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Abstract: The displacement efficiency of supercritical CO, (scCO,) injection in the storage zone and
its primary trapping mechanism in the confining zone are strongly tied to the capillary phenomenon.
Previous studies have indicated that the capillary phenomenon can be affected by geochemical
reactivity induced by scCO; dissolution in formation brine. To quantify such changes, thin disk
samples representing a sandstone storage reservoir, siltstone confining zone, and mudstone confining
zone were treated under a scCO;-enriched brine static condition for 21 days at 65 °C and 20.7 MPa.
Geochemical alterations were assessed at the surface level using scanning electron microscopy cou-
pled with energy-dispersive X-ray spectroscopy and X-ray fluorescence. Before and after treatment,
the wettability of the scCO,-brine-rock systems was determined using the captive-bubble method at
fluid-equilibrated conditions. Pore size distributions of the bulk rocks were obtained with mercury
injection capillary pressure, nuclear magnetic resonance, and isothermal nitrogen adsorption. The
results indicate the dissolution of calcite at the surface, while other potentially reactive minerals
(e.g., clays, feldspars, and dolomite) remain preserved. Despite alteration of the surface mineralogy,
the measured contact angles in the scCO,-brine-rocks systems do not change significantly. Contact
angle values of 42 + 2° for sandstone and 36 + 2° for clay-rich siltstone/calcite-rich mudstone were
determined before and after treatment. The rocks studied here maintained their water-wettability at
elevated conditions and after geochemical reactivity. It is also observed that surface alteration by geo-
chemical effects did not impact the pore size distributions or porosities of the thin disk samples after
treatment. These results provide insights into understanding the impact of short-term geochemical
reactions on the scCO,-brine capillary displacement in the storage zone and the risks associated with
scCO;, breakthrough in confining zones.
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1. Introduction

Carbon geostorage (CGS) is considered a primary solution to limit the global average
temperature according to Paris Agreement and achieve net-zero emissions [1]. In CGS,
gaseous CO, is captured at large-scale point sources and injected in porous geological
formations at depths beyond 800 m to ensure a supercritical state (scCO,), hence max-
imizing storage resources [2]. Sandstones are frequently chosen as host rocks for CGS
because of their high injectivity and storage capacity [3,4], whereas siltstones [5-8] and
mudstones [9,10], characterized by low permeability, are well-suited as confining zones. In
addition to the macroscopic fluid displacement within the host rock, which is a function of
its heterogeneity, the efficiency of the storage process is intricately linked to microscopic
displacement factors such as interfacial tension (IFT), wettability, and pore size distribu-
tion [11-13]. During and after brine displacement, scCO, is primarily trapped by capillary
forces acting on the confining zone (structural trapping) and in the storage zone (residual
trapping) [14]. Secondary immobilization of scCO; occurs by long-term geochemical inter-
actions with formation fluids and rock, including dissolution in fluid (solubility trapping)
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and formation of stable mineral species (mineral trapping) [15]. Understanding the out-
comes of these chemical reactions to the scCO; microscopic displacement and trapping
mechanisms is a challenge, which requires exposure experiments to be conducted at dif-
ferent conditions representing time-spatial distribution within the storage and confining
zones [16,17].

The influencing factors on the scCO, microscopic displacement and its primary trap-
ping mechanisms can be simplified by the capillary phenomenon [17,18]. The net pressure
required to displace a non-wetting phase (e.g., scCO,) through a pore throat saturated by a
wetting phase (e.g., brine) is given by the Laplace equation [19,20] (Equation (1)):

2ycosO
Pe = Pseco, =Pro = —— (1)

where P, is the capillary pressure, v is the scCO,-brine interfacial tension, 0 is the contact
angle, and r is the pore throat radius. As described in Equation (1), the capillary pressure is
directly proportional to the product of the tension formed between the fluid phases and
the cosine of the contact angle, and inversely proportional to the pore size. If the scCO,
pressure exceeds the breakthrough pressure in the confining zone, upward fluid migration
takes place, and the maximum scCO, height that can be stored in the caprock (h) is given
by Equation (2):

h— ZYCOSGI @)
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where Ap is the difference in fluid densities between scCO, and brine, g is the gravity
constant, and r is the connected pore throat radius during breakthrough [21]. Equation (2)
shows that in addition to the capillary properties, knowledge of fluid densities in scCO,—
brine systems is essential to determine the capillary seal capability [22].

Regarding the interfacial tension, several authors have shown that the IFT of CO,-H,O
systems is primarily controlled by the density difference of the two fluid phases [23-26]. It
is generally agreed that the IFT follows a bilinear trend with Ap. For gaseous CO;, the IFT
decreases steeply and linearly with decreasing Ap (alternatively, increasing pressure) due
to an increase in gas solubility [21]. Above the scCO; condition (Ap~600 kg/ m3, ~7.3 MPa,
~31 °C), the IFT decreases mildly, reaching a pseudo plateau at ~26 £ 2 mN/m [23,27].
The pseudo-plateau IFT is independent of temperature [23], increases linearly with salt
molality [23,28,29], and is more pronounced in the presence of bivalent cations [23,28,29].

