Impact of Uninsulated Slab-on-Grade and Masonry Walls on Residential Building Overheating
Abstract
:1. Introduction
1.1. The Impact of Global Warming on External and Internal Temperatures and Human Health
1.2. Passive Measures against Building Overheating
1.3. Defining of Research Goal
1.4. Novelty of the Work
2. Methodology
2.1. Experimental Investigation
2.1.1. Characteristics of Experimental Buildings
2.1.2. Measurements
2.2. Computer Simulations
2.2.1. Numerical Model
2.2.2. Model Calibration
- Tm—temperature of internal air measured [°C],
- Tc—temperature of internal air calculated [°C],
- N—number of measurements.
3. Results
3.1. Indoor Temperatures
3.2. Thermal Comfort Analysis
3.3. Comparison between Experimental and Simulation Results
3.4. Effect of Internal Heat
4. Discussion
4.1. Risk of Building Overheating
4.2. Impact of Thermal Insulation Removal from the Building Floor on Heating Energy Demand
4.3. Energy Policy for the Design of Building
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
IPCC | Intergovernmental Panel on Climate Change |
TMP | Thermal Mass Parameter [kJ/m2 K] |
TFA | Total Floor Area [m2] |
RMSE | root mean square error [°C] |
Cv(RMSE) | root mean square coefficient of variation [%] |
A | area [m2] |
U | thermal transmittance [W/m2 K] |
To | outdoor air temperature [°C] |
Ti | indoor air temperature [°C] |
Tm | temperature of internal air measured [°C] |
Tc | temperature of internal air calculated [°C] |
N | number of measurements |
Tmin | minimum temperature [°C] |
Tmax | maximum temperature [°C] |
Tav | average temperature [°C] |
Trm | exponentially weighted running mean outdoor air temperature [°C] |
Δθo | outdoor air temperature difference [°C] |
Δθi | indoor air temperature difference [°C] |
r | Pearson’s linear correlation coefficient [-] |
He | temperature exceedance [h] or [%] |
References
- Chapman, S.C.; Watkins, N.; Stainforth, D.A. Warming trends in summer heatwaves. Geophys. Res. Lett. 2019, 46, 1634–1640. [Google Scholar] [CrossRef]
- Dartevelle, O.; Altomonte, S.; Masy, G.; Mlecnik, E.; Van Moeseke, G. Indoor summer thermal comfort in a changing climate: The case of a nearly zero energy house in wallonia (Belgium). Energies 2022, 15, 2410. [Google Scholar] [CrossRef]
- NOAA. 2021 Was World’s 6th-Warmest Year on Record; National Oceanic and Atmospheric Administration: Washington, DC, USA, 2022. Available online: https://www.noaa.gov/news/2021-was-worlds-6th-warmest-year-on-record (accessed on 4 July 2023).
- Hollis, D.; McCarthy, M.; Kendon, M.; Legg, T.; Simpson, I. HadUK-Grid—A new UK dataset of gridded climate observations. Geosci. Data J. 2019, 6, 151–159. [Google Scholar] [CrossRef]
- Lomas, K.J.; Watson, S.; Allinson, D.; Fateh, A.; Beaumont, A.; Allen, J.; Foster, H.; Garrett, H. Dwelling and household characteristics’ influence on reported and measured summertime overheating: A glimpse of a mild climate in the 2050′s. Build. Environ. 2021, 201, 107986. [Google Scholar] [CrossRef]
- Baker, S. Europe Is Battling an Unprecedented Heat Wave, Which Has Set Records in 3 Countries and Is Linked to at Least 4 Deaths; Business Insider; Insider Inc.: New York, NY, USA, 2019. [Google Scholar]
- Kuczyński, T.; Staszczuk, A.; Gortych, M.; Stryjski, R. Effect of thermal mass, night ventilation and window shading on summer thermal comfort of buildings in a temperate climate. Build. Environ. 2021, 204, 108126. [Google Scholar] [CrossRef]
- Murage, P.; Hajat, S.; Kovats, R.S. Effect of night-time temperatures on cause and age-specific mortality in London. Environ. Epidemiol. 2017, 1, e005. [Google Scholar] [CrossRef]
- Arbuthnott, K.G.; Hajat, S. The health effects of hotter summers and heat waves in the population of the United Kingdom: A review of the evidence. Environ. Health Glob. Access Sci. Source 2017, 16, 119. [Google Scholar] [CrossRef]
- Quinn, A.; Tamerius, J.D.; Perzanowski, M.; Jacobson, J.S.; Goldstein, I.; Acosta, L.; Shaman, J. Predicting indoor heat exposure risk during extreme heat events. Sci. Total Environ. 2014, 490, 686–693. [Google Scholar] [CrossRef] [PubMed]
- Climate Centre. European Summer Heatwaves the Most Lethal Disaster of 2019, Says International Research Group. 5 May 2020. Available online: https://www.climatecentre.org/565/european-summer-heatwaves-the-most-lethal-disaster-of-2019-says-international-research-group/ (accessed on 4 July 2023).
