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Abstract: With the increasing demand for intelligence and automation, and the continuous strength-
ening of safety and efficiency requirements, the disadvantages of traditional “blind use” of nickel-
cadmium batteries have become increasingly prominent, and the lack of state-of-charge (SOC)
estimation needs to be changed urgently. For this purpose, a dynamic model of nickel-cadmium
battery is established, and an SOC estimation method of nickel-cadmium battery based on adaptive
untraced Kalman filter is proposed. Firstly, the experimental platform was built, and the open-circuit
voltage and polarization characteristics of nickel-cadmium batteries were analyzed. On this basis,
an equivalent circuit model is constructed to reflect the characteristics of nickel-cadmium batteries,
and the model parameters were identified by the hybrid pulse power characteristic test; Then, based
on the dynamic model, the SOC of the nickel-cadmium battery was estimated by combining with
the Sage-Husa adaptive untrace Kalman filtering algorithm. Finally, the SOC estimation effect was
verified under two operating conditions: Hybrid pulse power characteristic (HPPC) and constant
cyclic charging and discharging power. The experimental results show that the proposed estimation
method is insensitive to the initial value of SOC, and can still converge to the real value even if
there is 30% error in the initial value. The mean absolute error and root mean square deviation
of the final SOC estimation results are both less than 1%. The dynamic model and the proposed
SOC estimation method provide valuable reference for the operation control, maintenance, and
replacement of nickel-cadmium batteries in the use process.

Keywords: nickel-cadmium battery; state-of-charge estimation; equivalent circuit model; parameter
identification; adaptive untraced Kalman filter; experimental verification

1. Introduction

With the increasing popularity of electric/hybrid transportation vehicles, the storage
and utilization of energy is an important topic, especially regarding secondary batteries.
Among them, the lithium-ion battery has emerged as a leading mobile energy storage
solution for its remarkable characteristics, including high energy density, elevated operating
voltage, eco-friendliness, and absence of memory effect [1]. Therefore, more attention
and research interest are focused on lithium-ion batteries [2]. However, Nickel-cadmium
batteries have also been widely used in direct-current power supply, distribution substation,
and auxiliary power supply of rail transit vehicles for the advantages of low cost, high safety,
wide temperature range, high reliability, and high mechanical strength [3,4]. Especially in
rail transit, vehicle safety is always the first priority; however, there is still a lack of a Battery
Management System (BMS) due to the inability to accurately estimate the state-of-charge
(SOC) of the battery, because SOC estimation is the basis of BMS system development.
Accurate SOC estimation can effectively prevent battery overcharging and over discharging,
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improve the reliability and safety, and extend battery life [5-7]. With an increasingly urgent
demand for intelligent and automated rail transit, it is necessary to carry out SOC estimation
for rail transit vehicle nickel-cadmium batteries.

The existing SOC estimation methods can be divided into two categories: electrical
testing and intelligent algorithm. The former includes the discharging experiment method,
ampere-hour integration method, open-circuit voltage (OCV) method, internal resistance
method, etc. [8,9]. The latter includes fuzzy logic, neural networks [10], and the Kalman
filter method [11]. Among them, the discharging experiment method takes a long time
and is an offline estimation. The main disadvantage of ampere-hour integration method
is that it relies too much on an accurate SOC initial value, and the error will gradually
increase in the integration process [8]. The open-circuit voltage method assumes that
there is a specific functional mapping relationship between the OCV and the SOC of the
battery. However, the OCV measurement of the battery usually requires a long static
time, which is not conducive to online estimation. Usually, the OCV method is chosen
to combine with other estimation methods to estimate the SOC. The internal resistance
method obtains the functional mapping relationship between the internal resistance and
SOC by measuring the internal resistance of the battery. However, the measurement of the
internal resistance of the battery itself has a large error, and the internal resistance is also
affected by environmental variables, such as temperature, so the application scope of this
method is relatively narrow [9]. Fuzzy logic algorithms and neural network algorithms
have high accuracy in SOC estimation, but they require a large amount of computation and
rely on a large number of sample data [10]. The Kalman filter (KF) has the advantages of
high precision and strong anti-noise interference [11]. In summary, KF is currently one of
the most effective methods for battery SOC estimation and has received the most attention
and applications. However, it relies on accurate battery models.

The existing battery models can be mainly divided into three categories according
to different research focuses: the electrochemical model [12], thermal model (including
electrothermal coupling model) [13], and performance model [14]. The electrochemical
model is a battery model based on the electrochemical theory of ion diffusion and polar-
ization effect, and the partial differential equation was used to describe the changes of
electrode surface concentration and electrode overpotential inside the battery. However, it
is difficult to obtain certain parameters, such as solid phase concentration and solid phase
potential. Moreover, the solution of partial differential equations, which are mostly used
in the design and development of high-performance batteries, is complex. Based on the
conservation of energy, the thermal model is a mathematical model established based on
the three thermal processes of heat generation, heat conduction, and heat loss. However, it
is difficult to obtain the parameters of reversible heat and irreversible heat in the thermal
model, so it is rarely used in SOC estimation, and is instead often used in the design of
battery thermal management system and the study of single-battery heat production. The
performance model is widely used in the study of external characteristics of batteries. The
two mainstream performance models are the black box model and the equivalent circuit
model [15]. Black-box models, including neural networks, fuzzy logic, and support vector
machines, rely on a large number of sample data and have a large amount of computation.
BMS system chips are difficult to meet their computational requirements. The equivalent
circuit model simulates the external characteristics of a battery based on the experimental
data of battery charging and discharging, using electrical components such as capacitors,
resistors, and constant voltage sources. It has the advantages of a simple model, the easy
identification of parameters, low computational complexity, and high accuracy, and is
widely used in SOC estimation. It should be emphasized that the existing battery equiva-
lent circuit model is mainly for lithium batteries, while the main reactions and side reactions
and working characteristics of nickel-cadmium batteries are significantly different from
those of lithium batteries, so there is a lack of mature models for reference at present.