Numerous authors have described the wettability of scCO,—brine-rock systems [30-74].
During CGS, water-wettability over scCO, is often preferred because it limits upward
vertical migration and increases residual trapping in the reservoir [75-77], as well as in-
creasing structural trapping, thus reducing the risk of scCO, breakthrough in the confining
zone [78,79]. Figure 1 shows a literature compilation of scCO,-brine-rock contact angles
as a function of pressure for sandstone [66], limestone [66], dolomite [55], fine-grained
caprocks [49], and source rock [58], measured at similar temperatures (~50 °C). A water-
wet behavior with respect to scCO, is observed for most rocks. An exception is dolomite,
which has lower hydrophilicity and shows strong negative pressure dependence with cos
0 [55]. Aside from pressure, other parameters such as temperature and salinity exhibit
less clear influence on 6. Studies conducted on quartz show increasing 6 with increasing
temperatures [40,44,51,66]; sandstones exhibit no clear trend [62,66]; whereas calcite [56]
and carbonate [32] show decreasing 0 trends with increasing temperature. Regarding
salinity, some papers report quartz and calcite surfaces becoming slightly less water-wet
in high salinity [38,56,66]. However, studies conducted on real rocks show either no trend
in 6 with salinity for a silica/dolomite-rich shale caprock [54], or a slight decrease with
salinity for sandstone [62]. Inconsistencies in 6 values are mostly attributed to differences
in surface cleaning methods [44,71], rock heterogeneity [31], and surface roughness [57,62].
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Figure 1. ScCO,-brine-rock wettability as function of pressure at similar temperature (~50 °C) and
salinity conditions. Most rocks exhibit water-wettability with respect to scCO, even at elevated
pressures. An exception is dolomite, showing strong negative pressure dependence on 6 (lower
hydrophilicity). Note: sandstone [66], limestone [66], and source rock [58] contact angle values
were conducted in static measurements. Caprock [49] represents receding contact angles, while
dolomite [55] is an average of retreating and advancing values.

The interaction between scCO, and brine in the subsurface can trigger geochemical
reactions with the rock and potentially impact the microscopic displacement and trapping
mechanisms during CGS. These geochemical reactions are generally classified as short- and
long-term reactions [80,81]. At the early stage, the dissolution of CO; in brine occurs, gen-
erating carbonic acid, which further ionizes into carbonate and bicarbonate ions, ultimately
reducing the pH down to ~3 [80,82,83]:

CO, (gas) + H,O = H,CO3 (3)
H,CO; = H" + HCO3™~ (4)
HCO;™ =H* +CO3~ (5)

The increase in H* species in the brine accelerates carbonate dissolution given their
fast reactivity in acidic environments [84]. Among carbonates, calcite exhibits the largest
dissolution rate, being ~2-3 and ~3—4 orders of magnitude faster than dolomite and siderite,
respectively [85-87]. During calcite dissolution, the reactant is consumed quickly, and the
reaction ceases at an equilibrium pH of 4.5-5.0 [80,83]:

CaCOj (calcite) + H" = Ca®* + HCO;3 ™~ (6)

Alternatively, aluminosilicates such as feldspars, micas, and clays can yield more
cations in the brine and buffer the pH up to ~8.0. However, their reaction rates are
small and can take up to thousands of years to occur [80,83]. A secondary alteration of
feldspars can occur when the concentration of calcium ions deriving from the dissolution
of carbonates plus originally occurring in the brine is considerable [80,88]. An example
is the dissolution of albite consuming Ca* and leading to the precipitation of calcite and
kaolinite [80]:

2NaAlSizOg (albite) + CO, + 2H,0 + Ca?* > 4Si0, (chalcedony) + CaCOs (calcite) + AlySi;Os5(0OH), (kaolinite) + 2Na*  (7)

Recent studies have evaluated the role of geochemical alterations induced by scCO,-brine
interactions in the capillary properties of the storage zone [89-91] and confining zone [60,69,73,92-98].
Due to their high reactivity, limestones are generally the storage rock of focus, given that the reactivity
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of sandstones (mainly quartz) is extremely slow and pH-independent [16,83]. Dynamic scCO;-
enriched brine injection tests on limestone cores show strong calcite dissolution and enlargement of
pore throats in the inlet of the core, followed by slight mineral precipitation in the far region [89,90].
Additionally, an increase in the limestone scCO,-wettability was observed after scCO;-enriched brine
treatment [90,91].