- Climate Centre. New Official Data in Europe Exposes Heatwaves as Still the ‘Silent Killer’ of the Elderly. 9 September 2019. Available online: https://www.climatecentre.org/737/new-official-data-in-europe-exposes-heatwaves-as-still-the-a-silent-killera-of-the-elderly/ (accessed on 4 July 2023).
- Carrington, D. Heatwaves in 2019 Led to Almost 900 Extra Deaths in England. The Guardian. 7 January 2020. Available online: https://www.theguardian.com/world/2020/jan/07/heatwaves-in-2019-led-to-almost-900-extra-deaths-in-england (accessed on 10 June 2022).
- Rahif, R.; Kazemi, M.; Attia, S. Overheating analysis of optimized nearly Zero-Energy dwelling during current and future heatwaves coincided with cooling system outage. Energy Build. 2023, 287, 112998. [Google Scholar] [CrossRef]
- Raddatz, B. Almost 500 Heat Deaths in Berlin Last Year; Robert Koch Institute: Berlin, Germany, 2019; Available online: https://www.rbb24.de/panorama/thema/2019/klimawandel/beitraege/statistik-hitzetote-sommer-2018-robert-koch-institut.html (accessed on 10 June 2022).
- Biddle, J. Explaining the spread of residential air conditioning, 1955–1980. Explor. Econ. Hist. 2008, 45, 402–423. [Google Scholar] [CrossRef]
- Peacock, A.D.; Jenkins, D.P.; Kane, D. Investigating the potential of overheating in UK dwellings as a consequence of extant climate change. Energy Policy 2010, 38, 3277–3288. [Google Scholar] [CrossRef]
- Narumi, D.; Kondo, A.; Shimoda, Y. Effects of anthropogenic heat release upon the urban climate in a Japanese megacity. Environ. Res. 2009, 109, 421–431. [Google Scholar] [CrossRef] [PubMed]
- Vahmani, P.; Luo, X.; Jones, A.; Hong, T. Anthropogenic heating of the urban environment: An investigation of feedback dynamics between urban micro-climate and decomposed anthropogenic heating from buildings. Build. Environ. 2022, 213, 108841. [Google Scholar] [CrossRef]
- Mayrhofer, L.; Müller, A.; Bügelmayer-Blaschek, M.; Malla, A.; Kranzl, L. Modelling the effect of passive cooling measures on future energy needs for the Austrian building stock. Energy Build. 2023, 296, 113333. [Google Scholar] [CrossRef]
- Silva, R.; Eggimann, S.; Fierz, L.; Fiorentini, M.; Orehounig, K.; Baldini, L. Opportunities for passive cooling to mitigate the impact of climate change in Switzerland. Build. Environ. 2022, 208, 108574. [Google Scholar] [CrossRef]
- Van den Wymelenberg, K. Patterns of occupant interaction with window blinds: A literature review. Energy Build. 2012, 51, 165–176. [Google Scholar] [CrossRef]
- Fabi, V.; Andersen, R.V.; Corgnati, S.; Olesen, B.W. Occupants’ window opening behaviour: A literature review of factors influencing occupant behaviour and models. Build. Environ. 2012, 58, 188–198. [Google Scholar] [CrossRef]
- Hamdy, M.; Carlucci, S.; Hoes, P.J.; Hensen, J.L.M. The impact of climate change on the overheating risk in dwellings—A Dutch case study. Build. Environ. 2017, 122, 307–323. [Google Scholar] [CrossRef]
- Mantesi, E.; Hopfe, C.J.; Mourkos, K.; Glass, J.; Cook, M. Empirical and computational evidence for thermal mass assessment: The example of insulating concrete formwork. Energy Build. 2019, 188–189, 314–332. [Google Scholar] [CrossRef]
- Tink, V.; Porritt, S.; Allinson, D.; Loveday, D. Measuring and mitigating overheating risk in solid wall dwellings retrofitted with internal wall insulation. Build. Environ. 2018, 141, 247–261. [Google Scholar] [CrossRef]
- Kuczyński, T.; Staszczuk, A. Experimental study of the thermal behavior of PCM and heavy building envelope structures during summer in a temperate climate. Energy 2023, 279, 128033. [Google Scholar] [CrossRef]
- Summa, S.; Remia, G.; Di Perna, C.; Stazi, F. Experimental and numerical study on a new thermal masonry block by comparison with traditional walls. Energy Build. 2023, 292, 113125. [Google Scholar] [CrossRef]
