Optimal Siting and Sizing of Hydrogen Production Modules in Distribution Networks with Photovoltaic Uncertainties
Abstract
:1. Introduction
- An optimal location and capacity model for hydrogen production modules (HPMs) is formulated using a two-stage stochastic programming approach. The model explicitly considers uncertainties related to renewable energy availability and load fluctuations, while also incorporating operation and investment costs during the planning phase.
- To efficiently solve the siting and sizing problem, a Bender’s decomposition-based algorithm is devised. Additionally, a data-driven stochastic programming scene reduction method is developed to address the challenge of low efficiency associated with the presence of integer variables in the two-stage stochastic programming problem. These proposed methods enhance the effectiveness and computational efficiency of the optimization process.
2. Sizing and Siting of Hydrogen Production Modules
2.1. Hydrogen Production Module Model
2.2. Distributed Generator Model
2.3. Power Flow Model
2.4. Overall
3. Benders’ Decomposition-Based Solution Algorithm
3.1. Formulation of Subproblem
3.2. Formulation of Master Problem
3.3. Overall Algorithm
Algorithm 1 Benders’ decomposition for HPM planning |
Input: Iterative index , error tolerance , upper bound , and lower bound . Output: Optimal HPM planning strategy . S1 (Master problem): Solve the master problem (29). Denote by and the optimal solution and optimal value of the master problem. Then update the HPM planning strategy as and the lower bound as . S2 (Subproblem): For each scenario , solve its subproblem (26). Denote by the optimal Lagrangian multiplier of the subproblem for scenario s. Formulate an optimal cut S3 (Judgment): If , terminate the iteration. The latest HPM planning strategy is output as the optimal one, i.e., . Otherwise, set and go to S1. |
4. Data-Driven Scenario Reduction
Algorithm 2 K-means clustering for scenario reduction |
Input: Massive historical data , randomized initial typical scenarios , and empty clusters . Output: Typical scenarios and their probability distributions for . S1 (Partition): Clear the clusters and then assign every historical data to the cluster with the nearest typical scenario, i.e., S2 (Update): Recalculate the typical scenarios by S3 (Judgment): If the partitions no longer change, terminate the iteration and output the latest typical scenarios and their probability distributions. Otherwise, go to S1. |
5. Case Study
5.1. Setup
5.2. Main Results
5.3. Sensitivity Analysis
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kovač, A.; Paranos, M.; Marciuš, D. Hydrogen in energy transition: A review. Int. J. Hydrogen Energy 2021, 46, 10016–10035. [Google Scholar] [CrossRef]
- Chehade, Z.; Mansilla, C.; Lucchese, P.; Hilliard, S.; Proost, J. Review and analysis of demonstration projects on power-to-X pathways in the world. Int. J. Hydrogen Energy 2019, 44, 27637–27655. [Google Scholar] [CrossRef]
- Sharma, S.; Ghoshal, S.K. Hydrogen the future transportation fuel: From production to applications. Renew. Sustain. Energy Rev. 2015, 43, 1151–1158. [Google Scholar] [CrossRef]
- Kwak, J.; Lee, H.; Park, S.; Park, J.; Jung, S. Risk Assessment of a Hydrogen Refueling Station in an Urban Area. Energies 2023, 16, 3963. [Google Scholar] [CrossRef]
- Mouli-Castillo, J.; Heinemann, N.; Edlmann, K. Mapping geological hydrogen storage capacity and regional heating demands: An applied UK case study. Appl. Energy 2021, 283, 116348. [Google Scholar] [CrossRef]
- Cao, Q.; Li, B.; Jia, M.; Shen, C. The Design of By-product Hydrogen Supply Chain Considering Large-scale Storage and Chemical Plants: A Game Theory Perspective. arXiv 2022, arXiv:2211.03118. [Google Scholar]
