Performance and Energy Utilization Efficiency of an Expanded Granular Sludge Bed Reactor in the Treatment of Cassava Alcohol Wastewater
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Equipment
2.2. Experimental Materials
2.2.1. Raw Materials
2.2.2. Inoculum
2.3. Experimental Methods
2.4. Analysis Methods
2.4.1. Gas Production
2.4.2. Methane Content
2.4.3. COD Content
2.4.4. VFAs
2.4.5. pH
2.5. Caculation
2.5.1. Calculation of Conversion Efficiency of Hydrolysis, Acidogenesis, Acetogenesis, and Methanogenesis
2.5.2. Energy Utilization Characteristics
3. Results and Discussion
3.1. Operation Characteristics of CAW
3.1.1. COD Removal Efficiency Analysis
3.1.2. Analysis of Methane Production
3.1.3. COD Balance
3.1.4. VFAs and pH Analysis
3.2. Efficiency of Four-Stage Anaerobic Digestion
3.3. Analysis of Energy Utilization Characteristics
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- De Man, A.W.A.; Grin, P.C.; Roersma, R.E.; Grolle, K.C.F.; Lettinga, G. Anaerobic Treatment of Municipal Wastewater at Low Temperatures. In Proceedings of the EWPCA Water Treatment Conference Anaerobic Treatment, a Grown-Up Technology, Amsterdam, The Netherlands, 15–19 September 1986; pp. 451–466. [Google Scholar]
- Lettinga, G.; Field, J.; Van Lier, J.; Zeeman, G.; Hulshoff Pol, L.W. Advanced Anaerobic Wastewater Treatment in the near Future. Water Sci. Technol. 1997, 35, 5–12. [Google Scholar] [CrossRef]
- Cruz-Salomón, A.; Ríos-Valdovinos, E.; Pola-Albores, F.; Lagunas-Rivera, S.; Meza-Gordillo, R.; Ruíz-Valdiviezo, V.M.; Cruz-Salomón, K.C. Expanded Granular Sludge Bed Bioreactor in Wastewater Treatment. Glob. J. Environ. Sci. Manag. 2019, 5, 119–138. [Google Scholar]
- Liu, J.Y.; Bian, H.D.; Cao, Y.L.; Zhong, J.P.; Hu, J.; Liu, Q.; Qian, G.R.; Liu, F.; Tai, J. Quick Start-up of EGSB Reactor Treating Fresh Leachate of Municipal Solid Waste. J. Shanghai Univ. 2011, 15, 212–217. [Google Scholar] [CrossRef]
- Cruz-Salomón, A.; Ríos-Valdovinos, E.; Pola-Albores, F.; Lagunas-Rivera, S.; Cruz-Rodríguez, R.I.; Cruz-Salomón, K.D.C.; Hernández-Méndez, J.M.E.; Domínguez-Espinosa, M.E. Treatment of Cheese Whey Wastewater Using an Expanded Granular Sludge Bed (EGSB) Bioreactor with Biomethane Production. Processes 2020, 8, 931. [Google Scholar] [CrossRef]
- Lu, Q.; Jeong, B.G.; Lai, S.; Yan, Z.; Xiao, X.; Jiang, W. Performance Comparison of EGSB and IC Reactors for Treating High-Salt Fatty Acid Organic Production Wastewater. Processes 2022, 10, 1295. [Google Scholar] [CrossRef]
- Yan, H.H.; Han, L.; Yin, Q.; Guo, X.Y.; Nian, Y.G. Corn Starch Processing Wastewater Treated by a Full-Scale Expanded Granular Sludge Bed Reactor and Comprehensive Analysis of Microbial Community at Low and High Organic Loading Rate. In IOP Conference Series: Earth and Environmental Science, Proceedings of the 2020 6th International Conference on Advances in Environment Research, Sapporo, Japan, 26–28 August 2020; IOP Publishing: Bristol, UK, 2021; Volume 776. [Google Scholar]
- Sheldon, M.S.; Erdogan, I.G. Multi-Stage EGSB/MBR Treatment of Soft Drink Industry Wastewater. Chem. Eng. J. 2016, 285, 368–377. [Google Scholar] [CrossRef]