- Kuczyński, T.; Staszczuk, A. Experimental study of the influence of thermal mass on thermal comfort and cooling energy demand in residential buildings. Energy 2020, 195, 116984. [Google Scholar] [CrossRef]
- Staszczuk, A.; Wojciech, M.; Kuczyński, T. The effect of floor insulation on indoor air temperature and energy consumption of residential buildings in moderate climates. Energy 2017, 138, 139–146. [Google Scholar] [CrossRef]
- GUS (Główny Urząd Statystyczny): Budownictwo w 2021 Roku. Available online: https://stat.gov.pl/obszary-tematyczne/przemysl-budownictwo-srodki-trwale/budownictwo/budownictwo-w-2021-roku,13,13.html (accessed on 15 September 2023).
- Kottek, M.; Grieser, J.; Beck, C.; Rudolf, B.; Rubel, F. World Map of the Koppen-Geiger climate classification updated. Meteorol. Z. 2006, 15, 259–263. [Google Scholar] [CrossRef]
- Sage-Lauck, J.S.; Sailor, D.J. Evaluation of phase change materials for improving thermal comfort in a super-insulated residential building. Energy Build. 2014, 79, 32–40. Available online: https://energyplus.net/assets/nrel_custom/pdfs/pdfs_v22.1.0/EngineeringReference.pdf (accessed on 7 August 2023). [CrossRef]
- EN ISO 13786:2017; Thermal Performance of Building Components. Dynamic Thermal Characteristics. Calculation Methods. ISO: Geneva, Switzerland, 2017.
- SAP. The Government’s Standard Assessment Procedure for Energy Rating of Dwellings; BRE: Watford, UK, 2012; Available online: https://www.bre.co.uk/filelibrary/SAP/2012/SAP-2012_9-92.pdf (accessed on 7 August 2023).
- EnergyPlus™ Weather File. 2022. Available online: https://energyplus.net/weather (accessed on 7 August 2023).
- EN ISO 6946:2017; Building Components and Building Elements—Thermal Resistance and Thermal Transmittance—Calculation Methods. ISO: Geneva, Switzerland, 2017.
- EnergyPlus™ Version 9.6.0 Documentation, Engineering Reference. U.S. Department of Energy, 23 September 2021. Available online: https://energyplus.net/assets/nrel_custom/pdfs/pdfs_v9.6.0/EngineeringReference.pdf (accessed on 5 January 2023).
- Tüysüz, F.; Sözer, H. Calibrating the building energy model with the short term monitored data: A case study of a large-scale residential building. Energy Build. 2020, 224, 110207. [Google Scholar] [CrossRef]
- Baba, F.M.; Ge, H.; Zmeureanu, R.; Wang, L. Calibration of building model based on indoor temperature for overheating assessment using genetic algorithm: Methodology, evaluation criteria, and case study. Build. Environ. 2022, 207 Pt B, 108518C. [Google Scholar] [CrossRef]
- Lozinsky, C.H.; Touchie, M. Improving energy model calibration of multi-unit residential buildings through component air infiltration testing. Build. Environ. 2018, 134, 218–229. [Google Scholar] [CrossRef]
- Carlon, E.; Schwarz, M.; Golicza, L.; Verma, V.K.; Prada, A.; Baratieri, M.; Haslinger, W.; Schmidl, C. Efficiency and operational behaviour of small-scale pellet boilers installed in residential buildings. Appl. Energy 2015, 155, 854–865. [Google Scholar] [CrossRef]
- O’ Donovan, A.; Murphy, M.D.; O’Sullivan, P.D. Passive control strategies for cooling a non-residential nearly zero energy office: Simulated comfort resilience now and in the future. Energy Build. 2021, 231, 110607. [Google Scholar] [CrossRef]
- Jamil, H.; Alam, M.; Sanjayan, J.; Wilson, J. Investigation of PCM as retrofitting option to enhance occupant thermal comfort in a modern residential building. Energy Build. 2016, 133, 217–229. [Google Scholar] [CrossRef]
- Artmann, N.; Manz, H.; Heiselberg, P. Climatic potential for passive cooling of buildings by night-time ventilation in Europe. Appl. Energy 2007, 84, 187–201. [Google Scholar] [CrossRef]
- ASHRAE Standard 55; Thermal Environmental Conditions for Human Occupancy. ASHRAE: Peachtree Corners, GA, USA, 2017.