Therefore, by analyzing the basic characteristics of nickel-cadmium batteries, an equiv-
alent circuit model of nickel-cadmium battery was established, the model parameters were
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identified, and the accuracy of the model was verified by experimental data and simulation.
Then, based on the constructed equivalent circuit model, a SOC estimation method of Ni-Cd
batteries based on adaptive unscented Kalman filter (AUKEF) is proposed, and the results
are compared with unscented Kalman filter (UKF) under different operating conditions.

2. Equivalent Circuit Model of Nickel-Cadmium Battery
2.1. Selection of Equivalent Circuit Model

The existing battery equivalent circuit models mainly include the Rint model, Thevenin
model, DP model, PNGV model, circuit model with hysteresis characteristics, GNL model,
etc. [11,16]. Based on the analysis of the existing models, it was found that when estab-
lishing the model, it is necessary to analyze whether the battery has typical hysteresis
characteristics, determine the main polarization effects in the battery, and consider the
complexity of model parameter identification. Based on this, the open-circuit voltage
(OCV) and electrochemical impedance spectroscopy (EIS) were tested for nickel-cadmium
batteries [17] so as to select the equivalent circuit model.

2.1.1. Open-Circuit Voltage Characteristic Analysis

There is a functional mapping relationship between the open-circuit voltage and the
state-of-charge of a battery [18]. The common ways to obtain the OCV data are the intermit-
tent charging and discharging experimental method and the micro-current method [19,20].
The OCV-5S0OC curves obtained by the two methods are different, which directly affect the
subsequent model establishment and parameter identification of nickel-cadmium batter-
ies. Therefore, in this sub-section, the reliability and applicability of these two kinds of
experiments to obtain open-circuit voltage data of nickel-cadmium batteries are compared
and analyzed.

The LPH160 A single nickel-cadmium battery used by China Railway Highspeed
Electric Multiple Unit was selected as the experimental sample. The battery was charged
and discharged by CT-4002 battery tester, and the data were recorded by Neware BTS8.0
upper computer software.

Before conducting intermittent charging and discharging experiments, it is necessary
to analyze the intermittent point of the incubation time. The battery was charged at
a constant current of 0.2 C to the cutoff voltage of 1.7 V and then stood, and the battery was
discharged at a constant current of 0.2 C to the cutoff voltage of 1.0 V and stood, so as to
obtain the variation of the static voltage in the full discharging state, as shown in Figure 1.
From Figure 1, it can be seen that when the battery is put to rest after the termination of
charging or discharging, it will show obvious voltage rebound characteristics, which shows
that the voltage will gradually rise after the termination of discharge and the voltage will
gradually decrease after the termination of charge. Therefore, the open-circuit voltage
measured is relatively accurate after the voltage is stabilized. Table 1 shows the variation
of the static voltage data with full release state. Combined with Figure 1, it can be seen
that the average voltage change rate is 0.31 mV/min within 30 min to 60 min, and the
static voltage reaches relatively stable after 30 min. Therefore, in the intermittent charging
and discharging experiments, the standing time of the intermittent point is set to 30 min,
which ensures the accuracy of the open-circuit voltage measurement and the continuity of
the experiments.

After determining the standing time of the intermittent point, the experimental steps
were set as follows: charge the fully discharged battery with constant current of 0.2 C (32 A)
to 1.7 V, and then turn to constant voltage charging until the current decreases to 0.02 C
(3.2 A). The battery was considered to be in a fully charged state at this time, and the total
capacity of the battery was recorded. Discharge the battery at a 0.2 C constant current with
a discharging capacity of 10% of the total capacity, and after standing for 30 min, record
the open-circuit voltage. Repeat the discharging step nine times. After the last discharging
process, when the discharging voltage reaches 1V, the battery is considered to be in a fully
discharged state at this time.
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Figure 1. Static voltage variation curve at full charging/discharging process.
Table 1. Static voltages at different times in full charging/discharging state.
Time 3 min 10 min 20 min 30 min 60 min 120 min
charging state/V 1.4394 1.4295 1.4226 1.4180 1.4087 14

discharging state/V 1.1297 1.1656 1.1821 1.1904 1.2013 1.2103

Similarly, charge the fully discharged battery at a constant current of 0.2 C with the
charging capacity to 10% of the total capacity; Then, after standing for 30 min, record the
charging open-circuit voltage. Repeat the charging steps nine times. For the last charging
process, set the charging cut-off voltage to 1.7 V and cut-off current to 3.2 A. When the
charging current reaches 3.2 A, the battery is considered to be in a fully charged state.

