotter, P.A. Rural electrification: An overview of optimization methods. Renew. Sustain. Energy Rev. 2022, 156, 111935. [Google Scholar] [CrossRef]
- Ebong, E.; Ekpenyong, C.; Eteng, E. Resource Distribution and Economic Advancement of Rural Communities in Nigeria. Int. J. Adv. Res. Public Policy Soc. Dev. Enterp. Stud. 2017, 2, 26–35. [Google Scholar]
- Olatomiwa, L.; Blanchard, R.; Mekhilef, S.; Akinyele, D. Hybrid renewable energy supply for rural healthcare facilities: An approach to quality healthcare delivery. Sustain. Energy Technol. Assess. 2018, 30, 121–138. [Google Scholar] [CrossRef]
- Lee, K.; Kum, D. The Impact of Energy Dispatch Strategy on Design Optimization of Hybrid Renewable Energy Systems. In Proceedings of the 2019 IEEE Milan PowerTech, Milan, Italy, 23–27 June 2019; pp. 1–6. [Google Scholar] [CrossRef]
- Eidiani, M. Integration of Renewable Energy Sources; Springer: Cham, Switzerland, 2022; pp. 1–25. [Google Scholar] [CrossRef]
- Soto, E.A.; Hernandez-Guzman, A.; Vizcarrondo-Ortega, A.; McNealey, A.; Bosman, L.B. Solar Energy Implementation for Health-Care Facilities in Developing and Underdeveloped Countries: Overview, Opportunities, and Challenges. Energies 2022, 15, 8602. [Google Scholar] [CrossRef]
- Prados, M.-J.; Pallarès-Blanch, M.; García-Marín, R.; del Valle, C. Renewable Energy Plants and Business Models: A New Rural Development Perspective. Energies 2021, 14, 5438. [Google Scholar] [CrossRef]
- Oladigbolu, J.O.; Al-Turki, Y.A.; Olatomiwa, L. Comparative study and sensitivity analysis of a standalone hybrid energy system for electrification of rural healthcare facility in Nigeria. Alex. Eng. J. 2021, 60, 5547–5565. [Google Scholar] [CrossRef]
- Barley, C.D.; Winn, C.B. Optimal dispatch strategy in remote hybrid power systems. Sol. Energy 1996, 58, 165–179. [Google Scholar] [CrossRef]
- Sinha, S.; Chandel, S. Review of software tools for hybrid renewable energy systems. Renew. Sustain. Energy Rev. 2014, 32, 192–205. [Google Scholar] [CrossRef]
- Abnavi, M.D.; Mohammadshafie, N.; Rosen, M.A.; Dabbaghian, A.; Fazelpour, F. Techno-economic feasibility analysis of stand-alone hybrid wind/photovoltaic/diesel/battery system for the electrification of remote rural areas: Case study Persian Gulf Coast-Iran. Environ. Prog. Sustain. Energy 2019, 38, 1–15. [Google Scholar] [CrossRef]
- Shezan, S.A.; Ishraque, F.; Muyeen, S.M.; Abu-Siada, A.; Saidur, R.; Ali, M.; Rashid, M. Selection of the best dispatch strategy considering techno-economic and system stability analysis with optimal sizing. Energy Strat. Rev. 2022, 43, 100923. [Google Scholar] [CrossRef]
- Sharma, S.; Sood, Y.R.; Maheshwari, A. Technoeconomic Feasibility and Sensitivity Analysis of Off-Grid Hybrid Energy System. In Machine Learning, Advances in Computing, Renewable Energy and Communication: Proceedings of MARC 2020; Springer: Singapore, 2021; pp. 113–121. [Google Scholar] [CrossRef]
- Agajie, T.F.; Ali, A.; Fopah-Lele, A.; Amoussou, I.; Khan, B.; Velasco, C.L.R.; Tanyi, E. A Comprehensive Review on Techno-Economic Analysis and Energy Storage Systems. Energies 2023, 16, 642. [Google Scholar] [CrossRef]
- Amini, S.; Bahramara, S.; Golpîra, H.; Francois, B.; Soares, J. Techno-Economic Analysis of Renewable-Energy-Based Micro-Grids Considering Incentive Policies. Energies 2022, 15, 8285. [Google Scholar] [CrossRef]
- Yahiaoui, A.; Tlemçani, A. A comparison study of HRES for electrification of a rural city in Algeria. Wind. Eng. 2022, 47, 528–545. [Google Scholar] [CrossRef]