- Xu, H.; Liu, Y.; Gao, Y.; Li, F.; Yang, B.; Wang, M.; Ma, C.; Tian, Q.; Song, X.; Sand, W. Granulation Process in an Expanded Granular Sludge Blanket (EGSB) Reactor for Domestic Sewage Treatment: Impact of Extracellular Polymeric Substances Compositions and Evolution of Microbial Population. Bioresour. Technol. 2018, 269, 153–161. [Google Scholar] [CrossRef] [PubMed]
- Mills, S.; Yen Nguyen, T.P.; Ijaz, U.Z.; Lens, P.N.L. Process Stability in Expanded Granular Sludge Bed Bioreactors Enhances Resistance to Organic Load Shocks. J. Environ. Manag. 2023, 342, 118271. [Google Scholar] [CrossRef]
- Nabi, M.; Liang, J.; Zhang, P.; Wu, Y.; Fu, C.; Wang, S.; Ye, J.; Gao, D.; Shah, F.A.; Dai, J. Anaerobic Digestion of Sewage Sludge Pretreated by High Pressure Homogenization Using Expanded Granular Sludge Blanket Reactor: Feasibility, Operation Optimization and Microbial Community. J. Environ. Chem. Eng. 2021, 9, 104720. [Google Scholar] [CrossRef]
- Liu, Y.; Lv, Y.; Cheng, H.; Zou, L.; Li, Y.Y.; Liu, J. High-Efficiency Anaerobic Co-Digestion of Food Waste and Mature Leachate Using Expanded Granular Sludge Blanket Reactor. Bioresour. Technol. 2022, 362, 127847. [Google Scholar] [CrossRef]
- D’Bastiani, C.; Kennedy, D.; Reynolds, A. CFD Simulation of Anaerobic Granular Sludge Reactors: A Review. Water Res. 2023, 242, 120220. [Google Scholar] [CrossRef] [PubMed]
- Blumensaat, F.; Keller, J. Modelling of Two-Stage Anaerobic Digestion Using the IWA Anaerobic Digestion Model No. 1 (ADM1). Water Res. 2005, 39, 171–183. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Pérez, T.; Funcada-Martínez, A.; Cabrera-Díaz, A.; Guerra-Díaz, L.E.; Oliva-Merencio, D.; Milán, Z.; Pereda-Reyes, I. Kinetic Assessment of the Anaerobic Treatment of Piggery Wastewaters Using an EGSB Reactor with Cuban Natural Zeolite. Environ. Eng. Res. 2022, 27, 210297. [Google Scholar] [CrossRef]
- Zamani Abyaneh, E.; Zarghami, R.; Krühne, U.; Rosinha Grundtvig, I.P.; Ramin, P.; Mostoufi, N. Mixing Assessment of an Industrial Anaerobic Digestion Reactor Using CFD. Renew. Energy 2022, 192, 537–549. [Google Scholar] [CrossRef]
- Li, Z.; Hu, Y.; Liu, C.; Shen, J.; Wu, J.; Li, H.; Wang, K.; Zuo, J. Performance and Microbial Community of an Expanded Granular Sludge Bed Reactor in the Treatment of Cephalosporin Wastewater. Bioresour. Technol. 2019, 275, 94–100. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Liu, G.; Wang, K.; Piao, C.; Ma, X.; Li, X.K. Characteristics of Microbial Community in EGSB System Treating with Oxytetracycline Production Wastewater. J. Environ. Manag. 2021, 295, 113055. [Google Scholar] [CrossRef] [PubMed]
- Poszytek, K.; Karczewska-Golec, J.; Dziurzynski, M.; Stepkowska-Kowalska, O.; Gorecki, A.; Decewicz, P.; Dziewit, L.; Drewniak, L. Genome-Wide and Functional View of Proteolytic and Lipolytic Bacteria for Efficient Biogas Production through Enhanced Sewage Sludge Hydrolysis. Molecules 2019, 24, 2624. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Q.; Xin, Y.; Jiang, Y.; Huang, L.; Shen, P. Improving the Efficiency of Anaerobic Digestion of Molasses Alcohol Wastewater Using Cassava Alcohol Wastewater as a Mixed Feedstock. Bioresour. Technol. 2022, 344, 126179. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, L.; Yang, L.; Yuan, Z.; Liu, F. Treatment Performance of Cassava Alcohol Wastewater by Upflow Anaerobic Sludge Bed Reactor. Technol. Water Treat. 2021, 47, 123–126. [Google Scholar]
