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Abstract: The randomness of the power supply side and the load side of comprehensive energy
systems is increasingly prominent. It is very difficult to meet demand through traditional planning
methods. To solve this problem, this paper explores the coordinated planning of a power system
under uncertain characteristics using the multilinear Monte Carlo method. The uncertain character-
istic model and probability density function of the system’s power supply side and load side are
established. Taking the optimal operating cost and the maximum wind power consumption as the
system planning objectives, a system coordination planning scheme is established, and it is solved by
multilinear Monte Carlo simulation. The superiority of this method is verified by taking the modified
IEEE 39-bus test system as an example. This method can provide a reference for system planning.

Keywords: coordinated planning; Monte Carlo; power system; uncertainty

1. Introduction

With the nonrenewable nature of traditional energy sources and the resulting envi-
ronmental pollution, the popularity of renewable energy sources is increasing. However,
due to the randomness and fluctuation of renewable energy, a randomness in the energy
supply side is caused [1–3]. Although the uncertainty of load has been reduced because of
the management and response of the demand side, the randomness of the load side still
exists [4–8]. Traditional power system planning methods are inadequate to deal with the
increasingly prominent “bilateral stochastic problem”, so it is necessary to explore new
power system planning methods. The uncertainty of energy supply and consumption in
the power grid has a significant impact on the stable operation of the power grid [9,10].
This problem can be alleviated by improving the dispatching control method of power
supply and load [11–13]. Meanwhile, the planning of the power grid is also an important
way to solve the uncertainty problem [14].

At present, most related research into power system planning has adopted unit com-
binations and energy storage equipment. Considering the data on the power grid and
load, power grid planning research has been carried out from the aspects of the power
supply side, power grid, load, and energy storage [15,16]. Reference [17] introduced link
constraints between different units and established operation simulations considering a
unit commitment plan and transmission constraints, realizing an efficient long-term sys-
tem. It was used to combine operational flexibility into power system planning problems.
Reference [18] reflected on the current planning principles of urban energy systems. By
establishing power supply side and demand side models, an elastic programming method
for determining the optimal allocation of an urban energy supply system was proposed.
Reference [19] mainly studied load-side planning. In the load forecasting analysis, a depth
regression and algorithm based on stumps were adopted to improve forecasting accuracy
and reduce the error between the actual load demand and the forecasted load demand.
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Reference [20] focused on the coordination between multiple energy sources and adjusted
the location and capacity of installation nodes of various power sources to obtain the
optimal layout of power sources in multienergy power systems. Reference [21] introduced
a new power grid reinforcement method for high-voltage grids, which considers active
power curtailment and follows the path with the lowest total cost. This method can be
used to optimize the expenditure of power grid operation and power grid expansion and
increase planning certainty by delaying power grid reinforcement.

Although the above research provides references and ideas for power grid planning,
there are mainly the following shortcomings.

• The randomness of source measurement and load side cannot be completely solved, so it
is difficult to meet the requirements of system planning under uncertain characteristics;

• At present, there are few studies on the system planning model considering the
uncertainty caused by the demand response, which needs further study.

Therefore, this paper proposes a coordinated planning method for power systems
under uncertain characteristics based on the multilinear Monte Carlo method. The main
contributions of this paper are shown as follows:

• The uncertainty characteristic model of the power supply side and load side of the
system are established, and their probability density function is also established. It
provides a foundation for linear segmentation and sampling for the power supply
side and load side;

• A coordinated planning scheme for the system to optimize the operating cost and
maximize wind power consumption is established. The traditional Monte Carlo
method is improved, and the multilinear Monte Carlo simulation method with better
advantages is adopted to solve the problem;

• Taking the modified IEEE 39-bus test system as an example, the superiority of the
proposed simulation method is verified, which provides a reference for the decision
making of a power system planning scheme under the background of a “bilateral
randomness problem”.

The remainder of this paper is organized as follows. The uncertainty characteristic
models of the power supply side and load side are established in Section 2. The coordina-
tion planning scheme of the power system is designed in Section 3. The simulation and
experimental results are shown in Section 4. Last, the conclusion is given in Section 5.