According to the above steps, the open-circuit voltage data of each SOC point are
obtained, and the average value of the charging open-circuit voltage Uy and the dis-
charging open-circuit voltage Uy, is the equilibrium potential at this point. The difference
between the equilibrium potential and the open-circuit voltage of charging and discharging
is the hysteresis voltage Uj,. The curves of open-circuit voltage and balanced potential are
shown in Figure 2. It can be seen that at the same SOC point, the open-circuit voltage in
the charging state of nickel-cadmium battery is greater than that in the discharging state,
indicating that nickel-cadmium battery has typical voltage hysteresis characteristics [21].
Therefore, it is necessary to consider the hysteresis voltage when establishing its equivalent
circuit model.
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Figure 2. OCV-SOC curve of charging and discharging.
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The open-circuit voltage curve obtained by the micro-current method is continuous,
which is aimed to minimize the internal polarization effect and ensure the approximate
symmetry of the charging and discharging curve. Then, the OCV-SOC curve is obtained
by averaging the charging and discharging curve. The experimental procedure is set as
follows: Discharge the fully charged battery at 0.04 C with the cut-off voltage of 1 V, and
record the discharging process voltage data. Charge the fully discharged battery with
constant current of 0.04 C and the cut-off voltage of 1.7 V, and record the voltage data
during the charging process. The voltage—current curve of the micro-current method is
shown in Figure 3. It can be seen that even when the battery is charged and discharged
with a small current of 0.04 C, the voltage changes greatly in the early and late charging
and discharging stages, which cannot meet the approximate symmetry of the charging and
discharging curve. This is far from the voltage data obtained by intermittent charging and
discharging experiments for a long time, so it is not suitable to obtain the OCV-SOC curve
of nickel-cadmium battery by micro-current method. Therefore, in the identification of
open-circuit voltage data, the intermittent charging and discharging experiment method
is selected to obtain the open-circuit voltage of specific SOC points of the battery, and the
corresponding open-circuit voltage of each SOC point is obtained by function fitting.
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Figure 3. Voltage and current curve of the micro-current method.

2.1.2. Analysis of Polarization Effect

The EIS test can determine the actual impedance of the battery at each SOC point
through the impedance curve, and then analyze the actual electrochemical process inside
the battery. Through the EIS test, the order of the resistance—capacitance (RC) network
of the equivalent circuit model can be determined. The nickel-cadmium battery used in
the experiment was charged and discharged to different SOC points, and the alternating
excitation signals with different frequencies were applied at different SOC points to obtain
the corresponding frequency response signals. As shown in Figure 4, it is the EIS spectrum
of nickel-cadmium battery at different SOC points, where the horizontal axis is the real part
of impedance, and the vertical axis is the virtual part of impedance. It can be seen that the
impedance spectrum mainly includes three parts: The first part, shown by the rectangular
dotted line, that is, the area where the impedance curve intersects the horizontal axis, is the
ohmic impedance Ry. Combined with Figure 4, it can be seen that the ohmic impedance
of the nickel-cadmium battery is about 0.5 milliohm. The second part is selected by the
oval dotted line box and represents the charge transfer impedance. If we zoom in locally
on the part as shown in Figure 4, we can see more clearly that nickel-cadmium batteries
have an arc section under each SOC. And the radius of the arc is not the same, that is, the
charge transfer impedance under each SOC is different. The electrochemical polarization
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impedance is composed of the charge transfer impedance and the interface capacitance of
the electrode solution, which indicates that the electrochemical polarization effect inside
the nickel-cadmium battery cannot be ignored. The third part, the following straight lines
of each EIS curve in Figure 4, is called diffusion impedance, also known as concentration
polarization impedance, which indicates that the concentration polarization effect cannot
be ignored. Therefore, ohmic polarization, electrochemical polarization, and concentration
polarization should be considered simultaneously when establishing the equivalent circuit
model of nickel-cadmium battery.
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Figure 4. EIS curve under different SOCs (left) and local amplification (right).

2.1.3. Establishment of Equivalent Circuit Model

Based on the above characteristic analysis for nickel-cadmium batteries, the voltage
hysteretic characteristics should be taken into account when establishing its equivalent
circuit model, which should include ohmic polarization, electrochemical polarization,
and concentration polarization, while also taking into account the difficulty of parameter
identification of the equivalent circuit model. The equivalent circuit of nickel-cadmium
batteries, as shown in Figure 5, was established.

Figure 5. Equivalent circuit of nickel-cadmium battery.

In Figure 5, Ry is ohmic impedance; Rp1 and Cp; are electrochemical polarization
impedance; Ry, and Cp; are concentrated polarization impedance; EMF refers to the
actual balance potential of the same SOC point when charging and discharging, which is
a function of SOC; and Uj, is the hysteresis voltage, which describes the voltage hysteresis
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characteristics during charging and discharging, and is also a function of SOC, which is the
actual open-circuit voltage of the battery. The three parameters satisfy Equation (1).

{ uoc_cha = EMF + uh (1)
uoc_dch = EMF — Uh

where U, o, stands for charging balance potential, and U, 4 stands for discharging
balance potential. The model state equation is shown in Equation (2).
Upn

Uy = L

PL = Ty = RuCp

U = U — upl - UpZ — IRy 2)
=L Un

Up> = Cpx ~ RpCp

2.2. Model Parameter Identification

There are five parameters to be identified in the above model: open circuit voltage,
electrochemical polarization impedance Ry,1 and Cp1, concentration polarization impedance
Rp2 and Cpp. Compared to the intermittent charging and discharging experiment, the HPPC
test [22] only has one more impulse response at each SOC point. Therefore, it is possible to
stand for half an hour at the end of each pulse in the HPPC test, and the terminal voltage
of the battery at the end of the standing is used as the corresponding open-circuit voltage
under this SOC.