With respect to confining zones, most scCO, treatment studies were conducted on crushed
samples, observing significant geochemical alteration in the form of dissolution and/or precipitation
of preferentially carbonate minerals [92,94,95,98,99]. Mouzakis, et al. [92] reported an increase in
porosity and connectivity in all pore length scales of a carbonate-rich shale. Sanguinito, et al. [94],
Goodman, et al. [95] performed experiments on the same Utica Shale (clay/calcite-rich) but varying
reactor fluid, from dry scCO, to scCO,-enriched deionized water (DIW), respectively. They reported
increased reactivity when water was introduced into the system. Some studies indicate that dry
5¢CO; can also affect the hydration of clays by possibly releasing interstitial water [60,94]. Regarding
wettability alteration, Qin, et al. [60] described an increase in water contact angles (57 & 2° to 69 £ 2°)
on quartz/clay-rich shales after exposure to dry scCO, for 12 days. However, their 6 measurements
were conducted at ambient conditions and do not reflect the equilibrium between scCO,-brine in the
subsurface [76]. Conversely, Gholami, et al. [69] conducted equilibrated scCO,—-DIW 6 measurements
on quartz/clay-rich shales exposed to scCO, for 6 months. They reported an average increase from
40 £ 5° to 49 £ 5°, along with surface dissolution of quartz and precipitation of kaolinite. To the best
of our knowledge, changes in scCO,-brine-rock wettability by geochemical reactivity of carbonates
present in confining zones and the extent of reactivity in the pore size distributions of intact rock
samples have not been addressed.

The principal aim of this study is to evaluate the impact of geochemical reactivity on the scCO,—
brine-rock wettability and pore size distribution (PSD) of quartz, clay, and carbonate-rich intact
rocks, both before and after treatment with scCO,. The specific objectives are as follows: (i) assess
geochemical alterations on thin disk samples after exposing to scCO;-enriched brine environment
at 20.7 MPa and 65 °C for 21 days, (ii) monitor changes in fluid-equilibrated scCO,-brine-rock
contact angles, with a particular emphasis on the impact of surface reactivity on the wettability of
the scCO,-brine-rock system under elevated pressure conditions (~20 MPa), and (iii) determine
alterations in PSD using three different methods: mercury injection capillary pressure (MICP), nuclear
magnetic resonance (NMR), and isothermal nitrogen (N;) adsorption, and analyze the resulting data
to assess the effects of geochemical reactions on the PSD of the thin disk samples. This study aims to
provide insights into how geochemical reactions occurring within an experimental timeframe may
influence the wettability and pore structure of rocks relevant to carbon geostorage (CGS).

2. Materials and Methods
2.1. Samples Description

For this study, we selected potential storage and confining zone rock samples varying in
mineralogy and petrophysical properties (Table 1). The core samples were obtained from drilling
sites where horizontal plugs (~2.5 cm diameter and length) were extracted in the “as-received”
state. The plugs were cleaned using Soxhlet extraction with 80/20 toluene/methanol solution to
remove hydrocarbons, water, and salt, and dried at 100 °C until weight stabilized. Total porosity
was measured using the protocol described in our previous work [100]. Mineralogy determined
using transmission Fourier transform infrared spectroscopy (FTIR) [101,102] and microstructural
examination with scanning electron microscopy (SEM) indicates that sample S1 is a quartz-rich
sandstone, S2 is a quartz/clay-rich siltstone, and S3 is a finer-grained carbonate/clay-rich mudstone.
Total organic carbon (TOC) measured with the LECO® method on the mudstone (S3) shows low
TOC (~2.0%). To prepare the sample for our measurements, four adjacent thin disks (~0.6 cm length)
were cut from each plug. Vertical heterogeneity from the same plug was minimized by conducting
several X-ray fluorescence (XRF) measurements on the surface of each disk and confirming low
elemental variation. To minimize surface roughness, the measurement surface of each disk was
subjected to fine polishing up to 2400 grit sandpaper followed by ion-milling (Fischione 1060 SEM,
Export, USA). Then, MICP data were taken on one “untreated” disk from each sample (Table 1).
The other disks were used in other pre-treatment measurements such as (1) surface characterization
using SEM coupled with energy dispersive X-ray spectroscopy (EDS) (detailed imaging procedure
can be found in Curtis, et al. [103]), (2) fluid-equilibrated scCO,-brine-rock captive-bubble contact
angle (6) measurements, (3) NMR T, porosity measurements, and (4) isothermal N, adsorption.
After initial measurements, the samples were exposed to static scCO,-enriched brine. The same
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measurements were conducted after exposure to assess changes in the samples due to scCO;-enriched
brine exposure.

Table 1. Mineralogy, porosity, TOC, and MICP measurements on the samples used in this study.

. Quartz + Feldspars o o ceo o o Mean Pore

Sample Lithology (Wt.%) Clays (wt.%) Carbonates (wt.%) Porosity (%) TOC (wt.%) Radius (nm)
S1 Sandstone 80 14 6 9.3 - 440
S2 Siltstone 47 40 13 7.1 - 7.7
S3 Mudstone 14 31 55 5.9 2.0 3.0

Note: mean pore radius determined with MICP measurement.