2. Modeling of Uncertainty Characteristics for the Power Supply Side and Load Side

With the increasing share of renewable energy generation, increasingly diverse source–
grid–load (storage) social interactive systems have emerged to ensure further system
stability and to integrate resources [22–24]. The uncertain behavior of the power side is
mainly the volatility and randomness of renewable energy generation. Uncertain behavior
on the load side specifically refers to load forecast deviations. Further, it can be said that
the load change due to the implementation of demand-side response measures is uncertain
and will change the customer’s electricity load, causing it to deviate from the system’s
forecasted load. The characteristics of system uncertainty behavior in this paper are shown
in Figure 1.



Energies 2023, 16, 7761 3 of 15Energies 2023, 16, x FOR PEER REVIEW 3 of 15 
 

 

 
Figure 1. Schematic diagram of system uncertainty behavior characteristics. 

2.1. Source-Side Uncertainty Model 
The power supply side includes conventional thermal power units and wind tur-

bines. The uncertain behavior of the power supply side is   primarily the randomness and 
volatility of renewable energy generation. The uncertainty model of wind turbines is 
mainly established below. The mechanical output power of the wind turbine can be cal-
culated by 

31
2n n aP r vπ ρ ξ=  (1) 

where nP  is the wind turbine’s mechanical output power, nr  is the blade radius, v  is 
the wind speed, aρ  is the air density, and ξ  is the wind power utilization coefficient. 

The cut-in and cut-out speeds limit wind power generation. The wind turbine output 
model is calculated by 

0

0

in

in
r in r

r inr t

r r out

out

v v
v vP v v v
v vP v

P v v v
v v

<
 − ≤ ≤ −= 
 ≤ ≤
 >

，( )  (2) 

where r tP v，( ) is the wind power output power in period t, rP  is the rated output power 
of the wind turbine, inv  and outv  are the wind turbine generation cut-in and cut-out 
speeds, and rv  is the rated wind speed of wind turbines. 

The wind speed variable v has a strong randomness. Its probability distribution can 
be expressed using the Weber distribution as follows. 

*
1

( )
V

v
Vf V e

π
ϕπ

ϕ ϕ

  −  − 
     =   

  
 (3) 

where ϕ  is the scale parameter, and π  is the shape parameter. 
The probability density function of the wind turbine output power can be calculated 

by 

Figure 1. Schematic diagram of system uncertainty behavior characteristics.

2.1. Source-Side Uncertainty Model

The power supply side includes conventional thermal power units and wind turbines.
The uncertain behavior of the power supply side is primarily the randomness and volatil-
ity of renewable energy generation. The uncertainty model of wind turbines is mainly
established below. The mechanical output power of the wind turbine can be calculated by

Pn =
1
2

πrnv3ρaξ (1)

where Pn is the wind turbine’s mechanical output power, rn is the blade radius, v is the
wind speed, ρa is the air density, and ξ is the wind power utilization coefficient.

The cut-in and cut-out speeds limit wind power generation. The wind turbine output
model is calculated by

Pr,t(v) =


0 v < vin
Pr

v−vin
vr−vin

vin ≤ v ≤ vr

Pr vr ≤ v ≤ vout
0 v > vout

(2)

where Pr,t(v) is the wind power output power in period t, Pr is the rated output power of
the wind turbine, vin and vout are the wind turbine generation cut-in and cut-out speeds,
and vr is the rated wind speed of wind turbines.

The wind speed variable v has a strong randomness. Its probability distribution can
be expressed using the Weber distribution as follows.

fv(V) =

(
π

ϕ

)(
V
ϕ

)π−1
e[−(

V
ϕ )
∗
] (3)

where ϕ is the scale parameter, and π is the shape parameter.
The probability density function of the wind turbine output power can be calculated by

fr,t(pr,t) =


β{1− e

[
−
(
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ϕ

)∗]
+ e
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(
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(
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(4)
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Among them,

β =
Vr −Vin

pr
(5)

γ = Vin + βpr,t (6)

Then, the cumulative distribution function of the wind turbine output is

Fr,t(pr,t) = 1− e

[
−
( Vc+βpr,t

ϕ

)x]
(7)

2.2. Load Uncertainty Model

Probability density can better explain the uncertainty of load demand. Before estab-
lishing the probability density, an appropriate kernel function should be selected. As the
main basis for determining the data prediction, kernel density exists in many forms [25,26].
Among them, a quadratic kernel function can contain the highest density of data, and
the calculation process is more intuitive and straightforward [27]. Therefore, a quadratic
kernel function was used to determine the relationship between the observed and predicted
values, and then a kernel density function is established. This kernel function expression is
presented as follows:

K(xn) =
3
4

(
1− x2

n

)
I(|X| 6 1) (8)

where xn indicates the value of the predictor variable, I(·) indicates the landmark function,
and the value in (·) is 1 when most data for the prediction condition are true. The value in
(·) is 0 when most data for the prediction condition are false.