2.2.1. HPPC Test

For HPPC test protocols, refer to the FreedomCAR Battery Test Manual. Due to
the typical charging and discharging voltage platform of nickel-cadmium batteries, the
terminal voltage changes greatly in the early and late stages of charging and discharging,
so it is necessary to reduce the charging and discharging capacity interval in the early and
late stages to obtain more open-circuit voltage data points and improve the accuracy of the
OCV-50C curve. The SOC is set to a charging and discharging capacity interval of 10% in
the range of 0.2 to 0.8, and the rest of the SOC is set to charging and discharging capacity
interval of 5%. The battery HPPC test curve is shown in Figure 6.
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Figure 6. HPPC discharging test and charging test.

From Figure 6, at the end of discharging, the terminal voltage changes significantly,
and the terminal voltage will quickly decrease to the cut-off voltage.

2.2.2. Open-Circuit Voltage Identification

According to the open-circuit voltage data of each SOC point obtained by the HPPC
test and Equation (1), the equilibrium potential and hysteresis voltage can be obtained.
Since the accuracy of the OCV-50C curve directly affects the accuracy of the model, eighth-
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order polynomials are selected for function-fitting to ensure the accuracy of fitting. The
fitting results are shown in Figure 7.
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Figure 7. The fitting curves of equilibrium potential and hysteretic voltage.

From Figure 7, the eighth-order polynomial can fit the data at each SOC point well,
and the determination coefficients R? of the equilibrium potential and hysteresis voltage
curves are 0.9999 and 0.99987, respectively. The fitting function is shown in Equation (3):

EMF(SOC) = —0.6817550C8+8.82823S0C” — 24.43179SOC®+31.87221S0C>
—23.97881S0C* 4-11.24774S0C3 — 3.40685S0C?4-0.74692S0C + 1.22076

U, (SOC) = 2.6249650C8 — 12.77132S0C” +22.37586S0C° — 18.04921S0C° ®)
46.14667S0C* +-0.26467S0C3 — 0.8212550C?4-0.21246S0C + 0.02641

2.2.3. Identification of Resistance and Capacitance

In the HPPC test, a pulse current is applied at each SOC point, and the corresponding
impulse response voltage of the battery is obtained. The impulse voltage response when
SOC = 0.5 is shown in Figure 8, and the resistance capacitance parameters are identified
according to the impulse response.

140 b — Impulse voltage response curve at SOC=0.5

3
o

age/V

Z1.30

Volt

1.20

1 'l 1 1 il
0 20 40 60 80 100
Current/A

Figure 8. Pulse voltage response at SOC = 0.5.

From Figure 8, before section AB, the battery was in a static state, and the capacitor
voltage was 0. At the moment of pulse-current loading, the sudden voltage was mainly
caused by the ohmic internal resistance, so section AB was used to calculate the ohmic
internal resistance Ry.

Uy — Up
Ry= A0 @



Energies 2023, 16, 7291

9o0f21

Before the BC segment, the battery is in a static state, and the initial state of the
capacitor can be considered to be zero, so the capacitor in the BC segment is in a zero-state

response. The voltage-response formula of the capacitor in the BC segment is shown in
Equation (5).

Up(t) = IRy(1— e ) ©)

In the DE segment, the battery is in the static stage after pulse-current unloading, the
current is zero, and the capacitor is zero-input response. The capacitor voltage response
formula in the DE segment is shown in Equation (6).

t—tc

Up(t) = Up(te)e = (6)

Therefore, according to Kirchhoff’s Voltage Law, the function expression of the termi-
nal voltage of the DE segment is as follows:

e t—tc

U(t) = Upe — Upl(tc)efT _ upZ(tc)ei? @)

Equation (7) is an exponential function of terminal voltage with respect to time.
MATLAB fitting toolbox was used to perform exponential function-fitting on the measured
DE-segment voltage data, and the fitting formula is shown in Equation (8).

y(x) = A — Be P — Ce™* 8)
The voltage-fitting curve at the end of DE segment is shown in Figure 9.
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Figure 9. DE segment terminal voltages at SOC = 1 and SOC = 0.

From Figure 9, the selected fitting formula can fit the terminal voltage data of the
DE segment well, and the fixed coefficients R? of the two curves are 0.9999 and 0.9999,
respectively, showing a good fitting effect.

The specific values of A, B, C, b, and c in Equation (8) can be obtained according to the
fitted exponential function. The polarization resistance and corresponding time constant
can be obtained by Equations (6)—(8), as shown in Equation (9).

_ B _ 1
Pl = 7 a1 =5
I(lfe 1 )

— C —
P27 g\ 2T
I(l—e ] )

R

< ©)

Al
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For RC networks, the time constant and resistance capacitance satisfy Equation (10).

T = Rplcpl
10
{ T = RppCpo 10

Parameter identification results can be obtained by using Equations (9) and (10) simul-
taneously and substituting the exponential function coefficient and current data obtained
by fitting, as shown in Table 2.

Table 2. Identification results of resistance and capacitance parameters at each SOC point.

soc Ryi/mQ  Rpp/mQ Cp1/F CpalF Ro/mQ) R?