- Zebra, E.I.C.; van der Windt, H.J.; Nhumaio, G.; Faaij, A.P. A review of hybrid renewable energy systems in mini-grids for off-grid electrification in developing countries. Renew. Sustain. Energy Rev. 2021, 144, 111036. [Google Scholar] [CrossRef]
- Murugaperumal, K.; Raj, P.A.D.V. Feasibility design and techno-economic analysis of hybrid renewable energy system for rural electrification. Sol. Energy 2019, 188, 1068–1083. [Google Scholar] [CrossRef]
- Odou, O.D.T.; Bhandari, R.; Adamou, R. Hybrid off-grid renewable power system for sustainable rural electrification in Benin. Renew. Energy 2020, 145, 1266–1279. [Google Scholar] [CrossRef]
- Kalpana, D.R.; NageshaRao, S.H.; Siddaiah, R.; Mala, R. Case study on demand side management-based cost optimized battery integrated hybrid renewable energy system for remote rural electrification. Energy Storage 2022, 5, e410. [Google Scholar] [CrossRef]
- Al-Najjar, H.; El-Khozondar, H.J.; Pfeifer, C.; Al Afif, R. Hybrid grid-tie electrification analysis of bio-shared renewable energy systems for domestic application. Sustain. Cities Soc. 2022, 77, 103538. [Google Scholar] [CrossRef]
- Alhawsawi, E.Y.; Habbi, H.M.D.; Hawsawi, M.; Zohdy, M.A. Optimal Design and Operation of Hybrid Renewable Energy Systems for Oakland University. Energies 2023, 16, 5830. [Google Scholar] [CrossRef]
- Khortsriwong, N.; Boonraksa, P.; Boonraksa, T.; Fangsuwannarak, T.; Boonsrirat, A.; Pinthurat, W.; Marungsri, B. Performance of Deep Learning Techniques for Forecasting PV Power Generation: A Case Study on a 1.5 MWp Floating PV Power Plant. Energies 2023, 16, 2119. [Google Scholar] [CrossRef]
- Medina-Santana, A.A.; Cárdenas-Barrón, L.E. Optimal Design of Hybrid Renewable Energy Systems Considering Weather Forecasting Using Recurrent Neural Networks. Energies 2022, 15, 9045. [Google Scholar] [CrossRef]
- HOMER. How HOMER Calculates the Radiation Incident on the PV Array. 2023. Available online: www.homerenergy.com (accessed on 1 May 2023).
- Delgado, A.; Gertig, C.; Blesa, E.; Loza, A.; Hidalgo, C.; Ron, R. Evaluation of the variability of wind speed at different heights and its impact on the receiver efficiency of central receiver systems. In AIP Conference Proceedings; AIP Publishing: Melville, NY, USA, 2016; Volume 1734. [Google Scholar] [CrossRef]
- HOMER. Wind Resource Variation with Height. Available online: https://www.homerenergy.com/products/pro/docs/3.11/wind_resource_variation_with_height.html (accessed on 1 May 2023).
- Alayan, S. Design of a PV-Diesel Hybrid System with Unreliable Grid Connection in Lebanon. Master’s Thesis, Dalarna University, Falun, Sweden, 2016. [Google Scholar]
- Yakub, A.O.; Same, N.N.; Owolabi, A.B.; Nsafon, B.E.K.; Suh, D.; Huh, J.-S. Optimizing the performance of hybrid renewable energy systems to accelerate a sustainable energy transition in Nigeria: A case study of a rural healthcare centre in Kano. Energy Strat. Rev. 2022, 43, 100906. [Google Scholar] [CrossRef]
- Krishan, O. Sathans Design and Techno-Economic Analysis of a HRES in a Rural Village. Procedia Comput. Sci. 2018, 125, 321–328. [Google Scholar] [CrossRef]
- Rahmawati, A.Y. Price Hunter. 2020. Available online: http://www.ngpricehunter.com/ (accessed on 12 July 2023).
- Eko, Electricity Distribution Company (EKDC). Tarrif Plans. 2016. Available online: https://ekedp.com/tariff-plans (accessed on 1 December 2022).
- HOMER. Net Present Cost. Available online: www.homerenergy.com (accessed on 1 May 2023).