Establishing the probability density prediction function needs to be analyzed by se-
lecting random variables from the sample data and comparing them with the observed
values. Suppose a random variable of the load sample data is X, and its predicted condi-
tional probability density function is f (x), and it is known that f (x) = F′(xn), then the state
estimation formula of f (x) is shown as follows:

fn(x) =
F(xn + h)− F(xn − h)

2h
(9)

where h = h(m) denotes a constant (non-negative), and m represents the total number
of samples to be predicted. F(xn + h) denotes the distribution function of the variable x
over time.

Then, the probability density function can be displayed as follows:

f̂ (x) =
1

mh

n

∑
i=1

K
(

Xi − xn

w

)
=

1
m

n

∑
i=1

Kh(Xi − xn) (10)

where K(·) denotes the central kernel function, and w denotes the density function weight
window width, which ranges from [0, 1]. The closer its value is to 1, the greater the chance
of representing the variable xn to appear near the window.

3. Design of Optimization Scheme for System Planning
3.1. Planning Objective Function

The goal of system planning is to minimize planning costs as much as possible to pro-
mote renewable energy consumption. Therefore, it is necessary to set the dual optimization
objectives of the minimum economy and maximum consumption of renewable energy.

3.1.1. Economic Objective Function

The economic objective function is

min F = F1 + F2 (11)
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where F is the total running cost; F1 is the sum of economic factors such as power equipment
construction cost, total energy storage cost, coal burning cost, and abandoned wind power
consumption; and F2 is the investment cost of transmission lines in power network planning.{

F1 = I
(

Pg
)
+ C

(
Pg, Ee

)
+ L

(
Pg, Ee

)
F2 = ∑

i∈Ω1

niCiLiZi, Ci = KLPL−1

}
(12)

where I
(

Pg
)

is the cost of power installation and construction, C
(

Pg, Ee
)

is the cost of coal
burning, L

(
Pg, Ee

)
is the cost of wind abandonment, Pg is the installed capacity of the power

supply, Pe and Ee are the charging and discharging power of energy storage, respectively,
ni is the construction number of the i-th line to be selected, Ci is the unit price per unit
length of the i-th line to be selected, KL is the unit cost of electricity per unit line length, Li
is the length of line i to be selected, Z is the 0–1 decision variable for the investment in the
i-th line to be selected, PL−1 is the transmission capacity of line i to be selected, and Ω1 is
the set of lines to be selected.

The calculation formulas of generator set investment, transmission line investment,
coal burning cost, abandoned wind power loss, and other factors are as follows.

(1) Investment in generator set

I
(

Pg
)
= ∑

k∈Ωg

GkPgkCgk (13)

where Gk is the 0–1 variable of the investment of generator set k, Pgk is the installed capacity
of unit k, Cgk is the unit installed engineering cost of unit k, and Ωg is the collection of units
to be selected.
(2) Loss of abandoned wind power generation

L
(

Pg, Ee
)
= ∆WWKW TS (14)

where KW is the fine of unit wind power generation, TS is the cost payback period, and
∆WW is the abandoned wind power, which is calculated as follows.

∆WW =


∑

[
τ∫
t
(Pmin

g − Pe − PN(t))dt

]
, PN(t) ≤

(
Pmin

g − Pe

)
0, PN(t) >

(
Pmin

g − Pe

)
 (15)

where PN(t) is the net load at time t and the abandoned wind power under a given
Pe condition.
(3) Cost of coal burning

C
(

Pg, Ee
)
= (WL −WW + ∆WW)KCTS (16)

where WL is annual load power consumption, WW is annual wind power generation, and
KC is the cost of coal consumption per unit of power consumption.