0 0.6862 0.9412 1579.2 17,270 0.575625 0.9990
0.05 0.5871 0.4424 1406.5 32,277 0.5425 0.9987
0.1 0.4799 0.2187 1553.9 57,450 0.505625 0.9986
0.15 0.5509 0.1372 1196.6 82,769 0.498125 0.9987
0.2 0.5225 0.1126 1268.3 118287  0.484375 0.9990
0.3 0.5353 0.0873 1156.7 132594  0.464875 0.9975
0.4 0.5516 0.0719 1100.1 138,528 0.4575 0.9975
0.5 0.6581 0.0734 837.7 126,735 0453125 0.9986
0.6 0.5963 0.0707 998.2 129,289 0.45125 0.9984
0.7 0.5729 0.0735 1086.9 130,195 0.45125 0.9986
0.8 0.5421 0.0841 1267.8 126362 0453125 0.9972
0.85 0.5269 0.0987 1378.3 129,231 0.4575 0.9983
0.9 0.5754 0.1015 1206.9 90,553 0.474375 0.9985
0.95 0.5269 0.1239 1525.6 88,407 0.49375 0.9987

1 0.3519 0.1484 3236.4 85,061 0.51625 0.9990

2.3. Model Simulation and Verification

According to the parameter identification results, the equivalent circuit simulation
model of the nickel-cadmium battery was established in Simulink, as shown in Figure 10.
The current value and measured voltage value are, respectively introduced into two signal
generators, and the SOC is preliminarily calculated using the amp-hour integration method.
According to Equation (3), the fitting function is obtained to calculate the corresponding
open-circuit voltage under different SOC points. Meanwhile, the parameter lookup module
is used to calculate the corresponding ohm internal resistance, polarization resistance,
polarization capacitance, and other parameter values under each SOC, and then the partial
voltage is calculated according to the parameter values. Finally, the terminal voltage is
calculated according to Equation (2). Based on HPPC test, the measured value of terminal
voltage was compared with the simulated value of terminal voltage, and the accuracy of the
model was analyzed from the pulse response stage and the constant current discharging
stage, respectively.
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Sheetl | OCYV parameter identification Tem]inal% Itage
s waveform
d_Signal 1 1
| >
Measured current o RO
Rl R1 | e |
Outt -
1 SOC S Cl 1 .
. Terminal voltage
R2 R2 calculation
[Sheet1 | 4 [— i
= Ampere hour integral &2 (&2 4»| -]
fSignal 2 calculation Resistance-canacitance  pegi i ivider - .
-canacitan esistance capacitance divider L v
parameter identification P SOC I Tgm}lr@l K tQltaee
Subtraction 1Tor waveform
Measured voltage operation

Figure 10. Equivalent circuit simulation model.
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The measured and simulated terminal voltage values under HPPC conditions are
shown in Figure 11a. Then, the absolute error curve shown in Figure 11b and the relative
error curve shown in Figure 11c can be obtained. It can be seen from Figure 11a that
the simulation value can dynamically change with the measured value under the whole
working condition. It can be seen from Figure 11b that the error increases significantly at
the end of discharging because the internal parameters of the battery change greatly and
the voltage changes are noticeable at the end of discharging. It can be seen in Figure 11c
that the relative error remains within 1% most of the time, and the maximum value is 5% at
the end of the discharging period.
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Figure 11. (a) Terminal voltage; (b) absolute terminal voltage error; (c) relative error; (d) terminal
voltage in pulse phase; (e) terminal voltage in constant discharge phase.
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Figure 11d,e presents the terminal voltage variation curves of the pulse stage and
the constant-current discharge stage at SOC = 0.5. It can be seen that the terminal voltage
error in the pulse stage is slightly larger than that in the constant-current discharging stage.
Because the internal pulse response mechanism of the battery is complex, the measured
value error will increase slightly.

Three parameters of root mean square error (RMSE), maximum absolute error (MaxAE),
and mean absolute error (MAE) as Equation (11) are used to quantitatively evaluate the
modeling effectiveness. The calculation results are listed in Table 3.

1 L 2
RMSE = /1 & (U, — U
k=1

MaxAE = max(|U; — Uy'|) (11)
L
L [Ue—Uy|

MAE = &1

Table 3. Error results at different stages under HPPC working conditions.

HPPC Working Pulse Phase at Constant Current
Condition SOC=0.5 Phase at SOC = 0.5
MAE/mV 4.047 5.995 1.067
RMSE/mV 7.401 8.721 1.504
MaxAE/mV 49.790 29.040 4.040

In Equation (11), L is the sample number, and Uy and U, represent the measured and
simulated values of the terminal voltage, respectively.

From Table 3, MAE and RMSE are 4.047 mV and 7.4012 mV, respectively, with high
accuracy. MaxAE is 49.79 mV, which appears in the pulse discharge stage at SOC = 0.
The error is large at this time because the discharging at the cut-off voltage causes over
discharging. At this time, the terminal voltage changes sharply. Meanwhile, the error value
of the constant current stage is smaller than that of the pulse stage, with an MAE and
RMSE value of 1.067 mV and 1.50471 mV, respectively, indicating that the accuracy of the
established simulation model meets the requirements and can better simulate the working
characteristics of nickel-cadmium battery.

