Asphaltenes from Ethylene Tar as a Potential Raw Material to Obtain High Value-Added Products
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Oxidative Modifications of Asphaltenes
2.2.1. Oxidation of Asphaltenes with (NH4)2S2O8/H2SO4
2.2.2. Oxidation of Asphaltenes with (NH4)2S2O8/CH3COOH
2.2.3. Oxidation of Asphaltenes with H2O2/CH3COOH
2.2.4. Oxidation of Asphaltenes with Na2CO3×1.5 H2O2
2.3. Methods
3. Results and Discussion
3.1. Characteristics of Oxidizing Agents
3.2. Oxidative Modifications of Asphaltenes
3.2.1. Oxidation of Asphaltenes with (NH4)2S2O8/H2SO4 and (NH4)2S2O8/CH3COOH
3.2.2. Oxidation of Asphaltenes with H2O2/CH3COOH
3.2.3. Oxidation of Asphaltenes with H2O2/Na2CO3
3.3. Application of Modified Asphaltenes
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Guo, J.; Lu, S.; Xie, J.; Chen, P.; Li, B.; Deng, Z.; Li, X. Preparation of mesophase pitch with domain textures by molecular regulation of ethylene tar pitch for boosting the performance of its carbon materials. J. Anal. Appl. Pyrolysis 2023, 170, 105932. [Google Scholar] [CrossRef]
- Mukhamedzyanova, A.A.; Gimaev, R.N.; Khaibullin, A.A.; Telyashev, E.G. Research of high-quality descriptions of heavy pyrolysis tar. Bull. Bashkir Univ. 2012, 17, 909–915. [Google Scholar]
- Borisova, Y.Y.; Mironov, N.A.; Yakubova, S.G.; Borisov, D.N.; Kosachev, I.P.; Yakubov, M.R. Application of Ethylene Tar as an Additive in Visbreaking of Petroleum Vacuum Residue. Energy Fuels 2021, 35, 15684–15694. [Google Scholar] [CrossRef]
- Bikbaeva, V.; Nesterenko, N.; Konnov, S.; Nguyen, T.S.; Gilson, J.P.; Valtchev, V. A low carbon route to ethylene: Ethane oxidative dehydrogenation with CO2 on embryonic zeolite supported Mo-carbide catalyst. Appl. Catal. B Environ. 2023, 320, 122011. [Google Scholar] [CrossRef]
- Ge, C.Z.; Sun, Z.L.; Yang, H.X.; Long, D.H.; Qiao, W.M.; Ling, L.C. Preparation and characterization of high softening point and homogeneous isotropic pitches produced from distilled ethylene tar by a novel bromination method. New Carbon Mater. 2018, 33, 71–81. [Google Scholar] [CrossRef]
- Liu, J.; Chen, X.; Xie, Q.; Liang, D. Controllable synthesis of isotropic pitch precursor for general purpose carbon fiber using waste ethylene tar via bromination–dehydrobromination. J. Clean. Prod. 2020, 271, 122498. [Google Scholar] [CrossRef]
- Shi, K.; Zhang, X.X.; Wu, W.; Yang, J.X.; Liu, H.B.; Li, X.K. Effect of the oxygen content and the functionality of spinnable pitches derived from ethylene tar by distillation on the mechanical properties of carbon fibers. New Carbon Mater. 2019, 34, 84–94. [Google Scholar] [CrossRef]
- Yu, Y.; Wang, F.; Biney, B.W.; Li, K.; Jiao, S.; Chen, K.; Guo, A. Co-carbonization of ethylene tar and fluid catalytic cracking decant oil: Development of high-quality needle coke feedstock. Fuel 2022, 322, 124170. [Google Scholar] [CrossRef]
- Liu, J.; Shimanoe, H.; Nakabayashi, K.; Miyawaki, J.; Ko, S.; Jeon, Y.P.; Yoon, S.H. Preparation of isotropic pitch precursor for pitch-based carbon fiber through the co-carbonization of ethylene bottom oil and polyvinyl chloride. J. Ind. Eng. Chem. 2018, 67, 276–283. [Google Scholar] [CrossRef]
- Yu, Y.Y.; Qiang, W.E.I.; Feng, W.A.N.G.; Jiao, S.H.; Qiu, Z.P.; Wang, L.L.; Guo, A.J. Carbonization characteristics of ethylene tar narrow fractions. J. Fuel Chem. Technol. 2022, 50, 376–384. [Google Scholar] [CrossRef]