- Qadrdan, M.; Abeysekera, M.; Chaudry, M.; Wu, J.; Jenkins, N. Role of power-to-gas in an integrated gas and electricity system in Great Britain. Int. J. Hydrogen Energy 2015, 40, 5763–5775. [Google Scholar] [CrossRef]
- Schmidt, O.; Gambhir, A.; Staffell, I.; Hawkes, A.; Nelson, J.; Few, S. Future cost and performance of water electrolysis: An expert elicitation study. Int. J. Hydrogen Energy 2017, 42, 30470–30492. [Google Scholar] [CrossRef]
- Brauns, J.; Turek, T. Alkaline water electrolysis powered by renewable energy: A review. Processes 2020, 8, 248. [Google Scholar] [CrossRef]
- Rambhujun, N.; Salman, M.S.; Wang, T.; Pratthana, C.; Sapkota, P.; Costalin, M.; Lai, Q.; Aguey-Zinsou, K.F. Renewable hydrogen for the chemical industry. MRS Energy Sustain. 2020, 7, E33. [Google Scholar] [CrossRef]
- Little, M.; Thomson, M.; Infield, D. Electrical integration of renewable energy into stand-alone power supplies incorporating hydrogen storage. Int. J. Hydrogen Energy 2007, 32, 1582–1588. [Google Scholar] [CrossRef]
- Nasri, S.; Sami, B.S.; Cherif, A. Power management strategy for hybrid autonomous power system using hydrogen storage. Int. J. Hydrogen Energy 2016, 41, 857–865. [Google Scholar] [CrossRef]
- Wei, C.; Xia, Z.; Haihua, W.; Xuedong, H.; Le, P. Optimal Capacity Allocation of Hydrogen Production System Participating Peak Regulation for Auxiliary with Thermal Power Plant. Distrib. Energy Resour. 2020, 5, 15–20. [Google Scholar]
- Morel, J.; Obara, S.; Sato, K.; Mikawa, D.; Watanabe, H.; Tanaka, T. Contribution of a hydrogen storage-transportation system to the frequency regulation of a microgrid. In Proceedings of the 2015 IEEE International Conference on Renewable Energy Research and Applications (ICRERA), Palermo, Italy, 22–25 November 2015; pp. 510–514. [Google Scholar]
- Sun, D.; Zheng, W.; Yu, J.; Li, J. Research on the Primary Frequency Regulation Control Strategy of a Wind Storage Hydrogen-Generating Power Station. Electronics 2022, 11, 3669. [Google Scholar] [CrossRef]
- Dehghanian, P.; Hosseini, S.H.; Moeini-Aghtaie, M.; Arabali, A. Optimal siting of DG units in power systems from a probabilistic multi-objective optimization perspective. Int. J. Electr. Power Energy Syst. 2013, 51, 14–26. [Google Scholar] [CrossRef]
- Liu, S.; Messina, A.; Vittal, V. A normal form analysis approach to siting power system stabilizers (PSSs) and assessing power system nonlinear behavior. IEEE Trans. Power Syst. 2006, 21, 1755–1762. [Google Scholar] [CrossRef]
- Gözel, T.; Hocaoglu, M.H. An analytical method for the sizing and siting of distributed generators in radial systems. Electr. Power Syst. Res. 2009, 79, 912–918. [Google Scholar] [CrossRef]
- Arabali, A.; Ghofrani, M.; Etezadi-Amoli, M.; Fadali, M.S. Stochastic performance assessment and sizing for a hybrid power system of solar/wind/energy storage. IEEE Trans. Sustain. Energy 2013, 5, 363–371. [Google Scholar] [CrossRef]
- Zeng, Q.; Fang, J.; Chen, Z.; Li, J.; Zhang, B. A multistage coordinative optimization for sitting and sizing P2G plants in an integrated electricity and natural gas system. In Proceedings of the 2016 IEEE International Energy Conference (ENERGYCON), Leuven, Belgium, 4–8 April 2016; pp. 1–6. [Google Scholar]
- Wang, S.; Yu, J. Optimal sizing of the CAES system in a power system with high wind power penetration. Int. J. Electr. Power Energy Syst. 2012, 37, 117–125. [Google Scholar] [CrossRef]
- Carpinelli, G.; Celli, G.; Pilo, F.; Russo, A. Distributed generation siting and sizing under uncertainty. In Proceedings of the 2001 IEEE Porto Power Tech Proceedings (Cat. No. 01EX502), Porto, Portugal, 10–13 September 2001; Volume 4, p. 7. [Google Scholar]