3. AUKEF Estimation Algorithm

In Section 2, the equivalent circuit model of the nickel-cadmium battery was estab-
lished. Based on the model and KF algorithm, the SOC of the nickel-cadmium battery
can be estimated. The standard KF algorithm is a pure time-domain filter, which has the
advantages of a simple structure and good robustness. However, it is only suitable for the
modeling analysis of linear systems. The nickel-cadmium battery has polarization effect
and diffusion effect in its internal and nonlinear external performance, so it is necessary to
use the improved Kalman filter algorithm. At present, the commonly improved forms are
the extended Kalman filter (EKF) and unscented Kalman filter (UKF) [23]. When the EKF
algorithm performs Taylor expansion on the nonlinear part, it will produce a Taylor trunca-
tion error and may make the filter difficult to converge and increase the error. Moreover,
the EKF algorithm needs to calculate the Jacobian matrix once in each iteration process,
which increases the amount of calculations. The UKF algorithm [24-26] can also be used
for the state estimation of nonlinear systems. Its core method is unscented transformation
(UT) [27,28], in which sampling points are used to approximate the distribution of nonlin-
ear state variables, without the linearization of nonlinear functions and Jacobian matrix
solution. Compared to the EKF algorithm, the UKF algorithm has a simpler principle,
higher accuracy, less computation, and wider application.
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3.1. UKF Algorithm

The discrete state space model of linear system is generally composed of state equation
and observation equation, and the general expression is shown in Equation (12).
X1 = Axg + Buy + wy (12)

yx = Cxy + Duy + vy

where x; is the state quantity at time k; x4 is the state quantity at the next time; 1, is the
system input quantity; y is the system observation value at time k; and A, B, C, and D
are the state transition matrix, input matrix, output matrix, and feedforward matrix of the
system, respectively; wy and vy, refer to process noise and observation noise, respectively,
which are generally set as Gaussian white noise, as shown in Equation (3).

wi ~ N(0,Qx)
{ vp ~ N(0, Ry) 13)

where Qk(Ry) is the covariance matrix of process noise (observation noise).

The UT in the UKF algorithm [27,28] is used to sample near the state points of nonlinear
functions with reference to certain sampling strategies. The sampling points are collectively
referred to as the sigma point set. The sigma point set and the state variables of the original
state distribution have the same mean and variance. The sigma point set is substituted
into the original nonlinear function relationship for nonlinear transfer, and the nonlinear
function value point set is calculated. The mean and covariance of the transformed point
set are further calculated. The UKF algorithm can approximate the mean and covariance to
the third-order Taylor series. For the n-dimensional state variable, x, X, and P are used to
represent the mean and variance of the state variable, respectively. Firstly, 21 + 1 sampling
points are obtained by using the symmetrical sampling strategy, and then the corresponding
weights of each sampling point are calculated. Finally, the mean and covariance of the
output variable are obtained. The specific steps are as follows:

(1) Calculate 2n + 1 sampling points according to Equation (14).

Xg =X
xi=x+(/(n+A)Py);,i=1,23,---,n (14)
xi=xX—(/(n+A)Py),,i=n+1,n+2,---,2n

where 1 refers to the dimension of the state variable, x; refers to sigma point 7, (\/ (n+ )L)Px) ‘
1

refers to the number i column of the root mean square of the (1 + A) Py matrix, A refers to
the scale adjustment factor, and the distance between the sampling point and the mean x
can be adjusted by changing A so as to adjust the accuracy of the algorithm.

(2) Calculate the weight corresponding to each sampling point.

W, =A/(n+A)

wl = A/ (n+ )]+ (1+B—a?)
wl=1/2(n+A)],i=1,23---,2n (15)
Wy =1/2(n+M\)],i=1,2,3---,2n

A=a’(n+k)—n

In Equation (15), w;, is the mean weight; w. represents covariance weight; « is the
dispersion degree factor, which is used to describe the dispersion of sampling points around
the mean X and meets the relationship 107 < a < 1; k is the auxiliary scale factor, usually
taken as 0 or 3 — n; and S is the prior distribution factor, which is used to suppress the error
caused by higher-order terms. For Gaussian distribution, the best result can be obtained
when 8 = 2 is taken.
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(3) Calculate the mean ¥ and covariance Py of the output variable.

. 2n .
y= 'EO Win'Yi
E T (16)
P, = ‘Zo we' (i —y)(vi —7)
i=
Based on UT, the detailed steps of UKF algorithm can be obtained as follows:
(1) Initialize the calculation of state variable xy and covariance P.
%o = Elxo] (17)
Py = E[%0%o' ] (18)
(2) Combined with UT, calculate the sigma point sets using the symmetrical sampling
strategy.
Xg_l = ﬁkfl
x;,(fl:x,\kfl—i_(\/ (n+A>PX)ili:1/2/3/”‘rn (19)

Xp g =% 1 —(V/(n+A)Py),i=n+1,n+2,---,2n

(3) Substitute the sigma point sets into the state equation to complete the backward
propagation of the sigma point sets.

xi\kq = f(%h_q, k1) (20)

(4) According to the weight corresponding to the sigma point sets, complete the
prediction of the state quantity and the calculation of the covariance matrix.

n
Tpk—1 = L WinXppe_q + 4k
W . r @1
Py = iZO We (X1 = Bafe—1) (Kepe_g — Bue—1)” + Qk
In Equation (21), gy is the average value of process noise.
(5) Substitute the sigma point sets into the observation equation to calculate the system
observation value.