- CIBSE TM52; The Limits of Thermal Comfort-Avoiding Overheating in European Buildings. CIBSE: London, UK, 2013.
- CIBSE TM59; Design Methodology for the Assessment of Overheating Risk in Homes. CIBSE: London, UK, 2017.
- Psomas, T.; Heiselberg, P.; Duer, K.; Bjørn, E. Overheating risk barriers to energy renovations of single family houses: Multicriteria analysis and assessment. Energy Build. 2016, 117, 138–148. [Google Scholar] [CrossRef]
- O’ Donovan, A.; O’Sullivan, P.D.; Murphy, M.D. Predicting air temperatures in a naturally ventilated nearly zero energy building: Calibration, validation, analysis and approaches. Appl. Energy 2019, 250, 991–1010. [Google Scholar] [CrossRef]
- Coakley, D. Calibration of Detailed Building Energy Simulation Models to Measured Data Using Uncertainty Analysis. Ph.D. Thesis, National University of Ireland, Dublin, Ireland, 2014. [Google Scholar]
- Yannas, S.; Rodríguez-Álvarez, J. Domestic overheating in a temperate climate: Feedback from London Residential Schemes. Sustain. Cities Soc. 2020, 59, 102189. [Google Scholar] [CrossRef]
- Fernandes, J.; Pimenta, C.; Mateus, R.; Silva, S.M.; Bragança, L. Contribution of Portuguese Vernacular Building Strategies to Indoor Thermal Comfort and Occupants’ Perception. Buildings 2015, 5, 1242–1264. [Google Scholar] [CrossRef]
- Cardinale, N.; Rospi, G.; Stefanizzi, P. Energy and microclimatic performance of Mediterranean vernacular buildings: The Sassi district of Matera and the Trulli district of Alberobello. Build. Environ. 2013, 59, 590–598. [Google Scholar] [CrossRef]
- Roque, E.; Vicente, R.; Almeida, R.M.S.F.; Ferreira, V.M. The Impact of Thermal Inertia on the Indoor Thermal Environment of Light Steel Framing Constructions. Energies 2022, 15, 3061. [Google Scholar] [CrossRef]
- Porritt, S.; Shao, L.; Cropper, P.; Goodier, C. Adapting dwellings for heat waves. Sustain. Cities Soc. 2011, 1, 81–90. [Google Scholar] [CrossRef]
- Cox-Smith, I. Perimeter Insulation of Concrete Slab Foundations; BRANZ: Judgeford, New Zealand, 2016. [Google Scholar]
- Goldberg, L.; Mosiman, G. High-Performance Slab-on-Grade Foundation Insulation Retrofits; National Renewable Energy Laboratory (NREL): Golden, CO, USA, 2015. [CrossRef]
- Liu, Z.; Alterman, D.; Page, A.; Moghtaderi, B.; Chen, D. An experimental study on the thermal effects of slab-edge-insulation for slab-on-grade housing in a moderate Australian climate. Energy Build. 2021, 235, 110675. [Google Scholar] [CrossRef]
- Royal Decree 732/2019 of 20 December, Modifying the Technical Building Code, Approved by Royal Decree 314/2006 of 17 March (Real Decreto 732/2019, de 20 de Diciembre, por el que se Modifica el Código Técnico de la Edificación, Aprobado por Real Decreto 314/2006, de 17 de Marzo). 2019. Available online: https://www.boe.es/boe/dias/2019/12/27/pdfs/BOE-A-2019-18528.pdf (accessed on 28 July 2023).