3.1.2. Objective Function of Renewable Energy Consumption

The renewable energy consumption objective function is shown as follows:

max EW =
T

∑
t=1

NW

∑
i=1

PWt,i∆T (17)

where EW is the active electric energy for wind power generation, T is the number of time
cycles in the scheduling cycle, NW is the number of wind power plants, and PWt,i is the
active dispatching output of the i-th wind farm during t period.
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3.2. Planning Constraints

Because the objective function includes the minimum operation cost and the max-
imum consumption of renewable energy, from the aspect of constraint conditions, the
constraints of system installed capacity, power balance, and renewable energy output are
mainly considered.

(1) Power balance constraint of the system

Pf .Lt + εLt − (Pf ,Wt + εWt − ∆PWt)−
M

∑
i=1

Pgi,t = 0 (18)

where Pf .Lt represents the predicted load value of the system at time t, εLt represents
the load forecasting error at time t, Pf ,Wt indicates the wind forecast value at time t, εWt
represents the wind forecast error at time t, ∆PWt stands for wind power waste air volume in
the dispatching plan at time t, Pmax

gi represents the maximum output power of conventional
thermal power unit i, and M stands for the number of conventional thermal power units.
(2) Balance constraint of rotating standby inequality

Pf .Lt + εLt − (Pf ,Wt + εWt − ∆PWt)−
M

∑
i=1

Pmax
gi ≤ 0 (19)

(3) Limitation of wind power output

0 ≤ PWt ≤ Pf ,Wt (20)

(4) The constraint of the total installed capacity of the thermal power plant

N
max
i=1

=

∫ 24

0
PN−i(t)dt/24 ≤ ∑

k∈Ωg

Pgk ≤ (1 + δ)PMAX
N

 (21)

where δ is the standby factor, and N is the typical daily consumption. The lower limit of the
installed capacity of thermal power units is to meet the electricity demand of the maximum
net load in typical scenarios, and the upper limit should not exceed the maximum net load
with a certain reserve.
(5) Upper and lower limit constraints on the output of thermal power unit

Pmin
gk ≤ Pgk(t) ≤ Pmax

gk (22)

(6) Climbing restriction of the thermal power unit∣∣∣∣ [PN(t + τ) + Pe(t + τ)]− [PN(t) + Pe(t)]
τ

∣∣∣∣ ≤∑
k

Rgk (23)

where ∑
k

Rgk is the sum of climbing rates of all thermal power units invested in construction,

and τ is the time scale of operation, that is, the time scale of flexible demand.
(7) Balance of power restriction

Wg + Ww − ∆Ww ≥WL (24)

where Wg, Ww, ∆Ww, and WL are the power generation of the thermal power unit, wind
power generation, abandoned wind power, and load power, respectively.
(8) The flexibility of the power system and the constraint of supply and demand balance

Fg(t, τ) + Fe(t, τ) + Fw(t, τ) ≥ |FD(t, τ)| (25)

where Fg and Fe are the flexible supply of thermal power units. The flexibility of abandoning
wind is provided by Fw wind power. FD is the elastic demand for net load, and the specific
equation is as follows.
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FD(t, τ) =

 PN(t + τ)− PN(t), Scope of requirements
PN(t + τ)− PN(t)

τ
, Rate of demand

(26)

where PN(t + τ)− PN(t) is the net load fluctuation from time t to counting time, and if it
is positive, it is an upward elastic demand interval. If it is negative, the scope of flexible
demand will be reduced.

3.3. Solution of Model

Aiming at an optimal planning model with the lowest system operation cost and the
largest new energy consumption, the multilinear Monte Carlo method was adopted. The
core idea of this method is to segment the probability density function of renewable energy
power generation output and system load linearly and establish an interval correspondence
between the probability density function and sample according to this correspondence.

3.3.1. Conventional Monte Carlo Method

In the traditional Monte Carlo method [28–30], it is generally assumed that the state
duration of an element is a random variable with exponential distribution. To obtain a
random variable x that obeys exponential distribution, let U represent a random variable
that is uniformly distributed on [0, 1], then the probability distribution function of X is

F(X) = 1− e−2x (27)

Equation (28) is obtained according to the inverse function method.