- Liu, Z.; Wen, F.; Ledwich, G. Optimal siting and sizing of distributed generators in distribution systems considering uncertainties. IEEE Trans. Power Deliv. 2011, 26, 2541–2551. [Google Scholar] [CrossRef]
- Serrano-Arévalo, T.I.; Tovar-Facio, J.; Ponce-Ortega, J.M. Optimal Incorporation of Intermittent Renewable Energy Storage Units and Green Hydrogen Production in the Electrical Sector. Energies 2023, 16, 2609. [Google Scholar] [CrossRef]
- Eladl, A.A.; El-Afifi, M.I.; Saeed, M.A.; El-Saadawi, M.M. Optimal operation of energy hubs integrated with renewable energy sources and storage devices considering CO2 emissions. Int. J. Electr. Power Energy Syst. 2020, 117, 105719. [Google Scholar] [CrossRef]
- Maleki, A.; Rosen, M.A.; Pourfayaz, F. Optimal operation of a grid-connected hybrid renewable energy system for residential applications. Sustainability 2017, 9, 1314. [Google Scholar] [CrossRef]
- Vivas, F.; De las Heras, A.; Segura, F.; Andújar, J. A review of energy management strategies for renewable hybrid energy systems with hydrogen backup. Renew. Sustain. Energy Rev. 2018, 82, 126–155. [Google Scholar] [CrossRef]
- García, P.; García, C.A.; Fernández, L.M.; Llorens, F.; Jurado, F. ANFIS-based control of a grid-connected hybrid system integrating renewable energies, hydrogen and batteries. IEEE Trans. Ind. Inform. 2013, 10, 1107–1117. [Google Scholar] [CrossRef]
- Rouholamini, M.; Mohammadian, M. Energy management of a grid-tied residential-scale hybrid renewable generation system incorporating fuel cell and electrolyzer. Energy Build. 2015, 102, 406–416. [Google Scholar] [CrossRef]
- Eriksson, E.; Gray, E.M. Optimization and integration of hybrid renewable energy hydrogen fuel cell energy systems—A critical review. Appl. Energy 2017, 202, 348–364. [Google Scholar] [CrossRef]
- Hotza, D.; Da Costa, J.D. Fuel cells development and hydrogen production from renewable resources in Brazil. Int. J. Hydrogen Energy 2008, 33, 4915–4935. [Google Scholar] [CrossRef]
- Esposito, D.V. Membraneless electrolyzers for low-cost hydrogen production in a renewable energy future. Joule 2017, 1, 651–658. [Google Scholar] [CrossRef]
- Ciupageanu, D.A.; Barelli, L.; Lazaroiu, G. Real-time stochastic power management strategies in hybrid renewable energy systems: A review of key applications and perspectives. Electr. Power Syst. Res. 2020, 187, 106497. [Google Scholar] [CrossRef]
- Bu, S.; Yu, F.R.; Liu, P.X. Stochastic unit commitment in smart grid communications. In Proceedings of the 2011 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), Shanghai, China, 10–15 April 2011; pp. 307–312. [Google Scholar]
- Bassamzadeh, N.; Ghanem, R. Multiscale stochastic prediction of electricity demand in smart grids using Bayesian networks. Appl. Energy 2017, 193, 369–380. [Google Scholar] [CrossRef]
- Bertsimas, D.; Litvinov, E.; Sun, X.A.; Zhao, J.; Zheng, T. Adaptive robust optimization for the security constrained unit commitment problem. IEEE Trans. Power Syst. 2012, 28, 52–63. [Google Scholar] [CrossRef]
- Su, Y.; Liu, F.; Wang, Z.; Zhang, Y.; Li, B.; Chen, Y. Multi-Stage Robust Dispatch Considering Demand Response Under Decision-Dependent Uncertainty. IEEE Trans. Smart Grid 2022, 14, 2786–2797. [Google Scholar] [CrossRef]
- Verastegui, F.; Lorca, A.; Olivares, D.E.; Negrete-Pincetic, M.; Gazmuri, P. An adaptive robust optimization model for power systems planning with operational uncertainty. IEEE Trans. Power Syst. 2019, 34, 4606–4616. [Google Scholar] [CrossRef]
- Xiong, P.; Jirutitijaroen, P.; Singh, C. A distributionally robust optimization model for unit commitment considering uncertain wind power generation. IEEE Trans. Power Syst. 2016, 32, 39–49. [Google Scholar] [CrossRef]