V§<|k—1 = h(xj_q, 1) (22)

(6) According to the weight corresponding to sigma point set, complete the prediction
of observation and the calculation of covariance and cross covariance matrix.

2n ..
Jkjk—1 = .20 WinYjk—1 T T
1=
L o i ; T
kayk = 'ZO wc(xk|k_1 - xk\k—l)(]/k“(_] - yk\k—l) (23)
i=

2n ., . . . T
Py, = ‘Zo We Wipe—1 — Tke—1) Wipeo1 = Te—1)” + Re
i=

In Equation (23), ry is the average value of observation noise.
(7) Obtainthe Kalman gain matrix from the covariance matrix.

Ky = Py Py, (24)

(8) Update the system state matrix and its covariance matrix

{ 2 = Rupe—1 + Ke (Y — Tipe—1) (25)

Pe = Py — Ky Py, KT
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3.2. AUKF Algorithm

When using UKF algorithm to deal with battery SOC estimation, it is necessary to
obtain the prior system noise and observation noise information, which is set as a constant
value by the standard UKF algorithm. However, there will be a certain deviation between
the set constant value and the actual noise value in each iteration process, and the error will
gradually accumulate with the increase in iteration times, which will reduce the estimation
accuracy of the UKF algorithm, and may even lead to filtering divergence. Therefore, in
order to further improve the accuracy of SOC estimation, the Sage-Husa adaptive filtering
algorithm [29-32] is selected to correct the covariance of process noise and observation
noise in real time. The main steps of the standard Sage-Husa adaptive filtering algorithm
for noise adaptation are as follows:

(1) Calculate the estimated average value of process noise.

Gk = (1 —di)qx—1 +dy (fk - J?k|k_1) (26)
dy = (1-0b)/(1-b"

In Equation (26), dy is the forgetting coefficient, and b is the forgetting factor, which
generally meets the relationship 0.95 < b < 1.
(2) Calculate the covariance estimated value of process noise.
{ Qc = (1 —di)Qx 1 + di(Kiexer 'Ki" + Py — Puyy Py ") 27)
e = Yx — Uk

In Equation (27), e, represents the difference between the true value of the observation
value and the estimated value of the observation value at time k, which is the observation
residual, also known as the innovation sequence of the observation value.

(3) Calculate the estimated average value of the observation noise

e = (1 —di)Pk—1 + dr(Yx — Tipe—1) (28)
(4) Calculate the estimated covariance value of the system observation noise
Ri = (1 —di) Ry + die(exer” — Py Py (29)

Under some special conditions (such as large current fluctuations), it is difficult to
ensure that the process noise covariance matrix Qy and the observation noise covariance
matrix R, maintain non-negative definiteness. If Ok and Ry are negative definite, the
covariance matrix Py of the state variable will be non-semi-positive definite, resulting in
the failure of the sigma sampling point calculation in the UKF algorithm and the failure of
the program [33]. Therefore,Q; and R; are improved as follows:

O = \/diag(diag(Qx 7)) (30)

In Equation (30), diag means to take the main diagonal elements of the original matrix
to form a diagonal matrix, and Equations (26)—(30) constitute an improved Sage-Husa
adaptive filtering algorithm. When combined with the UKF algorithm, it can effectively
ensure the semi-positive definiteness of the state variable covariance matrix P; so that the
UKEF algorithm can continue to iterate and improve the stability and persistence of filtering.

The improved Sage-Husa adaptive filtering algorithm is used to adaptively modify the
noise covariance matrix in the UKF algorithm, and gy, Qy, 7, and R in the UKF algorithm
are replaced by 4, Qk, 7, and ﬁk, respectively, to form the AUKEF algorithm. The specific
flow of the AUKEF algorithm is shown in Figure 12.
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Figure 12. AUKEF algorithm flow.

4. Simulation and Experimental Verification

Before using the UKF algorithm and the AUKF algorithm to estimate the SOC, the
state equation and observation equation of the model need to be discretized. Based on
the equivalent circuit model shown in Figure 5, the battery SOC, R1C; branch voltage U,
and R,C;, branch voltage U, are selected as the three state variables of the system, the
charging and discharging current is selected as the system input value, and the battery
terminal voltage is selected as the system observation value, and the battery state equation
is derived, as shown in Equation (31).

SOC(t) = —&i(t)
Uy = — e Uy + &i(t) (31)
Up = — s U + (1)

The battery observation equation is shown in Equation (32).

U(t) = Uoc(SOC(t)) — Un(t) — Un(t) — i(t)Ro (32)
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The above equation is discretized, and the discretized equation of state is obtained, as
shown in Equation (33).

T T
Ut js1 1- RixCix 0 0 Uy Cix
Wil | = 0 1- ﬁ O | ok | + | op | Itk (33)
SOCk41 0 0 1| | SOCk _Cln
The discretized output equation is shown in Equation (34).
Ui = Uoc(SOCk) — Uy — Up e — IRk (34)

The nonlinear form of the model can be further written as

(1- ﬁ)xl,k + %kuk
xep1 = f e ) Fwp = | (1= gl )Xop + ot | +wi (35)
X3k — C%Mk
Y = g(xx, uk) + 0k = Uoc(x3k) — X1k — Yok — Roxtt + vk

The above nonlinear function is substituted into the AUKF algorithm flow, and the
SOC estimation of nickel-cadmium battery is completed according to Equations (17)—(30).