U = F(X) = 1− e−λx (28)

Then
X = F−1(U) =

1
λ

ln U (29)

When the input and output variables of the system are linearized, based on the random
sampling of the system, the formula for solving many times can be expressed as

Y = G(x) (30)

where Y is the output variable of the system, indicating the output result of the optimization
model. X is the system input variable, and G is a linear function. Convert (30) into a
linearized formula for determining input variables. Taking the average value µ(X) of the
input variable as the input variable gives

Gs(Y0) = µ(X) (31)

where Y0 is the system output index.
Linearize (30) according to (31), the following formula can be obtained:

Y = Y0 + J−1
0 [X− µ(X)] (32)

where Y0 is the Jacobian matrix of Y.
To judge the accuracy of sampling, the Monte Carlo method usually takes the variance

coefficient as the standard, and its expression is as follows.

β =

√
V[Ê(F(X))]

Ê(F(X))
=

√
V[F(X)]/n
Ê(F(X))

(33)
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3.3.2. Multilinear Monte Carlo Method

The multilinear Monte Carlo method is the linear processing of multiple uncertain
variables. First, the probability distribution of the total load of the system is divided into m
parts. Let every part be R0,i, which corresponds to Y0,i in the process of linear segmentation
and correspondence (i = 1, 2, . . ., m), as shown in Figure 2. Then, after the probability
distribution function of the total load is determined, the probability distribution function
of wind power output power is also divided into m parts corresponding to the total load
one by one.
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Using the method of (33) to perform linear processing on each part gives

M1 : Yt = Y0,1 + J−1
1 [X1 − µ(X1)]

M2 : Y2 = Y0,2 + J−1
2 [X2 − µ(X2)]

. . .
Mm : Ym = Y0,m + J−1

m [Xm − µ(X2)]

(34)

The upper limit of the interval i is m, and Ji is the Jacobian matrix of Y0,i. The solution
of the system power balance (18) is

gs(Y0,j) = µ(Xi) (35)

The calculation flow of the multilinear Monte Carlo method is shown in Figure 3,
where k is the number of tests, and kmax is the upper limit of k. Using the multilinear
Monte Carlo method, only part of the input of the optimization model can be obtained by
sampling and calculating a planning scheme many times at a time. After that, we still need
to use the optimization algorithm to solve the planning model to obtain the parameters
of the system planning scheme. By solving this model, the optimal planning cost and
renewable energy consumption parameters of the planning scheme can be converged.
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4. Example Analysis

This chapter is the simulation section of an example. This part mainly verifies the
validity of the multilinear Monte Carlo simulation algorithm through the uncertain behavior
characteristics of the power supply side and the load side. The simulation results can
provide a basis for decision making for a system planning scheme.

4.1. Simulation Model

When the probability distribution of a load is known, the optimal programming model
is solved by a sampling test based on the multilinear Monte Carlo method. In this paper,
modified IEEE 39-bus test system data were used for the simulation, as shown in Figure 4.
The data of thermal power units and wind turbines are shown in Tables 1 and 2, respectively.
Figure 5 shows the wind turbine output and load of a typical day.
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Table 1. Data of thermal power units.

Unit Model Cost of Investment
(Ten Thousand Yuan/MW)

Maximum Output
(MW)

Minimum Output
(MW)

1 150 50 30
2 200 60 35
3 220 70 30
4 250 80 35

Table 2. Wind turbine data.

Rated Wind Speed
(m/s)

Cut-In Wind Velocity
(m/s)

Cut Wind Speed
(m/s)

Cost of Investment
(Ten Thousand Yuan/kW)

12 3.3 20 0.3
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4.2. Comparison of the Methods

In this paper, the traditional Monte Carlo method, the traditional important sampling
method, and the multilinear Monte Carlo method are compared and analyzed. Under the
same sampling times, the sampling accuracy of the three methods is shown in Figure 6. It
can be seen that the multilinear Monte Carlo method has the highest calculation precision
in the whole sampling process. The corresponding curve changes smoothly. The other two
corresponding curves fluctuate greatly. The results show that the multilinear Monte Carlo
method is superior to the other methods.
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The calculation efficiency of these three methods can be further verified. Table 3 shows
the results of three different precision algorithms. Therefore, under different calculation
accuracy requirements, the multilinear Monte Carlo method requires the lowest calculation
time. Because the calculation of system control variables after each sampling does not
involve power flow analysis and load shedding calculation, the amount of calculation for
each system state analysis will not be increased. The multilinear Monte Carlo method is
faster and more efficient under the same calculation accuracy.