2.2. scCO;,-Enriched Brine Treatment

According to Gaus, et al. [80], most caprock reactivity induced by scCO, will occur close
to the boundary of the reservoir. For that reason, the samples used in this study were treated
in a scCO,-enriched brine condition in order to maintain maximum brine saturation and avoid
undesirable effects such as drying out by CO, [104,105]. The brine was synthetically formulated
using a 2.5 wt.% KCl solution (DIW). For the scCO,-enriched brine treatments, each sample was
exposed in individual reactors (Parr Instrument, Moline, IL, USA) that can operate in pressure
and temperature conditions up to 58 MPa and 350 °C, respectively. The reactors were cleaned
between each test with toluene, isopropanol, and acetone to avoid cross-contamination. To determine
the experimental conditions, a desirable injection depth of 2000 m was selected [106]. Assuming a
hydrostatic pressure gradient for brine of ~1.05 11\(/)%);1 and temperature gradient of ~24%, experimental
conditions of ~20.7 MPa and ~65 °C were determined. The exposure time selected was 21 days,
which, according to previous studies, is sufficient to observe geochemical reactions such as carbonate
dissolution/precipitation [92,94,95,98,99] and clay reactivity [60,94]. Note that given the mineral
reaction rates, quartz dissolution [69] and secondary feldspar alteration [80] are not expected to be
observed since they could take up to 180 days and 19 months to experimentally occur, respectively.
After selecting the exposure conditions, the samples were placed in the reactors inside an oven and
immersed in brine at a ~10:1 brine/rock volume ratio. Then, scCO, was slowly introduced into the
system using a piston pump (Teledyne ISCO, Lincoln, Dearborn, MI, USA) at a ~0.4 MPa/h pressure
gradient to avoid microfracturing of samples. Pressure and temperature were monitored during the
process. After exposure, the system was cooled and depressurized at the same gradient as injection
and the samples were sequentially used in further measurements.

2.3. scCO,—Brine—Rock Contact Angle Measurement

Several configurations have been used to measure the contact angle of scCO,-brine-rock
systems in subsurface conditions [64]. The captive-bubble technique was chosen (Figure 2) in
order to keep the brine sample saturated during the measurement and avoid possible drying out
if surrounded by a scCO, environment. The measurements were conducted using a drop shape
analyzer (DSA100, Kriiss GmbH, Hamburgh, Germany) coupled with an HPHT unit (Eurotechnica,
Bargteheide, Germany) with a maximum working pressure and cell temperature of 69 MPa and 200 °C,
respectively. Prior to the measurement, a brine-saturated sample was mounted on a custom-made,
chemically inert holder (PEEK) that slides through a known outside diameter needle (~1.587 mm)
that orients with the center of the sample. This orientation step allows the scCO, bubble to contact
the ion-milled surface of the sample, reducing the roughness impact on 6 and minimizing lateral
heterogeneity. Then, roughly 30 mL of brine was introduced into the system until it covered the top
surface of the sample. The unit was heated slowly up to 65 °C. ScCO, was injected from the top (gas
cap), allowing diffusion into the brine and maintaining a constant pressure of 20.7 MPa, which was
also monitored. After the fluid equilibration had taken place (~2 h), one scCO, bubble was carefully
extruded from the needle using a separate dosing unit. Image calibration was performed, and the
software (ADVANCE, version 1.10.0) recorded the static scCO,-brine-rock contact angle over time.
The exact same procedure was conducted on the samples after scCO,-brine-rock treatment.
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Figure 2. Schematic of the scCO,-brine-rock captive-bubble measurement including approximate
scale in centimeters. The brine surrounding the rock sample is enriched in scCO, diffusing downward
from the “gas-cap” at desired pressure and temperature conditions. After equilibration, one scCO,
bubble is carefully extruded from the needle (bottom), contacting the center of the ion-milled bottom
surface of the sample.

2.4. Pore Size Distribution Measurements

Porosity and pore size distribution measurements were conducted before and after scCO, treat-
ment. Pore throat size distributions (PTSDs) were obtained on clean and dried thin disk samples using
MICP measurements (AutoPore IV, Micromeritics, Norcross, GA, USA). The AutoPore IV mercury
porosimeter has a capability of 60,000 psi, which covers a nanopore throat radius of up to 1.5 nm [107].
For porosity, 12 MHz NMR T, measurements (GeoSpec II, Oxford Instruments, Abindgon, UK) were
conducted on 2.5 wt.% KCI brine-saturated disk samples. In the NMR measurements, three disks
were stacked in order to increase volume and enhance the signal-to-noise ratio (SNR). Echo spacing
of 200 us was selected for sample S1 (storage zone), while 100 ps was used in samples S2 and S3
(confining zone). Isothermal N, adsorption measurements (TriStar II, Micromeritics, Norcross, GA,
USA) were conducted on the confining zones (52 and S3) to assess changes in the nanopore structure.
For the N, adsorption measurements, each sample was crushed, homogenized, and sieved into
micrometer sizes (250-425 pm). N; adsorption pore size distributions were obtained with the density
functional theory (DFT) using a slit-shaped model. Specific surface areas were determined with the
Brunauer-Emmett-Teller (BET) method, fitting the adsorption data in the low relative pressure range
(0.5-0.35).