- Dincer, F.; Meral, M.E. Critical Factors that Affecting Efficiency of Solar Cells. Smart Grid Renew. Energy 2010, 1, 47–50. [Google Scholar] [CrossRef]
- Vidyanandan, K.V. An Overview of Factors Affecting the Performance of Solar PV Systems. Energy Scan 2017, 27, 216. [Google Scholar]
- Ma, X.; Sun, Y.; Wu, J.; Liu, S. The research on the algorithm of maximum power point tracking in photo voltaic array of solar car. In Proceedings of the 2009 IEEE Vehicle Power and Propulsion Conference (VPPC), Dearborn, MI, USA, 7–11 September 2009; pp. 1379–1382. [Google Scholar] [CrossRef]
- Manyonge, A.; Manyala, R.; Onyango, F.; Shichika, J. Mathematical Modelling of Wind Turbine in a Wind Energy Conversion System: Power Coefficient Analysis. Appl. Math. Sci. 2012, 6, 4527–4536. [Google Scholar]
- Johnson, G.L. Wind Turbine Power. In Wind Energy Systems; Prentice Hall: Manhattan, KS, USA, 2001; pp. 1–54. [Google Scholar]
- Dufo-López, R.; Bernal-Agustín, J.L. Multi-objective design of PV–wind–diesel–hydrogen–battery systems. Renew. Energy 2008, 33, 2559–2572. [Google Scholar] [CrossRef]
- Sita-Kengue, K. Solar + Storage: Battery Types for Solar Systems—Elum Energy. Elum Energy. Available online: https://elum-energy.com/blog/solarstorage-battery-types-for-solar-systems/ (accessed on 1 June 2023).
- Adetoro, S.A.; Olatomiwa, L.; Tsado, J.; Dauda, S.M. A comparative analysis of the performance of multiple meta-heuristic algorithms in sizing hybrid energy systems connected to an unreliable grid. e-Prime—Adv. Electr. Eng. Electron. Energy 2023, 4, 100140. [Google Scholar] [CrossRef]
- Adetoro, S.A.; Olatomiwa, L.; Tsado, J.; Dauda, S.M. An Overview of Configurations and Dispatch Strategies in Hybrid Energy Systems. In Proceedings of the 2022 IEEE Nigeria 4th International Conference on Disruptive Technologies for Sustainable Development (NIGERCON), Abuja, Nigeria, 5–7 April 2022; pp. 1–5. [Google Scholar] [CrossRef]
- Beyene, Y.B.; Worku, G.B.; Tjernberg, L.B. On the design and optimization of distributed energy resources for sustainable grid-integrated microgrid in Ethiopia. Int. J. Hydrog. Energy 2023, 48, 30282–30298. [Google Scholar] [CrossRef]
- Oladigbolu, J.O.; Ramli, M.A.M.; Al-Turki, Y.A. Techno-Economic and Sensitivity Analyses for an Optimal Hybrid Power System Which Is Adaptable and Effective for Rural Electrification: A Case Study of Nigeria. Sustainability 2019, 11, 4959. [Google Scholar] [CrossRef]
- Shezan, S.A.; Kamwa, I.; Ishraque, F.; Muyeen, S.M.; Hasan, K.N.; Saidur, R.; Rizvi, S.M.; Shafiullah; Al-Sulaiman, F.A. Evaluation of Different Optimization Techniques and Control Strategies of Hybrid Microgrid: A Review. Energies 2023, 16, 1792. [Google Scholar] [CrossRef]
- Siddaiah, R.; Saini, R. A review on planning, configurations, modeling and optimization techniques of hybrid renewable energy systems for off grid applications. Renew. Sustain. Energy Rev. 2016, 58, 376–396. [Google Scholar] [CrossRef]
Location | State | Zone | Latitude (°N) | Longitude (°E) | Altitude (Meters) | Climate Type |
---|---|---|---|---|---|---|
Ejioku | Oyo | South-west (SW) | 7.475 | 4.071 | 330 | Tropical wet monsoon |
Kadassaka | Sokoto | North-west (NW) | 13.68 | 5°31′59″ | 220 | Hot semi-arid |
Damare Polo | Adamawa | North-east (NE) | 9°12′48″ | 12°29′23″ | 353.8 | Hot semi-arid |