- Roque, E.; Vicente, R.; Almeida, R.M. Opportunities of Light Steel Framing towards thermal comfort in southern European climates: Long-term monitoring and comparison with the heavyweight construction. Build. Environ. 2021, 200, 107937. [Google Scholar] [CrossRef]
- Goia, F.; Time, B.; Gustavsen, A. Impact of opaque building envelope configuration on the heating and cooling energy need of a single family house in cold climates. Energy Proceeding 2015, 78, 2626–2631. [Google Scholar] [CrossRef]
- Costanzo, V.; Fabbri, K.; Piraccini, S. Stressing the passive behavior of a Passivhaus: An evidence-based scenario analysis for a Mediterranean case study. Build. Environ. 2018, 142, 265–277. [Google Scholar] [CrossRef]
- Ibrahim, A.; Pelsmakers, S. Low-energy housing retrofit in North England: Overheating risks and possible mitigation strategies. Build. Serv. Eng. Res. Technol. 2018, 39, 161–172. [Google Scholar] [CrossRef]
- Taylor, J.; McLeod, R.; Petrou, G.; Hopfe, C.; Mavrogianni, A.; Castaño-Rosa, R.; Pelsmakers, S.; Lomas, K. Ten questions concerning residential overheating in Central and Northern Europe. Build. Environ. 2023, 234, 110154. [Google Scholar] [CrossRef]
- Mavrogianni, A.; Pathan, A.; Oikonomou, E.; Biddulph, P.; Symonds, P.; Davies, M. Inhabitant actions and summer overheating risk in London dwellings. Build. Res. Inf. 2017, 45, 119–142. [Google Scholar] [CrossRef]
- Lomas, K.J.; Porritt, S.M. Overheating in buildings: Lessons from research. J. Build. Res. Inf. 2017, 45, 1–18. [Google Scholar] [CrossRef]
- Rui, B.; Wen-Shao, C.; Yang, Y.; Yitong, X.; Haibo, G. Overheating of residential buildings in the severe cold and cold regions of China: The gap between building policy and performance. Build. Environ. 2022, 225, 109601. [Google Scholar] [CrossRef]
- Norouzi, M.; Haddad, A.N.; Jiménez, L.; Hoseinzadeh, S.; Boer, D. Carbon footprint of low-energy buildings in the United Kingdom: Effects of mitigating technological pathways and decarbonization strategies. Sci. Total Environ. 2023, 882, 163490. [Google Scholar] [CrossRef]
- De Masi, R.F.; Gigante, A.; Vanoli, G.P. Are nZEB design solutions environmental sustainable? Sensitive analysis for building envelope configurations and photovoltaic integration in different climates. J. Build. Eng. 2021, 39, 102292. [Google Scholar] [CrossRef]
Assembly | B1 | B2 | ||||
---|---|---|---|---|---|---|
U [W/m2 K] | κm [kJ/m2 K] | A [m2] | U [W/m2 K] | κm [kJ/m2 K] | A [m2] | |
External wall | 0.138 | 97.00 | 116 | 0.126 | 37.33 | 116 |
Internal wall 1—construction wall | 1.386 | 416.00 | 34 | 0.412 | 74.66 | 34 |
Internal wall 2—partition wall | 1.987 | 160.00 | 62 | 0.829 | 45.00 | 62 |
Ceiling | 0.086 | 11.25 | 122 | 0.106 | 17.30 | 123 |
Slab on ground | 0.116 | 92.40 | 122 | 0.116 | 92.40 | 123 |
Slab on ground after modification | 0.796 | 158.76 | 122 |
Measurement Device | Measurement Parameter | Measuring Range | Accuracy/Error |
---|---|---|---|
P18—temperature and humidity transmitter. The installation location is shown in Figure 2. Installed at a height of 1.2 m above the floor surface. | Temperature of indoor air Humidity of indoor air | −30 … −20 … 60 … 80 °C 0 … 100% | ±0.5% ±2% dla RH = 10 … 90% ±3% dla RH otherwise |