3. Results
3.1. Geochemical Alteration

Figure 3 shows the backscattered electron (BSE) images of the three samples obtained over the
same areas before and after scCO,-enriched brine treatment. Figure 3a—c represent the microstructure
before treatment of samples S1, 52, and S3, respectively. Images of the same areas for each sample
after treatment are sequentially shown in Figure 3d—f. Before treatment, sample S1 is composed
mainly of quartz grains and some clays (illite, chlorite, and kaolinite) filling the pore spaces. Sample
52 is covered by silicates, aluminosilicates, and minor carbonates. S3 is predominantly carbonate-rich,
including clays, minor silicates, and pyrite (white). After treatment, no geochemical reactivity is
observed on sample S1, except for salt precipitation. Conversely, sample S2 exhibits preferential
dissolution of carbonate minerals (highlighted in red), while the main silicate and aluminosilicate
framework remains preserved. Given the larger carbonate content of sample S3 (Table 1), it shows
significant surface alteration by dissolution of carbonates after treatment. It is observed that other
potentially reactive minerals such as clays and pyrite (white) are unaltered during this process.

Figure 4 shows BSE images on a strongly reacting area of the sample S3 before (Figure 4a) and
after (Figure 4b) treatment. In Figure 4c, the spatial elemental mapping before treatment obtained with
EDS shows predominantly calcite with minor amounts of silicate and dolomite. Figure 4d shows that,
after treatment, calcite is the only carbonate mineral dissolved, whereas dolomite remains unaltered.
XRF measurements performed before and after treatment at the surface of sample S3 indicate a
reduction in the relative content of calcium oxide (CaO) from 55 wt.% to 14 wt.%, respectively.
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400 pm
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4.1mm 1

Figure 3. Backscattered images (BSEs) of the same sample area before and after scCO;-enriched
brine treatment. (a—c) represent areas before treatment for samples S1, S2, and S3, respectively. Their
same areas after treatment are sequentially shown in (d—f). Sample S1 indicates no geochemical
reactivity aside from salt precipitation. Sample S2 shows preferential dissolution of carbonates
(highlighted in red), while the silicate/aluminosilicate framework remains preserved. Sample S3
reveals intense surface alteration by dissolution of carbonates, which was expected given their larger
initial carbonate content. Other potentially reactive minerals such as clays and pyrite were little
affected during the process.

Figure 4. BSE images before (a) and after (b) treatment on the same area of sample S3 showing strong
alteration due to carbonate dissolution. Note: in (b), the depicted image exhibits a slight displacement
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relative to (a), while the arrows serve to locate the same calcite grains. (c) spatial elemental mapping
with EDS before treatment, the area has predominantly calcite with minor amount of dolomite.
(d) after treatment, calcite appears as the only mineral dissolved, while dolomite remains unaltered.

3.2. S¢CO,—Brine—Rock Wettability

Figure 5 shows the summary of the captive-scCO, bubble-brine-rock contact angle measure-
ments conducted at the same experimental conditions (20.7 MPa, 65 °C) before and after scCO;-
enriched-brine treatment. Before treatment, contact angles of 42 + 1°, 37 £ 1°, and 35 + 2° are
observed for samples S1, S2, and S3, respectively. These contact angle values are comparable to ones
reported in the literature for sandstones, caprock, and source rocks at similar experimental conditions
(Figure 1) [49,55,58,66]. It can be observed that these rocks maintain their water-wettability even at
larger pressures up to ~20 MPa. After scCO,-enriched brine treatment, negligible changes in contact
angles are observed, despite the surface reactivity (primarily S3) shown in Figure 3. Trapping of
surface bubbles can also be noted on sample S3, which develops during the fluid-equilibration phase
and indicates that in-situ reactions could be taking place as the brine becomes saturated in scCO,.

2.5mm

S2: After treatment S3: After treatment
45 | _ 45 45
o o o
P rreehsimigs  O1| 3 S2 3 S3
% 40 & 40 % 40
< < KRB Rarviconnd, <
g 3 S 35 S 35 T Maip
g g g
U 30 Y 30 U 30
0 1000 2000 3000 0 1000 2000 3000 0 1000 2000 3000
Time (s) Time (s) Time (s)
® Before Treatment After Treatment

Figure 5. Summary of the scCO,-brine-rock captive-bubble contact angle measurements before
and after scCO; enriched brine treatment. The equilibrated contact angles remain unaltered despite
surface alteration (primarily S3). The samples maintain their water-wettability even at elevated
pressure (~20 MPa) and temperature (65 °C) conditions and after geochemical reactivity.