- Guo, Y.; Baker, K.; Dall’Anese, E.; Hu, Z.; Summers, T. Stochastic optimal power flow based on data-driven distributionally robust optimization. In Proceedings of the 2018 IEEE Annual American Control Conference (ACC), Milwaukee, WI, USA, 27–29 June 2018; pp. 3840–3846. [Google Scholar]
- Ma, H.; Jiang, R.; Yan, Z. Distributionally robust co-optimization of power dispatch and do-not-exceed limits. IEEE Trans. Power Syst. 2019, 35, 887–897. [Google Scholar] [CrossRef]
- Sahinidis, N.; Grossmann, I.E. Convergence properties of generalized Benders decomposition. Comput. Chem. Eng. 1991, 15, 481–491. [Google Scholar] [CrossRef]
- Soares, J.; Canizes, B.; Ghazvini, M.A.F.; Vale, Z.; Venayagamoorthy, G.K. Two-stage stochastic model using benders’ decomposition for large-scale energy resource management in smart grids. IEEE Trans. Ind. Appl. 2017, 53, 5905–5914. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, J.; Zeng, B.; Hu, Z. Chance-constrained two-stage unit commitment under uncertain load and wind power output using bilinear benders decomposition. IEEE Trans. Power Syst. 2017, 32, 3637–3647. [Google Scholar] [CrossRef]
- Baran, M.E.; Wu, F.F. Optimal capacitor placement on radial distribution systems. IEEE Trans. Power Deliv. 1989, 4, 725–734. [Google Scholar] [CrossRef]
- Zhu, H.; Liu, H.J. Fast local voltage control under limited reactive power: Optimality and stability analysis. IEEE Trans. Power Syst. 2015, 31, 3794–3803. [Google Scholar] [CrossRef]
- Krishna, K.; Murty, M.N. Genetic K-means algorithm. IEEE Trans. Syst. Man Cybern. Part B 1999, 29, 433–439. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Chen, Y.; Wei, W.; Wang, Z.; Mei, S. Online coordination of LNG tube trailer dispatch and resilience restoration of integrated power-gas distribution systems. IEEE Trans. Smart Grid 2022, 13, 1938–1951. [Google Scholar] [CrossRef]
- Lee, D.; Baek, S.; Sung, K. Modified k-means algorithm for vector quantizer design. IEEE Signal Process. Lett. 1997, 4, 2–4. [Google Scholar]
- Charalampidis, D. A modified k-means algorithm for circular invariant clustering. IEEE Trans. Pattern Anal. Mach. Intell. 2005, 27, 1856–1865. [Google Scholar] [CrossRef]
- Singh, R.V.; Bhatia, M.S. Data clustering with modified K-means algorithm. In Proceedings of the 2011 IEEE International Conference on Recent Trends in Information Technology (ICRTIT), Chennai, India, 3–5 June 2011; pp. 717–721. [Google Scholar]
- Zhou, X.; Farivar, M.; Liu, Z.; Chen, L.; Low, S.H. Reverse and forward engineering of local voltage control in distribution networks. IEEE Trans. Autom. Control. 2020, 66, 1116–1128. [Google Scholar] [CrossRef]
Condition | C | Overall Cost | Reduction | ||||
---|---|---|---|---|---|---|---|
w/ HPM | −0.23 | 9.74 | 0.18 | 0.25 | 2.68 | 7.25 | |
w/o HPM | −2.39 | 9.60 | 0.31 | 0 | 0 | 7.52 | 3.60% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Z.; Wu, W.; Si, Y.; Chen, X. Optimal Siting and Sizing of Hydrogen Production Modules in Distribution Networks with Photovoltaic Uncertainties. Energies 2023, 16, 7636. https://doi.org/10.3390/en16227636
Li Z, Wu W, Si Y, Chen X. Optimal Siting and Sizing of Hydrogen Production Modules in Distribution Networks with Photovoltaic Uncertainties. Energies. 2023; 16(22):7636. https://doi.org/10.3390/en16227636
Chicago/Turabian StyleLi, Zhiyong, Wenbin Wu, Yang Si, and Xiaotao Chen. 2023. "Optimal Siting and Sizing of Hydrogen Production Modules in Distribution Networks with Photovoltaic Uncertainties" Energies 16, no. 22: 7636. https://doi.org/10.3390/en16227636
APA StyleLi, Z., Wu, W., Si, Y., & Chen, X. (2023). Optimal Siting and Sizing of Hydrogen Production Modules in Distribution Networks with Photovoltaic Uncertainties. Energies, 16(22), 7636. https://doi.org/10.3390/en16227636