- Yadvika; Santosh; Sreekrishnan, T.R.; Kohli, S.; Rana, V. Enhancement of Biogas Production from Solid Substrates Using Different Techniques—A Review. Bioresour. Technol. 2004, 95, 1–10. [Google Scholar]
- Li, Q.; Dai, S.; Shen, M. Study on Biogas Production Capacity of Treating the Cassava Alcohol Wastewater by Continuous Stirred Tank Reactor (CSTR). Genomics Appl. Biol. 2018, 37, 2074–2079. [Google Scholar]
- Seneesrisakul, K.; Jantaruksa, T.; Jiraprasertwong, A.; Pornmai, K.; Rangsunvigit, P.; Chavadej, S. Effects of the Reactor Volumetric Ratio and Recycle Ratio on the Methane and Energy Productivity of a Three-Step Anaerobic Sequencing Batch Reactor (3S-ASBR) Treating Ethanol Wastewater. Energy 2021, 227, 120512. [Google Scholar] [CrossRef]
- Zheng, Z.; Ji, J.; Hong, Y.; Fang, Y.; Wudi, Z.; Xingling, Z.; Changmei, W.; Kai, W.; Jing, L. Treatment of Corn Alcohol Wastewater by Anaerobic Expanded Granular Sludge Bed Reactor and Analysis of Prokaryotic Microbial Community. Energy Sources Part A Recovery Util. Environ. Eff. 2022, 44, 1830–1841. [Google Scholar] [CrossRef]
- Meegoda, J.N.; Li, B.; Patel, K.; Wang, L.B. A Review of the Processes, Parameters, and Optimization of Anaerobic Digestion. Int. J. Environ. Res. Public Health 2018, 15, 2224. [Google Scholar] [CrossRef] [PubMed]
- Milledge, J.J.; Nielsen, B.V.; Maneein, S.; Harvey, P.J. A Brief Review of Anaerobic Digestion of Algae for BioEnergy. Energies 2019, 12, 1166. [Google Scholar] [CrossRef]
- Ryue, J.; Lin, L.; Kakar, F.L.; Elbeshbishy, E.; Al-Mamun, A.; Dhar, B.R. A Critical Review of Conventional and Emerging Methods for Improving Process Stability in Thermophilic Anaerobic Digestion. Energy Sustain. Dev. 2020, 54, 72–84. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, C.; Yuan, Z.; Wang, R.; Angelidaki, I.; Zhu, G. Syntrophy Mechanism, Microbial Population, and Process Optimization for Volatile Fatty Acids Metabolism in Anaerobic Digestion. Chem. Eng. J. 2023, 452, 139137. [Google Scholar] [CrossRef]
- Zhang, W.; Zhang, F.; Li, Y.X.; Jianxiong Zeng, R. Inhibitory Effects of Free Propionic and Butyric Acids on the Activities of Hydrogenotrophic Methanogens in Mesophilic Mixed Culture Fermentation. Bioresour. Technol. 2019, 272, 458–464. [Google Scholar] [CrossRef]
Type of Wastewater | Raw Material COD (mg/L) | Temperature (°C) | OLR (gCOD/L·d) | Removal COD (%) | Methane Production Rate (mLCH4/gCOD·d) | Reference |
---|---|---|---|---|---|---|
Cheese Whey Wastewater | 43,000–49,700 | 25–27 | 7.3–8.3 | 90 | 328 | [5] |
High-Salt Fatty Acid Organic Production Wastewater | 15,000–23,400 | 35 ± 5 | 8–10 | 80–90 | 286 | [6] |
Corn starch processing wastewater | 3014–12,462 | 38–40 | 1.3–18.7 | 90.7 | - | [7] |
Soft drink industry wastewater | 4637 | 35–37 | 11 | 93 | - | [8] |