3.3. Pore Size Distribution

Pore size distribution alterations of the thin disk samples were assessed before and after scCO,-
enriched brine treatment with three different techniques. Figure 6 shows MICP incremental and
cumulative pore throat size distributions (PTSDs) of the samples before and after treatment. Figure 6a—c
represent the incremental curves for samples S1, S2, and S3, respectively. Their cumulative curves are
sequentially shown in Figure 6d—f. The PTSD for sample S1 (storage zone) indicates initial intrusion
in the 2-10 um pore throat size range followed by a main peak between 200 and 600 nm. Conversely,
the main peaks for the confining zone samples S2 and S3 are considerably lower, at around 6-10 nm
and 2—4 nm, respectively. After treatment, little alteration is observed in the PTSD of samples S1 and
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Figure 6. Pore throat size distributions (PTSDs) obtained with MICP before and after scCO,-enriched
brine treatment. The incremental curves for samples S1, S2, and S3 are shown in (a—c), respectively.
Their cumulative curves are sequentially represented in (d—f). Little alteration is observed in the
PTSD of the samples, aside from a small increase in amplitude in the 100-1000 nm range for sample
S3 followed by a drop in the 1-10 nm range.

Figure 7 shows NMR T, porosity distributions of the three samples before and after scCO;-
enriched-brine treatment. Figure 7a—c represent the incremental curves for samples S1, S2, and S3,
respectively. Their cumulative curves are sequentially shown in Figure 7d—f. Before treatment, sample
S1 (storage zone) shows a main peak around 100 ms T, relaxation, while the main peaks for the
confining samples S2 and S3 are in shorter T, times of ~1.1 ms and 0.8 ms, respectively. For the
confining zone samples, the second small peak above 100 ms represents brine trapped in the surface
irregularities of the samples. Nevertheless, the porosity distributions obtained with NMR indicate no
significant alteration in the three samples after treatment. Sample S3 exhibits a small inflection in the
spectrum after treatment around 1-20 ms, which does not impact the cumulative porosity within
this range.

Figure 8 displays Ny adsorption and desorption isotherms for confining zone samples S2 and
S3 before (Figure 8a) and after (Figure 8b) scCO,-enriched-brine treatment. These curves, along with
hysteresis loop analysis, yield insights into pore structure and connectivity in tight porous media,
such as shales [108-110]. Before treatment, both samples exhibited type IV isotherm characteristics
with a distinctive hysteresis loop, indicating capillary condensation in meso/macro-pores [111].
There is no limiting uptake at high relative pressures (p/p"), indicating an H3 hysteresis loop with
slit-shaped pores forming plate-like structures [112]. A wider hysteresis loop for sample S3 is also
observed, suggesting a more complex pore network. After treatment, isotherm shapes indicate
minimal changes in adsorption behavior. PSDs were extracted using the density functional theory
(DFT) with a slit-shaped model. Incremental pore volume curves of S2 (Figure 8c) and S3 (Figure 8d)
show a main peak in the mesopore region (2040 nm) and broader distribution for S3, with a larger
fine-mesopore volume (2-20 nm) than S2. The increase in fine mesopores for S3 results in a larger
BET surface area (Figure 8e). After treatment, no significant alterations in PSD or BET surface areas
are observed. Sample S3 exhibits a slight decrease in mesopore volume followed by a minor increase
in the fine-mesopore range, resulting in a slight decrease in surface area, but these differences are
small and do not significantly impact cumulative pore volumes in the nanopore range.
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Figure 7. NMR porosities as function of T, relaxation time before and after scCO,-enriched brine
treatment. The incremental curves for samples S1, 52, and S3 are shown in (a—c), respectively. Their
cumulative curves are sequentially represented in (d—f). Negligible alteration in the NMR porosity
distributions is observed, aside from a small inflection around 1-20 ms for sample S3, which does not
affect its cumulative porosity.
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Figure 8. Isothermal N, adsorption results for the confining zone samples S2 and S3 before and after
scCO,-enriched brine treatment. (a) Before treatment, both samples exhibit type IV isotherms with



Energies 2023, 16, 7333

11 of 17

distinctive hysteresis loops and larger adsorption for sample S3. (b) After treatment, isotherm shapes
remain stable, indicating minimal changes in adsorption behavior. (c) Incremental pore volume
curves for 52 show a main peak in the mesopore region (20-40 nm) and constant PSD after treatment.
(d) Incremental pore volume curves for S3 reveal a broader distribution, with a larger fine mesopore
volume (2-20 nm) compared to S2, and slight alteration in PSD. (e) The increase in fine mesopores for
S3 results in a larger BET surface area and slight alteration after treatment.