Table 3. Calculation results of three methods with different accuracy.

β Method Sampling Time Time/s

0.08
Traditional Monte Carlo 8013 98.28

Conventional sampling method 4975 72.40
Multilinear Monte Carlo 296 17.42

0.1
Traditional Monte Carlo 4816 60.43

Conventional sampling method 3570 48.25
Multilinear Monte Carlo 204 14.54

0.15
Traditional Monte Carlo 2347 42.37

Conventional sampling method 1576 34.51
Multilinear Monte Carlo 128 12.14

To verify the validity of the Monte Carlo method, the real value was compared with the
actual value of load simulated by the two Monte Carlo methods, and the results are shown
in Figures 7 and 8 below. Obviously, for example, when t = 8, the actual value is 793 kW,
the traditional Monte Carlo is 765 kW, and the multilinear Monte Carlo is 784 kW. When
t = 21, the actual value is 385 kW, the traditional Monte Carlo is 313 kW, and the multilinear
Monte Carlo is 355 kW. When t = 92, the actual value is 389 kW, the traditional Monte Carlo
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is 325 kW, and the multilinear Monte Carlo is 372 kW. The results show that, compared
with the traditional Monte Carlo method, the calculation results of the multilinear Monte
Carlo method are more in line with real values.
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Figure 8. Comparison results between the multilinear Monte Carlo method and real value.

The calculation speed and accuracy of the multilinear Monte Carlo method were com-
pared with the traditional Monte Carlo method as follows. Considering the combination of
power load and power supply as known quantities, the existing data of the IEEE system
are adopted here. The probability distribution of wind power output is a known quantity,
while the power gap is an unknown quantity. Therefore, the user’s power supply gap in
each time period will be calculated by the model, and this value can be determined as
the real value. Then, through two Monte Carlo methods, through repeated sampling and
simulation tests, the power supply shortage is obtained, which is defined as the calculated
value of the two methods, and the difference between the calculated value and the real
value is used as the calculation error. The advantages and disadvantages between the
traditional Monte Carlo method and the multilinear Monte Carlo method were further
analyzed by comparing the calculation error and calculation time.

4.3. Scheme Verification

After determining the best simulation method, according to the basic requirements of
the IEEE system, the access points of wind power are G1 and G2, and there are three power
planning schemes, regardless of all the power planning schemes of thermal power units, as
shown in Table 4.
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Table 4. Power access scheme.

Case G1 G2 Other Node

a
√

× ×
b ×

√
×

c
√ √

×
The sign “

√
” indicates that the node has a power supply. The symbol “×” indicates that the node has no

power supply.

During the test, the maximum load of each node is extracted according to the normal
distribution characteristics to determine the power capacity of different access points.
According to known optional unit parameters, the simulation can be divided into four
scenarios according to the load correlation and standard deviation ratio between the
modified IEEE 39-bus test system, as shown in Table 5.

Table 5. Values of four scenario parameters.

Scenario Load Correlation Factor Standard Deviation

1 0.5 0.2 µ

2 0.5 0.3 µ

3 0.9 0.2 µ

4 0.9 0.3 µ

After the access point of the wind turbine is determined, each power unit has three
planning schemes, and finally, these schemes are put into actual operation, which is
calculated according to the running time of 1 week. The following Table 6 shows the
simulation results under various scenarios.

Table 6. Simulation results of different scenarios.

Scenario Case
Running Cost

(Ten Thousand
Yuan)

Daily Wind Power
Consumption

(MW·h)

Economic
Growth

Rate

Renewable Energy
Consumption
Growth Rate

1
a 36,713.36 63,908 15% 2.04%
b 37,423.71 65,420 16% 2.13%
c 56,611.53 125,024 25% 3.81%

2
a 41,363.31 58,703 13% 1.85%
b 45,853.11 56,963 15% 1.91%
c 67,346.21 109,635 20% 2.98%

3
a 38,743.25 66,437 16% 2.11%
b 37,835.97 65,371 18% 2.28%
c 58,637.54 119,635 27% 3.84%

4
a 43,306.23 58,703 14% 1.74%
b 47,261.34 52,963 17% 1.87%
c 67,791.47 108,635 21% 2.78%