Doso | Plateau | North-central (NC) | 9.154 | 9.713 | 1217 | Tropical |
Agbalaenyi | Enugu | South-east (SE) | 6.265 | 7.281 | 247 | Humid |
Okuru-Ama | Rivers | South-south (SS) | 4°48′59″ | 7°3′3″ | 465 | Monsoon |
S/N | Component | Parameter | Value | Unit |
---|---|---|---|---|
1. | Grid | Grid capital cost | 0 | $ |
Import energy tariff | 0.11 | $/kWh | ||
Export energy tariff | 0 | $/kWh | ||
2. | Solar PV | Capital cost | 500 | $/kW |
Replacement cost | 450 | $/kW | ||
Operation and maintenance cost | 5 | $/yr | ||
Lifetime | 25 | years | ||
Efficiency | 20 | % | ||
De-rating factor | 88 | % | ||
Temperature coefficient | −0.38 | %/°C | ||
3. | Wind turbine | Power output type | AC | |
Initial cost per unit | 800 | $/kW | ||
Replacement cost | 700 | $/kW | ||
Operation and maintenance cost | 50 | $/yr | ||
Hub height | 24 | m | ||
Lifetime | 20 | years | ||
4. | Battery storage | Type | Lead–acid | |
Capacity | 1 | kWh | ||
Initial cost per unit | 200 | $ | ||
Replacement cost | 150 | $ | ||
Operation and maintenance cost | 5 | $/yr | ||
Maximum depth of discharge | 20 | % | ||
Throughput | 800 | kWh/yr | ||
5. | Converter | Capital cost | 300 | $/kW |
Replacement cost | 250 | $/kW | ||
Operation and maintenance cost | 5 | $/yr | ||
Lifetime | 15 | year | ||
Inverter efficiency | 95 | % | ||
Rectifier efficiency | 95 | % | ||
6. | Diesel generator | Initial cost per unit | 195 | $/kW |
Replacement cost | 190 | $/kW | ||
Operation and maintenance cost | 0.03 | $/h | ||
Lifetime | 15,000 | hours | ||
Conversion efficiency | 30 | % | ||
Diesel price | 1.8 | $/L | ||
Fuel curve slope | 0.236 | L/h/kW | ||
7. | Control parameters | Project lifespan | 25 | year |
Simulation time step | 1 | hour | ||
Annual capacity shortage | 0 | % | ||
Expected Inflation rate | 12 | % | ||
Interest rate | 10 | % | ||
Dispatch strategy | Load following (LF) |
PHCs | System Configuration | Components Size | Economics | Fuel Consp (L/yr) | RF (%) | Total Grid Purchase (kWh) | Dispatched Strategy | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PV (kW) | Wind (kW) | Diesel (kW) | Total Installed (kW) | Batt. (No.) | Conv. | Initial Cap ($) | Total NPC ($) | COE ($/kWh) | ||||||
(kW) | ||||||||||||||
Damare-Polo | PV–Wind–Diesel–Battery–Grid | 5.5 | 4 | 4.4 | 13.9 | 58 | 3.86 | 19,565 | 54,012 | 0.0874 | 0.506 | 95.8 | 470 | LF |
PV–Wind–Battery–Grid | 5.35 | 4 | — | 9.35 | 57 | 3.22 | 18,242 | 55,836 | 0.0903 | — | 95.8 | 470 | LF | |
Diesel–Grid | — | — | 4.4 | 4.4 | — | — | 858 | 495,571 | 0.801 | 4177 | — | 2276 | CC | |
Agbalaenyi | PV–Wind–Diesel–Battery–Grid | 14.9 | 5 | 8.8 | 28.7 | 58 | 7.5 | 27,004 | 77,224 | 0.0754 | 11.3 | 88.1 | 2174 | LF |
PV–Wind–Battery–Grid | 18.5 | 5 | — | 23.5 | 57 | 7.1 | 26,773 | 81,198 | 0.793 | — | 88.6 | 2112 | LF | |
Diesel–Grid | — | — | 8.8 | 8.8 | — | — | 1716 | 882,843 | 0.862 | 7136 | — | 6862 | CC | |
Doso | PV–Wind–Diesel–Battery–Grid | 11.8 | 7 | 11 | 29.8 | 61 | 9.08 | 28,564 | 79,835 | 0.0588 | 6.32 | 93.7 | 1533 | LF |
PV–Wind–Battery–Grid | 11.6 | 7 | — | 18.6 | 60 | 8.13 | 25,852 | 84,414 | 0.0622 | 93.7 | 1539 | LF | ||
Diesel-Grid | — | — | 11 | 11 | — | — | 2145 | 1.18 M | 0.866 | 13,104 | — | 8349 | CC | |