4. Discussion

Geochemical reactions arising from the dissolution of scCO, in brine have been experimentally
proven to impact the microstructure of storage zones [89-91] and confining zones [60,69,73,92-98]
even at short treatment times of typically few weeks. The impact on storage zones is commonly ob-
served by dynamic injection flooding of scCO;-enriched brine in limestone core samples. Significant
dissolution (wormholes) has been reported on the inlet of the core plugs, followed by a small amount
of precipitation in the far region. Although dynamic tests are important to evaluate geochemical
effects in high flow regions (i.e., around injection wells), the extent of reactivity is prolonged because
“fresh” reactant species (e.g., H*) are continuously fed in open flow systems. On the other hand,
geochemical alteration of confining zones is generally assessed by static scCO, treatments in closed
systems conducted on crushed (micrometer size) samples. Significant geochemical reactivity has
been reported by preferential dissolution (and precipitation) of carbonate minerals, which impact
pore size distributions. However, the ultra-low transport properties of nanoporous confining zones
imply concentration profiles of reactant species (e.g., H*) across the samples [113,114]. Such concen-
tration profiles favor surface reactivity and augment reactions on crushed samples due to their higher
specific surface areas as compared to core plugs. In addition, the brine/rock volume ratio and brine
composition selected in experiments can also impact reactivity [94,95,99]. When a large brine/rock
volume ratio or calcium-depleted brines are used in closed systems, a higher Ca?* uptake from calcite
dissolution is needed before the reaction ceases (pH~4.5-5). Nonetheless, reactive transport studies
show that geochemical reactions driven by diffusion in nanoporous confining zones are expected
to impact properties on the scale of hundreds to thousands of years [80]. A strategy to overcome
long experimental times is the combination of quantitative tools that can simultaneously resolve such
alterations at the surface level up to the nanometer, micrometer, and millimeter depth of invasion.

Here, the impact of geochemical reactions is quantified by both surface characterization and
three different PSD measurements conducted on thin disk samples. SEM/EDS images reveal surface
dissolution of calcite grains after treatment, while other potentially reactive minerals remain unaltered
(e.g., dolomite, clays, pyrite). Although surface reactivity occurred, little alteration is seen on the
PSDs obtained with MICP, NMR, and N, adsorption after treatment. Minor changes were consistently
observed in sample S3: MICP indicated a small amplitude increase in the 100-1000 nm range, followed
by an amplitude drop in the main peak at 1-10 nm; the NMR T, spectrum exhibited a small inflection
around 1-20 ms; and N adsorption showed a slight increase in the main peak at 20-40 nm followed
by small reduction at fine mesopores (1-20 nm). Combined with SEM/EDS data, it is understood
that the small changes in PSD of sample S3 could be indicative of the surface dissolution of calcite.
Potential precipitation below the surface that can cause a reduction in micropore volume is possible
due to a local increase in the concentration of CaZ* driven by surface dissolution (Equation (6)). Based
on this study’s experimental conditions, the geochemical reactivity on the confining zone samples
preferentially occurs at the surface and does not impact pore size distributions or porosities at a
core scale.

The alteration in surface mineralogy by calcite dissolution could change surface hydrophilicity
and impact the wettability and hence the trapping mechanisms in the scCO,-brine-rock system.
However, the fluid-equilibrated scCO,—brine-rock contact angles (6) reported here are little influenced
by the reactivity occurring at the surface. The rocks studied here maintain their water-wettability
at high-pressure conditions (~20 MPa) and even after moderate or strong surface reactivity. Calcite
dissolution in the forms of etching and pitting could locally increase the surface roughness (Figure 3f),
which has been found to decrease 8 in hydrophilic surfaces of pure minerals (e.g., quartz, calcite) [51,56].
In fine-grained heterogeneous surfaces such as confining zones, the large difference in scale between
the static scCO, bubble (millimeter size) and grain size (micrometer to nanometer) accounts for
small roughness changes due to dissolution that could impact the contact angle. It is also found
that using NMR to assess wettability alteration due to dissolution in nanoporous media [115,116]
is experimentally challenging because the geochemical reactivity shown here does not appear to
influence the surface relaxivity of the bulk rock (Figure 8).
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Pc,scCOZ:HZO =

YscCO»H,0 X €0805cC0O,:H,0

The microscopic displacement efficiency and primary trapping mechanisms during scCO,
storage are tied to capillary properties including interfacial tension (IFT), wettability, and pore size.
Miller, et al. [99] showed that the aqueous geochemistry of high-concentration analytes that could
impact the IFT remains fairly constant during scCO, treatment. Therefore, changes in brine ionic
concentration due to dissolution or precipitation of species are not expected to alter the scCO,—
brine-rock IFT. Regarding wettability, this work demonstrated that contact angles are barely affected
by induced geochemical reactions in scCO,-brine-rock systems. With the contact angles reported
here and knowledge of the scCO,-brine IFT at subsurface conditions, Hg-air capillary pressure
measurements can be converted to subsurface scCO,-brine conditions