- Cheng, X.; Zha, Q.; Zhong, J.; Yang, X. Needle coke formation derived from co-carbonization of ethylene tar pitch and polystyrene. Fuel 2009, 88, 2188–2192. [Google Scholar] [CrossRef]
- Gabdulkhakov, R.R.; Rudko, V.A.; Pyagay, I.N. Methods for modifying needle coke raw materials by introducing additives of various origin. Fuel 2022, 310, 122265. [Google Scholar] [CrossRef]
- Siddiqui, M.N.; Pervez, S.; Karbhal, I.; Dugga, P.; Rajendran, S.; Pervez, Y.F. Using functionalized asphaltenes as effective adsorbents for the removal of chromium and lead metal ions from aqueous solution. Environ. Res. 2022, 204, 112361. [Google Scholar] [CrossRef]
- Foss, L.E.; Shabalin, K.V.; Musin, L.I.; Nagornova, O.A.; Salikhov, R.Z.; Borisov, D.N.; Yakubov, M.R. Synthesis of asphaltene-based strongly acidic sulfonated cation exchangers and determination of their catalytic properties in the 2,2-dimethyl-1,3-dioxolane synthesis reaction. Pet. Chem. 2020, 60, 709–715. [Google Scholar] [CrossRef]
- Eshraghian, A.; Yu, L.; Achari, G.; Sundararaj, U. Development of an effective asphaltene-derived adsorbent for wastewater treatment: Characterization and methyl orange removal study. J. Environ. Chem. Eng. 2023, 11, 109221. [Google Scholar] [CrossRef]
- Plata-Gryl, M.; Momotko, M.; Makowiec, S.; Boczkaj, G. Characterization of diatomaceous earth coated with nitrated asphaltenes as superior adsorbent for removal of VOCs from gas phase in fixed bed column. Chem. Eng. J. 2022, 427, 130653. [Google Scholar] [CrossRef]
- Plata-Gryl, M.; Momotko, M.; Makowiec, S.; Boczkaj, G. Application of cyanated asphaltenes in gas-phase adsorption processes for removal of volatile organic compounds. Chem. Pap. 2020, 74, 995–1008. [Google Scholar] [CrossRef]
- Jung, H.; Bielawski, C.W. Asphaltene oxide promotes a broad range of synthetic transformations. Commun. Chem. 2019, 2, 113. [Google Scholar] [CrossRef]
- Samoilov, V.; Kniazeva, M.; Kuchinskaya, T.; Foss, L.; Borisov, D.; Yakubov, M.; Maximov, A. Non-Porous Sulfonic Acid Catalysts Derived from Vacuum Residue Asphaltenes for Glycerol Valorization via Ketalization with Acetone. Catalysts 2021, 11, 776. [Google Scholar] [CrossRef]
- De Crisci, A.G.; Gieleciak, R.; Mobarok, M.H.; Ali, M.; Ngo, T.D.; Goswami, K.; Chen, J. Producing asphaltene fibres from bitumen-derived asphaltenes for carbon fibre development: Part one–Electrospinning. Can. J. Chem. Eng. 2022, 101, 2633–2645. [Google Scholar] [CrossRef]
- Saad, S.; Zeraati, A.S.; Roy, S.; Saadi, M.A.S.R.; Radović, J.R.; Rajeev, A.; Kibria, M.G. Transformation of petroleum asphaltenes to carbon fibers. Carbon 2022, 190, 92–103. [Google Scholar] [CrossRef]
- Chacón-Patiño, M.L.; Neumann, A.; Rüger, C.P.; Bomben, P.G.; Friederici, L.; Zimmermann, R.; Gray, M.R. Chemistry and Properties of Carbon Fiber Feedstocks from Bitumen Asphaltenes. Energy Fuels 2023, 37, 5341–5360. [Google Scholar] [CrossRef]
- AlHumaidan, F.S.; Rana, M.S.; Vinoba, M.; Rajasekaran, N.; AlHenyyan, H.Y.; Ali, A.A. Synthesizing few-layer carbon materials from asphaltene by thermal treatment. Diam. Relat. Mater. 2022, 129, 109316. [Google Scholar] [CrossRef]