According to the simulation results of the multilinear Monte Carlo method, the load
correlation coefficient has little influence on the simulation results, but the standard de-
viation of the load has a great influence. When the standard deviation of the user load
is small, the range of the load value is concentrated near the average, and the normal
distribution image is higher at the average. At this time, the demand side of the system has
high certainty, so the simulation results of the planning scheme are excellent. When the
standard deviation of the load is large, the image of the normal distribution is flat, the load
value is scattered, and the demand-side uncertainty to be dealt with in system planning is
strong, so the simulation results are relatively poor.
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5. Conclusions

In this paper, the coordinated planning of a power system under uncertain characteris-
tics based on the multilinear Monte Carlo method was studied. Firstly, the characteristic
model and probability density function of uncertain behavior on the power supply side
and load sides of the system were established. Then, the coordinated planning scheme of
the system was designed. According to the characteristics of multi-input and multioutput
systems, the traditional Monte Carlo simulation method was improved as a multilinear
Monte Carlo simulation method. This method was used to solve the coordination plan
model. Finally, the modified IEEE 39-bus test system, as an example, was utilized to confirm
the validity of this method. The results showed that the multilinear Monte Carlo method
is beneficial for improving calculation accuracy by 2.39% and speed by 5.58%, promoting
the controllability of the supply side and demand side of the system, and providing a
reference for solving system planning problems aimed at reducing system operation costs
and promoting the consumption of renewable energy.
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11. Mathias, J.; Bušić, A.; Meyn, S. Load-Level Control Design for Demand Dispatch with Heterogeneous Flexible Loads. IEEE Trans.

Control Syst. Technol. 2023, 31, 1830–1843. [CrossRef]
12. Qiu, G.; Liu, Y.; Liu, J.; Wang, L.; Liu, T.; Gao, H.; Jawad, S. Surrogate-Assisted Optimal Re-Dispatch Control for Risk-Aware

Regulation of Dynamic Total Transfer Capability. IET Gener. Transm. Distrib. 2021, 15, 1949–1961. [CrossRef]
13. Qiu, G.; Liu, Y.b. Analytic Deep Learning-Based Surrogate Model for Operational Planning with Dynamic TTC Constraints. IEEE

Trans. Power Syst. 2020, 36, 3507–3519. [CrossRef]
14. Gao, Q.; Liu, Y.; Zhao, J.; Liu, J.; Chung, C.Y. Hybrid Deep Learning for Dynamic Total Transfer Capability Control. IEEE Trans.

Power Syst. 2021, 36, 2733–2736. [CrossRef]
15. Liu, X.; Liu, Y.; Liu, J.; Xiang, Y.; Yuan, X. Optimal Planning of AC-DC Hybrid Transmission and Distributed Energy Resource

System: Review and Prospects. CSEE J. Power Energy Syst. 2019, 5, 409–422. [CrossRef]

https://doi.org/10.1109/JSYST.2022.3219116
https://doi.org/10.1109/TSTE.2019.2900082
https://doi.org/10.1109/ACCESS.2022.3181163
https://doi.org/10.1109/TPWRS.2018.2881131
https://doi.org/10.1109/ACCESS.2021.3097985
https://doi.org/10.1109/TPWRS.2020.2976191
https://doi.org/10.1109/TSG.2022.3203172
https://doi.org/10.1109/TPWRS.2023.3248293
https://doi.org/10.1109/TPWRS.2022.3233763
https://doi.org/10.1109/TCST.2023.3245287
https://doi.org/10.1049/gtd2.12147
https://doi.org/10.1109/TPWRS.2020.3041866
https://doi.org/10.1109/TPWRS.2021.3057523
https://doi.org/10.17775/CSEEJPES.2019.00540


Energies 2023, 16, 7761 15 of 15

16. Fan, H.; Yu, Z.; Xia, S.; Li, X. Review on Coordinated Planning of Source-Network-Load-Storage for Integrated Energy Systems.
Front. Energy Res. 2021, 9, 641158. [CrossRef]

17. Du, E.; Zhang, N.; Kang, C.; Xia, Q. A High-Efficiency Network-Constrained Clustered Unit Commitment Model for Power
System Planning Studies. IEEE Trans. Power Syst. 2019, 34, 2498–2508. [CrossRef]

18. Huang, W.; Zhang, X.; Li, K.; Zhang, N.; Strbac, G.; Kang, C. Resilience Oriented Planning of Urban Multi-Energy Systems with
Generalized Energy Storage Sources. IEEE Trans. Power Syst. 2022, 37, 2906–2918. [CrossRef]