Delta OHM, type HD9008TRR | Temperature of outdoor air | −40… +80 °C | ±0.15 °C ± 0.1% measured value |
Shielded Delta OHM, type HD9007A1 | Relative humidity of outdoor air | 0 … 100% | 1.5% RH (0…90% RH) ±2.0% RH otherwise |
Delta OHM, type LP PYRA 03 | Global solar radiation | 0÷2000 W/m2 | Sensitivity: 5–15 µV/W m2 Annual stability: <|±2.5|% Nonlinearity: <|±2|% Directional error: <|±22|W/m2 |
Temperature sensor T-107 Pt100 kl.1/10B Temp. 1000C | Soil temperature | −200 … +400 °C | ±(0.3 + 0.005 × t) |
Parameters Analyzed | To [°C] | Ti [°C] | ||
---|---|---|---|---|
B1 | B2 | B2 − B1 | ||
Tmin | 14.85 | 21.78 | 28.52 | 6.76 |
Tav. | 22.69 | 22.34 | 29.25 | 6.91 |
Tmax | 29.83 | 22.86 | 30.00 | 7.14 |
Tmax − Tmin | 14.97 | 1.09 | 1.46 | |
(Δθi/Δθo) | 0.07 | 0.10 |
Parameters Analyzed | To [°C] | Ti [°C] | ||
---|---|---|---|---|
B1 | B2 | B2 − B1 | ||
Tmin | 16.34 | 22.00 | 26.91 | 4.91 |
Tav. | 22.70 | 22.67 | 27.85 | 5.18 |
Tmax | 29.16 | 23.26 | 28.68 | 5.42 |
Tmax − Tmin | 12.82 | 1.26 | 1.77 | |
(Δθi/Δθo) | 0.10 | 0.14 |
Parameters Analyzed | To [°C] | Ti [°C] | ||
---|---|---|---|---|
B1 | B2 | B2 − B1 | ||
Tmin | 15.54 | 22.85 | 27.53 | 4.68 |
Tav. | 22.48 | 23.67 | 28.67 | 5.00 |
Tmax | 30.31 | 24.50 | 29.66 | 5.16 |
Tmax − Tmin | 14.77 | 1.65 | 2.13 | |
(Δθi/Δθo) | 0.11 | 0.14 |
Room | B1 Building | B2 Building | ||||||
---|---|---|---|---|---|---|---|---|
Nr | Room Type | Orientation | r | RMSE | Cv (RMSE) | r | RMSE | Cv (RMSE) |
- | [°C] | [%] | - | [°C] | [%] | |||
3 | Bedroom | E | 0.88 | 0.61 | 2.7 | 0.97 | 2.17 | 7.8 |
4 | Bedroom | S | 0.89 | 0.56 | 2.5 | 0.98 | 1.70 | 6.1 |
5 | Living Room | S-W | 0.89 | 0.60 | 2.6 | 0.98 | 0.84 | 3.0 |
6 | Bedroom | W | 0.89 | 0.53 | 2.4 | 0.98 | 1.93 | 6.9 |
Room | B1 Building | B2 Building | ||||||
---|---|---|---|---|---|---|---|---|
Nr | Room Type | Orientation | r | RMSE | Cv (RMSE) | r | RMSE | Cv (RMSE) |
- | [°C] | [%] | - | [°C] | [%] | |||
3 | Bedroom | E | 0.88 | 0.58 | 2.6 | 0.93 | 1.10 | 3.9 |
4 | Bedroom | S | 0.90 | 0.55 | 2.4 | 0.95 | 0.78 | 2.8 |
5 | Living Room | S-W | 0.90 | 0.60 | 2.6 | 0.96 | 0.94 | 3.4 |
6 | Bedroom | W | 0.89 | 0.51 | 2.3 | 0.94 | 0.94 | 3.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kuczyński, T.; Staszczuk, A. Impact of Uninsulated Slab-on-Grade and Masonry Walls on Residential Building Overheating. Energies 2023, 16, 7558. https://doi.org/10.3390/en16227558
Kuczyński T, Staszczuk A. Impact of Uninsulated Slab-on-Grade and Masonry Walls on Residential Building Overheating. Energies. 2023; 16(22):7558. https://doi.org/10.3390/en16227558
Chicago/Turabian StyleKuczyński, Tadeusz, and Anna Staszczuk. 2023. "Impact of Uninsulated Slab-on-Grade and Masonry Walls on Residential Building Overheating" Energies 16, no. 22: 7558. https://doi.org/10.3390/en16227558
APA StyleKuczyński, T., & Staszczuk, A. (2023). Impact of Uninsulated Slab-on-Grade and Masonry Walls on Residential Building Overheating. Energies, 16(22), 7558. https://doi.org/10.3390/en16227558