- Zuo, P.; Leistenschneider, D.; Kim, Y.; Abedi, Z.; Ivey, D.G.; Zhang, X.; Chen, W. Asphaltene thermal treatment and optimization of oxidation conditions of low-cost asphaltene-derived carbon fibers. J. Ind. Eng. Chem. 2021, 104, 427–436. [Google Scholar] [CrossRef]
- Qin, F.; Jiang, W.; Ni, G.; Wang, J.; Zuo, P.; Qu, S.; Shen, W. From coal-heavy oil co-refining residue to asphaltene-based functional carbon materials. ACS Sustain. Chem. Eng. 2019, 7, 4523–4531. [Google Scholar] [CrossRef]
- Glova, A.D.; Nazarychev, V.M.; Larin, S.V.; Lyulin, A.V.; Lyulin, S.V.; Gurtovenko, A.A. Asphaltenes as novel thermal conductivity enhancers for liquid paraffin: Insight from in silico modeling. J. Mol. Liq. 2022, 346, 117112. [Google Scholar] [CrossRef]
- Borzdun, N.I.; Ramazanov, R.R.; Glova, A.D.; Larin, S.V.; Lyulin, S.V. Model carboxyl-containing asphaltenes as potential acceptor materials for bulk heterojunction solar cells. Energy Fuels 2021, 35, 8423–8429. [Google Scholar] [CrossRef]
- Abujnah, R.E.; Sharif, H.; Torres, B.; Castillo, K.; Gupta, V.; Chianelli, R.R. Asphaltene as light harvesting material in dye-sensitized solar cell: Resurrection of ancient leaves. J. Environ. Anal. Toxicol. 2016, 6, 1000345. [Google Scholar] [CrossRef]
- Enayat, S.; Tran, M.K.; Salpekar, D.; Kabbani, M.A.; Babu, G.; Ajayan, P.M.; Vargas, F.M. From crude oil production nuisance to promising energy storage material: Development of high-performance asphaltene-derived supercapacitors. Fuel 2020, 263, 116641. [Google Scholar] [CrossRef]
- Kamkar, M.; Natale, G. A review on novel applications of asphaltenes: A valuable waste. Fuel 2021, 285, 119272. [Google Scholar] [CrossRef]
- Yakubov, M.R.; Gryaznov, P.I.; Yakubova, S.G.; Sinyashin, K.O.; Milordov, D.V.; Mironov, N.A. Composition and sorption properties of asphaltene sulfonates. Pet. Sci. Technol. 2017, 35, 2152–2157. [Google Scholar] [CrossRef]
- Shabalin, K.V.; Musin, L.I.; Foss, L.E.; Nagornova, O.A.; Morozov, V.I.; Borisov, D.N.; Yakubov, M.R. Preparation of Redox Ion-Exchange Materials Based on Petroleum Asphaltenes. Pet. Chem. 2022, 62, 222–228. [Google Scholar] [CrossRef]
- Ignatenko, V.Y.; Kostina, Y.V.; Antonov, S.V.; Ilyin, S.O. Oxidative functionalization of asphaltenes from heavy crude oil. Russ. J. Appl. Chem. 2019, 91, 1835–1840. [Google Scholar] [CrossRef]
- Shabalin, K.V.; Foss, L.E.; Borisova, Y.Y.; Borisov, D.N.; Yakubova, S.G.; Yakubov, M.R. Study of the heavy oil asphaltenes oxidation products composition using EPR and IR spectroscopy. Pet. Sci. Technol. 2022, 38, 992–997. [Google Scholar] [CrossRef]
- Choi, S.; Byun, D.H.; Lee, K.; Kim, J.D.; Nho, N.S. Asphaltene precipitation with partially oxidized asphaltene from water/heavy crude oil emulsion. J. Petrol. Sci. Eng. 2016, 146, 21–29. [Google Scholar] [CrossRef]
- Siddiqui, M.N. Alkylation and oxidation reactions of Arabian asphaltenes. Fuel 2003, 82, 1323–1329. [Google Scholar] [CrossRef]
- Yang, H.; Yang, H.; Yan, X. Low-Temperature Oxidation of Heavy Oil Asphaltene with and without Catalyst. Molecules 2022, 27, 7075. [Google Scholar] [CrossRef]
- Liao, Z.; Geng, A. Characterization of nC7-soluble fractions of the products from mild oxidation of asphaltenes. Org. Geochem. 2002, 33, 1477–1486. [Google Scholar] [CrossRef]
- Zhao, J.; Liao, Z.; Zhang, L.; Creux, P.; Yang, C.; Chrostowska, A.; Graciaa, A. Comparative studies on compounds occluded inside asphaltenes hierarchically released by increasing amounts of H2O2/CH3COOH. Appl. Geochem. 2010, 25, 1330–1338. [Google Scholar] [CrossRef]