Temperature (°C) | Operate Phase | Name | Time (d) | CODinf Concentration (mg/L) | HRT (d) | OLR (g COD/L·d) |
---|---|---|---|---|---|---|
36 ± 1 | Star-up phase | S-Ⅰ | 1–4 | 6062 ± 380 | 3.9 | 1.55 ± 0.10 |
S-Ⅱ | 5–7 | 7513 ± 306 | 3.9 | 1.93 ± 0.08 | ||
S-Ⅲ | 8–13 | 11,208 ± 900 | 3.9 | 2.87 ± 0.23 | ||
S-Ⅳ | 14–24 | 14,516 ± 829 | 3.9 | 3.72 ± 0.21 | ||
S-Ⅴ | 25–29 | 17,502 ± 417 | 3.9 | 4.49 ± 0.11 | ||
S-Ⅵ | 30–38 | 21,346 ± 1630 | 3.9 | 5.47 ± 0.42 | ||
Load lifting phase | L-Ⅰ | 39–58 | 21,785 ± 1083 | 3.9 | 5.58 ± 0.28 | |
L-Ⅱ | 59–69 | 21,188 ± 939 | 2.5 | 8.48 ± 0.38 | ||
L-Ⅲ | 70–83 | 21,506 ± 1134 | 1.7 | 12.65 ± 0.67 | ||
L-Ⅳ | 84–107 | 18,873 ± 2839 | 1.4 | 16.14 ± 0.87 |
Operate Phase | OLR (gCOD/L·d) | EVFAs (KJ/gCOD) | ECH4 (KJ/gCOD) | Eout (KJ/gCOD) | Ein (KJ/gCOD) | ΔE (KJ/gCOD) | Re |
---|---|---|---|---|---|---|---|
Star-up phase | 1.55 ± 0.10 | 2.38 ± 0.02 | 5.96 ± 0.04 | 8.35 ± 0.15 | 12.03 ± 0.07 | <0 | 0.69 ± 0.01 |
1.93 ± 0.08 | 1.68 ± 0.02 | 6.84 ± 0.02 | 8.52 ± 0.08 | 9.68 ± 0.05 | <0 | 0.88 ± 0.02 | |
2.87 ± 0.23 | 0.71 ± 0.09 | 4.29 ± 0.01 | 5.00 ± 0.05 | 5.89 ± 0.05 | <0 | 0.85 ± 0.01 | |
3.72 ± 0.21 | 1.28 ± 0.21 | 7.36 ± 0.21 | 8.64 ± 0.18 | 5.20 ± 0.33 | 3.43 ± 0.25 | 1.66 ± 0.09 | |
4.49 ± 0.11 | 0.43 ± 0.04 | 6.43 ± 0.03 | 6.86 ± 0.07 | 4.05 ± 0.16 | 2.80 ± 0.09 | 1.69 ± 0.09 | |
5.47 ± 0.42 | 0.53 ± 0.01 | 7.32 ± 0.01 | 7.86 ± 0.03 | 3.75 ± 0.02 | 4.10 ± 0.05 | 2.09 ± 0.02 | |
Load lifting phase | 5.58 ± 0.28 | 1.15 ± 0.22 | 6.98 ± 0.45 | 8.13 ± 0.57 | 3.41 ± 0.21 | 4.72 ± 0.54 | 2.39 ± 0.19 |
8.48 ± 0.38 | 1.16 ± 0.08 | 6.18 ± 0.75 | 7.34 ± 0.68 | 3.22 ± 0.12 | 4.12 ± 0.78 | 2.29 ± 0.29 | |
12.65 ± 0.67 | 1.44 ± 0.32 | 5.29 ± 1.22 | 7.53 ± 0.61 | 3.03 ± 0.13 | 4.50 ± 0.52 | 2.49 ± 0.14 | |
16.14 ± 0.87 | 25.73 ± 4.88 | 0.00 | 25.73 ± 4.88 | 3.20 ± 0.34 | 22.53 ± 4.62 | 7.99 ± 1.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, G.; Ji, J.; Zheng, Z.; Song, H.; Yang, H.; Liu, J.; Yin, F.; Zhang, W.; Hao, S. Performance and Energy Utilization Efficiency of an Expanded Granular Sludge Bed Reactor in the Treatment of Cassava Alcohol Wastewater. Energies 2023, 16, 7496. https://doi.org/10.3390/en16227496
Xu G, Ji J, Zheng Z, Song H, Yang H, Liu J, Yin F, Zhang W, Hao S. Performance and Energy Utilization Efficiency of an Expanded Granular Sludge Bed Reactor in the Treatment of Cassava Alcohol Wastewater. Energies. 2023; 16(22):7496. https://doi.org/10.3390/en16227496
Chicago/Turabian StyleXu, Guoqin, Junlin Ji, Zhanyao Zheng, Hongchuan Song, Hong Yang, Jing Liu, Fang Yin, Wudi Zhang, and Shumei Hao. 2023. "Performance and Energy Utilization Efficiency of an Expanded Granular Sludge Bed Reactor in the Treatment of Cassava Alcohol Wastewater" Energies 16, no. 22: 7496. https://doi.org/10.3390/en16227496
APA StyleXu, G., Ji, J., Zheng, Z., Song, H., Yang, H., Liu, J., Yin, F., Zhang, W., & Hao, S. (2023). Performance and Energy Utilization Efficiency of an Expanded Granular Sludge Bed Reactor in the Treatment of Cassava Alcohol Wastewater. Energies, 16(22), 7496. https://doi.org/10.3390/en16227496