(%) X cos(35°)

X 1—)c,Hg:air ~ X 1—)c,Hg:air ~ O'O7Pc,Hg:air (8)

YHg:air X CoseHgiair <%) X COS(130°)

assuming a scCO,-brine IFT for this work experimental conditions of 27 mN/m [23], 8 of the sample
S3 (35°), Hg—air 6 of 130°, and surface tension of 485 mN/m (laboratory conditions). Equation (8)
indicates that the scCO,-brine capillary pressure (Pc) at subsurface conditions for the confining zone
S3 is about ~14 times smaller than laboratory Hg-air Pc.

During the short-term experiments, the predominant geochemical reactions were directed
toward altering carbonate minerals, leaving the capillary properties of the quartz-rich sandstone
largely unaffected within the experimental duration. The sandstone exhibited minimal reactivity,
which aligns with findings in similar studies conducted over comparable timeframes and under
analogous experimental conditions [91,117-120]. It is conceivable that extended treatment periods
(0.5-1.5 years) might reveal some level of reactivity with quartz [69,104], although this is less likely to
substantially influence surface wettability, as suggested by the consistently unaltered contact angles
reported in this study.

Conversely, the main implication of such reactions for the capillary displacement of the confining
zone appears to be an increase in pore size at the surface due to calcite dissolution followed by possible
precipitation. The preferential reactivity of confining zones toward carbonate minerals agrees with
literature experiments on crushed samples conducted in similar timescales [92,94,95,98,99]. Although
these experiments also reported alterations in pore size distributions (PSDs) of crushed samples, we
observed that the PSDs of intact samples obtained with three different methods remained unaltered. It
is understood that the propagation of the geochemical reactions is controlled not only by mineralogy
but experimental conditions (dynamic vs static exposure, water/rock brine ratio) as well as surface
area and matrix transport properties. Therefore, short-term geochemical reactions do not seem to
significantly impact the capillary displacement in quartz-rich storage reservoirs or primary capillary
trapping mechanisms in either siltstone or mudstone confining zones in the condition studied.

5. Conclusions

In this experimental study, sandstone (storage zone), clay-rich siltstone, and carbonate-rich
mudstone (confining zones) thin disk samples were treated under a scCO,-enriched brine condition
(10:1 brine/rock volume ratio) for 21 days at 20.7 MPa and 65 °C using a 2.5 wt.% KCl brine
solution. Before and after treatment, geochemical alterations were assessed at the surface level using
scanning electron microscopy (SEM) coupled with energy-dispersive X-ray spectroscopy (EDS) and
X-ray fluorescence (XRF). Fluid-equilibrated scCO,-brine-rock contact angle measurements were
conducted to monitor wettability changes using the captive-bubble method. Pore size alterations
were determined using mercury injection capillary pressure (MICP), nuclear magnetic resonance
(NMR), and isothermal N, adsorption. The main conclusions of this work are as follows:

e  Carbonate minerals preferentially react at the surface level in the form of calcite dissolution,
while other potentially reactive minerals such as feldspars, clays, dolomite, and pyrite remain
preserved. A reduction in the relative content of calcium oxide (CaO) from 55 wt.% to 14 wt.%
is observed at the surface.

e  Before treatment, fluid-equilibrated scCO,-brine-rock contact angles are comparable with the
literature values for storage and confining zones. Contact angles of 42 + 1°, 37 &+ 1°, and
35 + 2° were determined for sandstone, siltstone, and mudstone, respectively. After treatment,
negligible alteration in the contact angles is observed, despite surface dissolution in the forms of
etching and pitting for the carbonate-rich mudstone (S3). The rocks studied here maintain their
water-wettability after geochemical reactivity and at elevated pressures (~20 MPa).

e  Although reactions are observed at the surface, the pore size distributions (PSDs) of the thin
disk samples obtained with three different methods (MICP, NMR, and N, adsorption) show
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little alteration. Minor changes are consistently observed for the carbonate-rich mudstone
(S3). Coupled with SEM/EDS images, these changes could be indicative of surface dissolution
of calcite followed by possible precipitation. Overall, the short-term geochemical reactions
observed here did not significantly impact the cumulative porosities or PSD of the three samples.

Our research demonstrates that short-term geochemical reactions do not substantially impact
the capillary displacement mechanism in the studied quartz-rich sandstone storage reservoirs and silt-
stone/mudstone confining zones. These findings contribute valuable insights into the behavior of scCO,—
brine-rock systems and highlight the preservation of rock properties under the conditions examined.
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