- Yakubov, M.R.; Yakubova, S.G.; Borisov, D.N.; Kosachev, I.P.; Gryaznov, P.I.; Usmanova, G.S.; Romanov, G.V. Composition and Properties of Oxidation Products of Heavy Oil Resid Asphaltenes. Chem. Technol. Fuels Oils 2018, 51, 222–230. [Google Scholar] [CrossRef]
- Yu, S.; Gu, X.; Lu, S.; Xue, Y.; Zhang, X.; Xu, M.; Sui, Q. Degradation of phenanthrene in aqueous solution by a persulfate/percarbonate system activated with CA chelated-Fe (II). Chem. Eng. J. 2018, 333, 122–131. [Google Scholar] [CrossRef]
- Liu, X.; He, S.; Yang, Y.; Yao, B.; Tang, Y.; Luo, L.; Zhou, Y. A review on percarbonate-based advanced oxidation processes for remediation of organic compounds in water. Environ. Res. 2021, 200, 11137. [Google Scholar] [CrossRef]
- Cavalcanti, J.V.F.L.; Fraga, T.J.M.; Leite, M.D.A.L.; e Silva, D.F.D.S.; de Lima, V.F.; Schuler, A.R.P.; da Motta Sobrinho, M.A. In-depth investigation of Sodium percarbonate as oxidant of PAHs from soil contaminated with diesel oil. Environ. Pollut. 2021, 268, 115832. [Google Scholar] [CrossRef]
- Miao, Z.; Gu, X.; Lu, S.; Dionysiou, D.D.; Al-Abed, S.R.; Zang, X.; Danish, M. Mechanism of PCE oxidation by percarbonate in a chelated Fe (II)-based catalyzed system. Chem. Eng. J. 2015, 275, 53–62. [Google Scholar] [CrossRef]
- Devi, P.; Das, U.; Dalai, A.K. In-situ chemical oxidation: Principle and applications of peroxide and persulfate treatments in wastewater systems. Sci. Total Environ. 2016, 571, 643–657. [Google Scholar] [CrossRef]
- Wang, B.; Wang, Y. A comprehensive review on persulfate activation treatment of wastewater. Sci. Total Environ. 2022, 831, 154906. [Google Scholar] [CrossRef]
- Ania, C.O.; Parra, J.B.; Pis, J.J. Influence of oxygen-containing functional groups on active carbon adsorption of selected organic compounds. Fuel Process. Technol. 2002, 79, 265–271. [Google Scholar] [CrossRef]
- Hotová, G.; Slovák, V. Determination of the surface oxidation degree of the carbonaceous materials by quantitative TG-MS analysis. Anal. Chem. 2017, 89, 1710–1715. [Google Scholar] [CrossRef]
- Fang, R.; Huang, H.; Huang, W.; Ji, J.; Feng, Q.; Shu, Y.; Xie, R. Influence of peracetic acid modification on the physicochemical properties of activated carbon and its performance in the ozone-catalytic oxidation of gaseous benzene. Appl. Surf. Sci. 2017, 420, 905–910. [Google Scholar] [CrossRef]
- Gould, K.A. Oxidative demetallization of petroleum asphaltenes and residua. Fuel 1980, 59, 733–736. [Google Scholar] [CrossRef]
- Matthew, J. Surface Analysis by Auger and X-ray Photoelectron Spectroscopy; Briggs, D., Grant, J.T., Eds.; IMPublications: Chichester, UK; SurfaceSpectra: Manchester, UK, 2003; p. 900. ISBN 1-901019-04-7. [Google Scholar]
- Guzmán, H.J.; Isquierdo, F.; Carbognani, L.; Vitale, G.; Scott, C.E.; Pereira-Almao, P. X-ray photoelectron spectroscopy analysis of hydrotreated athabasca asphaltenes. Energy Fuels 2017, 31, 10706–10717. [Google Scholar] [CrossRef]
- Philippe, B.; Fydrych, P.; Cagniant, D. The characterization of nitrogen–enriched activated carbons by IR, XPS and LSER methods. Carbon 2002, 40, 1521–1531. [Google Scholar] [CrossRef]