4.1. SOC Estimation Verification under HPPC Test

Due to the typical voltage plateau period of nickel-cadmium battery, the voltage
change during the plateau period is small, so a small voltage error may produce a large
SOC error. In addition, in the actual operation of the battery, the initial value of the SOC
is usually unknown, and it will spend more time to obtain the initial value of the SOC
by standing for a long time, so the SOC estimation algorithm needs to be robust and can
accept an initial value error within a certain range.

The initial values of covariance matrix, process noise, and observation noise are set
as follows:

1 0 0 10°% 0 0
=101 0|,Q=1] 0 10° 0 |, Ry=0.02 (36)
0 0 1 0 0 10°°

Two parameters, MAE and RMSE, are selected to comprehensively evaluate the
performance of the two algorithms. The comparison results are shown in Table 4.

Table 4. Comparison of SOC estimation results of two algorithms under HPPC conditions.

UKF AUKF
MAE% 0.8958 0.4884
RMSE% 1.0372 0.4891

HPPC test steps are shown in Section 2.2.1. Before the experiment, the battery was in
a fully charged and static state for a long time, and the polarization effect in the battery was
not obvious. It can be considered that the initial value of RC network terminal voltage was 0,
and that the initial value of the SOC was 1. When the initial value of the SOC was set to 0.7,
there was an initial error of 30% with the actual initial value. The robustness and accuracy
of the algorithm were tested. Figure 13 shows the estimation results of two algorithms for
SOC estimation under HPPC conditions.
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Figure 13. (a) SOC estimation results; (b)SOC estimation error; (c) early local amplification of SOC
estimation results; (d) late local amplification of SOC estimation results.

Based on the analysis in Figure 13 and Table 4, the UKF algorithm and AUKF algorithm
can still converge to the real value of the SOC when there is a large error in the initial value
of the SOC, which has good robustness. As can be seen from Figure 13b,d, the noise error of
UKEF algorithm will gradually accumulate with the increase in iteration times, which shows
that the error increases at the end of the working condition, and the maximum error reaches
2.93%. The AUKEF algorithm updates the noise adaptively in each iteration process, and the
error is smaller and more stable. Under the three initial values, MAE and RMSE are stable
within 0.5%, and the accuracy is higher. Simulation results show that the AUKF algorithm
has higher accuracy and robustness in estimating the SOC of the nickel-cadmium battery.

4.2. Verification of SOC Estimation under Constant Power Discharging Cycle

In the actual use of nickel-cadmium batteries, the discharging current is usually
dynamic and in a state of recycling. Therefore, the constant power discharging cycle is
further selected to verify the model. The discharging process is set at a constant power of
66.5 W, the charging process is set at 0.2 C constant current, the charging and discharging
capacity is 20 Ah, and the cycle repeats five times. The voltage and current changes under
this working condition are shown in Figure 14.
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Figure 14. Voltage and current changes under charging and discharging cycle with constant power
of 66.5W.

Under this working condition, the current changes continuously during the discharg-
ing process, including both the discharging and charging processes, which tests the dynamic
following ability of the algorithm. Similarly, the SOC initial value error was set to 30% to

further evaluate the robustness of the algorithm under this working condition, as shown
in Figure 15.
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Figure 15. (a) SOC estimation results; (b) SOC estimation error.

The SOC estimation results of the two algorithms under constant power cycle are
shown in Table 5.

Table 5. Comparison of SOC estimation results of two algorithms under constant power cycle.

UKF AUKF
MAE% 2.3922 0.7818
RMSE% 24146 0.7954

Based on Figure 15 and Table 5, when the battery changes from discharging to charging,
the UKF estimation error becomes larger, while the AUKF can maintain a smaller error
throughout the cycle. The MAE and RMSE of the AUKEF algorithm in the convergence
stage are always kept within 0.8%, which has good accuracy. The simulation results show
that the AUKEF algorithm can still maintain good dynamic following ability under cyclic

conditions, and has high accuracy. Hence, the AUKF is more suitable for the SOC estimation
of nickel-cadmium batteries.
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5. Conclusions

In this paper, the open-circuit voltage characteristics and polarization voltage char-
acteristics of nickel-cadmium battery were studied. It was found that the intermittent
charge—discharge method used to determine the OCV-SOC curve of a nickel-cadmium
battery was more applicable than the micro-current method. It showed that the nickel-
cadmium battery had typical voltage hysteresis characteristics, as well as the characteristics
of ohmic polarization, electrochemical polarization, and concentration polarization during
the whole process. All these characteristics can provide a reference for the modeling of
nickel-cadmium batteries.

Then, considering the characteristics of open-circuit voltage and polarized voltage and
the complexity of the model, the equivalent circuit model of nickel-cadmium battery was
constructed, in which the voltage hysteresis, ohmic polarization, electrochemical polariza-
tion, and concentration polarization were considered. Based on the HPPC experimental
data, the average absolute error of the constructed model was only 4.05 mV, the root mean
square error was only 7.40 mV, the maximum absolute error was 49.79 mV, and the relative
error was less than 1% and the maximum relative error was less than 5% most of the time.

The SOC estimation method of nickel-cadmium battery based on the established
dynamic model and the AUKEF algorithm was proposed. According to the estimated results
from the measured data, it can be seen that, although the method is insensitive to the initial
value of SOC, it can converge to the real values even if the initial value has a 30% error. The
average absolute error and root mean square error of the final SOC estimation results are
less than 1%.
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