Kadassaka | PV–Wind–Diesel–Battery–Grid | 7.09 | 2 | 7 | 16.09 | 28 | 5.57 | 13,780 | 32,167 | 0.0667 | 7.24 | 93.5 | 551 | LF |
PV–Wind–Battery–Grid | 7.28 | 2 | — | 9.28 | 29 | 5.38 | 12,653 | 35,169 | 0.0729 | 93.7 | 549 | LF | ||
Diesel–Grid | — | — | 7 | 7 | — | — | 1365 | 728,227 | 1.51 | 5513 | — | 2680 | CC | |
Ejioku | PV–Wind–Diesel–Battery–Grid | 16.4 | 3 | 6.2 | 25.6 | 24 | 4.74 | 18,034 | 54,515 | 0.0791 | 10.7 | 90.9 | 1109 | LF |
PV–Wind–Battery–Grid | 15.9 | 4 | — | 19.9 | 24 | 4.17 | 17,181 | 57,620 | 0.0836 | 0 | 91.9 | 1014 | LF | |
Diesel–Grid | — | — | 6.2 | 6.2 | — | — | 1209 | 631,458 | 0.916 | 9269 | — | 4010.381 | CC | |
Okuru-Ama | PV–Wind–Diesel–Battery–Grid | 20.9 | 4 | 8.6 | 33.5 | 72 | 7.53 | 31,981 | 114,903 | 0.115 | 18.8 | 85.6 | 2582 | LF |
PV–Wind–Battery–Grid | 24.2 | 4 | — | 28.2 | 72 | 7.3 | 31,896 | 118,820 | 0.119 | — | 86.1 | 2.21 | LF | |
Diesel–Grid | — | — | 8.6 | 8.6 | — | — | 1677 | 850,331 | 0.847 | 6906 | — | 6451 | CC |
Source | Metrics | Damare-Polo | Agbalaenyi | Doso | Ejioku | Kadasaka | Okuru-Ama |
---|---|---|---|---|---|---|---|
PV | Max. Output | 5.85 | 15.9 | 12.4 | 17.7 | 7.58 | 22.2 |
Total Annual Energy Production (kWh/yr) | 9954 | 18,535 | 21,340 | 23,803 | 12,643 | 25,584 | |
% Contribution | 38.1 | 49.3 | 37.8 | 74.2 | 59.4 | 74.9 | |
Wind | Max. Output | 4.0 | 5.0 | 7.0 | 3.0 | 2.0 | 4.0 |
Total Annual Energy Production (kWh/yr) | 15,689 | 16,891 | 33,599 | 7129 | 8075 | 5955 | |
% Contribution | 60.1 | 44.9 | 59.5 | 22.2 | 37.9 | 17.4 | |
D-Gen | Max. Output | 1.10 | 2.98 | 2.75 | 1.55 | 1.75 | 2.15 |
Total Annual Energy Production (kWh/yr) | 1.10 | 25.0 | 13.8 | 23.3 | 15.8 | 40.9 | |
OPERATING HOUR (1 h/yr) | 1.0 | 11 | 5 | 15 | 9 | 19 | |
% Contribution | 0.0042 | 0.0664 | 0.0243 | 0.0725 | 0.074 | 0.12 | |
Grid | Total Annual Energy Production (kWh/yr) | 470 | 2174 | 1533 | 1109 | 551 | 2582 |
% Contribution | 1.80 | 5.78 | 2.71 | 3.46 | 2.59 | 7.56 |
Configuration | Okuru-Ama | Kadassaka | Agbalaenyi | Damare-Polo | Dosso | Ejioku |
---|---|---|---|---|---|---|
Proposed system (kg/yr) | 1692.28 | 369.54 | 23,325.35 | 12,545.13 | 991.499 | 733.9 |
Base case (kg/yr) | 22,451.6 | 16,353 | 1413.32 | 299.94 | 30,828.28 | 16,232.90 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Olatomiwa, L.; Longe, O.M.; Abd’Azeez, T.A.; Ambafi, J.G.; Jack, K.E.; Sadiq, A.A. Optimal Planning and Deployment of Hybrid Renewable Energy to Rural Healthcare Facilities in Nigeria. Energies 2023, 16, 7259. https://doi.org/10.3390/en16217259
Olatomiwa L, Longe OM, Abd’Azeez TA, Ambafi JG, Jack KE, Sadiq AA. Optimal Planning and Deployment of Hybrid Renewable Energy to Rural Healthcare Facilities in Nigeria. Energies. 2023; 16(21):7259. https://doi.org/10.3390/en16217259
Chicago/Turabian StyleOlatomiwa, Lanre, Omowunmi Mary Longe, Toyeeb Adekunle Abd’Azeez, James Garba Ambafi, Kufre Esenowo Jack, and Ahmad Abubakar Sadiq. 2023. "Optimal Planning and Deployment of Hybrid Renewable Energy to Rural Healthcare Facilities in Nigeria" Energies 16, no. 21: 7259. https://doi.org/10.3390/en16217259
APA StyleOlatomiwa, L., Longe, O. M., Abd’Azeez, T. A., Ambafi, J. G., Jack, K. E., & Sadiq, A. A. (2023). Optimal Planning and Deployment of Hybrid Renewable Energy to Rural Healthcare Facilities in Nigeria. Energies, 16(21), 7259. https://doi.org/10.3390/en16217259