- Beamson, G.; Briggs, D. (Eds.) High Resolution XPS of Organic Polymers: The Scienta ESCA300 Database; John Wiley: Chichester, UK, 1992. [Google Scholar]
- Freites Aguilera, A.; Hämäläinen, R.; Eränen, K.; Tolvanen, P.; Salmi, T. Prilezhaev epoxidation of oleic acid in the presence and absence of ultrasound irradiation. J. Chem. Technol. Biotechnol. 2021, 96, 1874–1881. [Google Scholar] [CrossRef]
- Slavgorodskaya, O.I.; Bondaletov, V.G.; Fiterer, E.P.; Ogorodnikov, V.D. Preparation of epoxidized petroleum-polymer resins according to the Prilezhaev Mode. Polzunovskiy Vestn. 2013, 1, 186–189. (In Russian) [Google Scholar]
- Schreiber, K.C. Infrared spectra of sulfones and related compounds. Anal. Chem. 1949, 21, 1168–1172. [Google Scholar] [CrossRef]
- Zhang, Y.; Metz, J.N.; Gross, A.S.; Siskin, M. Unexpected Structural Effects on the Onset of Thermal Reactions of Aromatic Hydrocarbons. Energy Fuels 2023, 37, 5792–5804. [Google Scholar] [CrossRef]
- Jana, A.; Kearney, L.T.; Naskar, A.K.; Grossman, J.C.; Ferralis, N. Effect of Methyl Groups on Formation of Ordered or Layered Graphitic Materials from Aromatic Molecules. Small 2023, 19, 2302985. [Google Scholar] [CrossRef]
- Shevchenko, L.L. Infrared spectra of salts and complexes of carboxylic acids and some of their derivatives. Russ. Chem. Rev. 1963, 32, 201–207. [Google Scholar] [CrossRef]
- Tomiyama, Y.; Takeshita, T.; Mori, J.F.; Kanaly, R.A. Functionalization of the model asphaltene 1-dodecylnaphthalene by Pseudomonas aeruginosa KK6 through subterminal metabolism. J. Pet. Sci. Eng. 2021, 205, 108870. [Google Scholar] [CrossRef]
- Maeda, A.H.; Nishi, S.; Hatada, Y.; Ohta, Y.; Misaka, K.; Kunihiro, M.; Kanaly, R.A. Chemical and genomic analyses of polycyclic aromatic hydrocarbon biodegradation in Sphingobium barthaii KK22 reveals divergent pathways in soil sphingomonads. Int. Biodeterior. Biodegrad. 2020, 151, 104993. [Google Scholar] [CrossRef]
- Izawa, M.; Sakai, M.; Mori, J.F.; Kanaly, R.A. Cometabolic benzo [a] pyrene biotransformation by Sphingobium barthaii KK22 proceeds through the kata-annelated ring and 1-pyrenecarboxylic acid to downstream products. J. Hazard. Mater. Adv. 2021, 4, 100018. [Google Scholar] [CrossRef]
- Hernández, M.S.; Coll, D.S.; Silva, P.J. Temperature dependence of the electron paramagnetic resonance spectrum of asphaltenes from Venezuelan crude oils and their vacuum residues. Energy Fuels 2019, 33, 990–997. [Google Scholar] [CrossRef]
- Montanari, L.; Clericuzio, M.; Del Piero, G.; Scotti, R. Asphaltene radicals and their interaction with molecular oxygen: An EPR probe of their molecular characteristics and tendency to aggregate. Appl. Magn. Reson. 1998, 14, 81–100. [Google Scholar] [CrossRef]
- Konwar, L.J.; Mäki-Arvela, P.; Mikkola, J.P. SO3H-containing functional carbon materials: Synthesis, structure, and acid catalysis. Chem. Rev. 2019, 119, 11576–11630. [Google Scholar] [CrossRef]
- Zeng, D.; Liu, S.; Gong, W.; Wang, G.; Qiu, J.; Tian, Y. Acid properties of solid acid from petroleum coke by chemical activation and sulfonation. Catal. Commun. 2013, 40, 5–8. [Google Scholar] [CrossRef]
- Foss, L.E.; Shabalin, K.V.; Yakubov, M.R.; Borisov, D.N. Kinetic Regularities of the Kabachnik–Fields Reaction under Catalysis by Sulfonic Cation Exchangers Based on Petroleum Asphaltenes. Kinet. Catal. 2022, 63, 593–598. [Google Scholar] [CrossRef]
- Moradkhani, R.; Hosseini-Dastgerdi, Z.; Sirousazar, M. High-density polyethylene/asphaltene composites: Thermal, mechanical and morphological properties. Polym. Polym. Compos. 2021, 29, 1528–1533. [Google Scholar] [CrossRef]
- Ignatenko, V.Y.; Kostyuk, A.V.; Kostina, J.V.; Bakhtin, D.S.; Makarova, V.V.; Antonov, S.V.; Ilyin, S.O. Heavy crude oil asphaltenes as a nanofiller for epoxy resin. Polym. Eng. Sci. 2020, 60, 1530–1545. [Google Scholar] [CrossRef]
- Eshraghian, A.; Kamkar, M.; Sundararaj, U. Asphaltene/polymer composites: Morphology, compatibility, and rheological properties. Can. J. Chem. Eng. 2023, 101, 1421–1439. [Google Scholar] [CrossRef]
Samples | Contents, wt. % | ||||||||
---|---|---|---|---|---|---|---|---|---|
XPS Analysis | CHNS Analysis | ||||||||
C | N | O | S | C | H | N | S | O | |
ET-A | 99.3 | not | 0.7 | not | 92.18 | 6.51 | not | not | 1.31 |
AP/SA | 71.6 | 1.1 | 23.3 | 4.0 | 51.86 | 4.91 | 1.58 | 6.42 | 35.23 |
AP/AA | 96.5 | not | 3.5 | not | 83.78 | 6.09 | not | 0.69 | 9.44 |
Samples | Contents, wt. % | ||||||||
---|---|---|---|---|---|---|---|---|---|
XPS Analysis | CHNS Analysis | ||||||||
C | N | O | S | C | H | N | S | O | |
ET-A | 99.3 | not | 0.7 | not | 92.18 | 6.51 | not | not | 1.31 |
HP/AA (4/10) | 93.7 | not | 5.3 | not | 85.99 | 6.59 | not | 0.81 | 6.61 |
HP/AA (8/10) | 94.7 | not | 5.3 | not | 85.79 | 6.69 | not | 0.61 | 6.91 |
HP/AA (25/20) | 94.8 | not | 5.2 | not | 86.14 | 6.67 | not | not | 7.19 |
Samples | Intensity of the Band Relative to the Intensity of the C=C Aromatic Band (1600 cm−1) | ||
---|---|---|---|
C=O (1737 cm−1) | C–O (1232 cm−1) | C–O (1034 cm−1) | |
HP/AA (4/10) | 0.76 | 0.81 | 0.58 |
HP/AA (8/10) | 0.93 | 1.14 | 0.80 |
HP/AA (25/20) | 1.08 | 1.39 | 0.90 |
Samples | Contents, wt. % | ||||||||
---|---|---|---|---|---|---|---|---|---|
XPS Analysis | CHNS Analysis | ||||||||
C | O | S | Na | C | H | N | S | O | |
ET-A | 99.3 | 0.7 | not | not | 92.18 | 6.51 | not | not | 1.31 |
SP-1 | - | - | - | - | 88.50 | 6.44 | not | not | 5.06 |
SP-2 | 88.3 | 9.3 | not | 1.5 | 71.96 | 5.17 | not | not | 22.87 |
SP-3 | - | - | - | - | 70.28 | 4.25 | not | not | 25.47 |
SP-4 | - | - | - | - | 52.51 | 3.64 | not | not | 43.85 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Borisova, Y.Y.; Minzagirova, A.M.; Shabalin, K.V.; Morozov, V.I.; Borisov, D.N.; Yakubov, M.R. Asphaltenes from Ethylene Tar as a Potential Raw Material to Obtain High Value-Added Products. Energies 2023, 16, 7376. https://doi.org/10.3390/en16217376
Borisova YY, Minzagirova AM, Shabalin KV, Morozov VI, Borisov DN, Yakubov MR. Asphaltenes from Ethylene Tar as a Potential Raw Material to Obtain High Value-Added Products. Energies. 2023; 16(21):7376. https://doi.org/10.3390/en16217376
Chicago/Turabian StyleBorisova, Yulia Yu., Alsu M. Minzagirova, Konstantin V. Shabalin, Vladimir I. Morozov, Dmitry N. Borisov, and Makhmut R. Yakubov. 2023. "Asphaltenes from Ethylene Tar as a Potential Raw Material to Obtain High Value-Added Products" Energies 16, no. 21: 7376. https://doi.org/10.3390/en16217376
APA StyleBorisova, Y. Y., Minzagirova, A. M., Shabalin, K. V., Morozov, V. I., Borisov, D. N., & Yakubov, M. R. (2023). Asphaltenes from Ethylene Tar as a Potential Raw Material to Obtain High Value-Added Products. Energies, 16(21), 7376. https://doi.org/10.3390/en16217376