19. Ahmad, T.; Zhang, D. Novel Deep Regression and Stump Tree-Based Ensemble Models for Real-Time Load Demand Planning
and Management. IEEE Access 2020, 8, 48030–48048. [CrossRef]

20. Suo, X.; Zhao, S.; Ma, Y.; Dong, L. New Energy Wide Area Complementary Planning Method for Multi-Energy Power System.
IEEE Access 2021, 9, 157295–157305. [CrossRef]

21. Bolgaryn, R.; Wang, Z.; Scheidler, A.; Braun, M. Active Power Curtailment in Power System Planning. IEEE Open Access J. Power
Energy 2021, 8, 399–408. [CrossRef]

22. Wu, X.; Jiang, Y. Source-Network-Storage Joint Planning Considering Energy Storage Systems and Wind Power Integration. IEEE
Access 2019, 7, 137330–137343. [CrossRef]

23. Li, P.; Song, Y.D.; Li, D.Y.; Cai, W.C.; Zhang, K. Control and Monitoring for Grid-Friendly Wind Turbines: Research Overview and
Suggested Approach. IEEE Trans. Power Electron. 2015, 30, 1979–1986. [CrossRef]

24. Avramidis, I.; Capitanescu, F.; Deconinck, G. Grid-Friendly Smart Sustainable Buildings: Flexibility-to-Cost Mapping. IEEE Trans.
Sustain. Energy 2022, 13, 1857–1860. [CrossRef]

25. Afrasiabi, M.; Mohammadi, M.; Rastegar, M.; Stankovic, L.; Afrasiabi, S.; Khazaei, M. Deep-Based Conditional Probability Density
Function Forecasting of Residential Loads. IEEE Trans. Smart Grid 2020, 11, 3646–3657. [CrossRef]

26. Bich, W. From Errors to Probability Density Functions. Evolution of the Concept of Measurement Uncertainty. IEEE Trans.
Instrum. Meas. 2012, 61, 2153–2159. [CrossRef]

27. Eggermont, P.B.; LaRiccia, V.N. Best Asymptotic Normality of the Kernel Density Entropy Estimator for Smooth Densities. IEEE
Trans. Inf. Theory 1999, 45, 1321–1326. [CrossRef]

28. Zhu, X.; Di Rienzo, L.; Ma, X.; Codecasa, L. Multilevel Monte Carlo FDTD Method for Uncertainty Quantification. IEEE Antennas
Wirel. Propag. Lett. 2022, 21, 2030–2034. [CrossRef]

29. Du, H.; Xie, W.; Liu, Z.; Li, L. Track-Oriented Marginal Poisson Multi-Bernoulli Mixture Filter for Extended Target Tracking. Chin.
J. Electron. 2023, 32, 1106–1119. [CrossRef]

30. Qi, C.; Yin, J.; Niu, Y.; Xu, J. Neighborhood Spatial Aggregation MC Dropout for Efficient Uncertainty-Aware Semantic Segmenta-
tion in Point Clouds. IEEE Trans. Geosci. Remote Sens. 2023, 61, 1–16. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.3389/fenrg.2021.641158
https://doi.org/10.1109/TPWRS.2018.2881512
https://doi.org/10.1109/TPWRS.2021.3123074
https://doi.org/10.1109/ACCESS.2020.2978937
https://doi.org/10.1109/ACCESS.2021.3130577
https://doi.org/10.1109/OAJPE.2021.3118445
https://doi.org/10.1109/ACCESS.2019.2942134
https://doi.org/10.1109/TPEL.2014.2325869
https://doi.org/10.1109/TSTE.2022.3160886
https://doi.org/10.1109/TSG.2020.2972513
https://doi.org/10.1109/TIM.2012.2193696
https://doi.org/10.1109/18.761291
https://doi.org/10.1109/LAWP.2022.3189414
https://doi.org/10.23919/cje.2021.00.194
https://doi.org/10.1109/TGRS.2023.3314130

	Introduction 
	Modeling of Uncertainty Characteristics for the Power Supply Side and Load Side 
	Source-Side Uncertainty Model 
	Load Uncertainty Model 

	Design of Optimization Scheme for System Planning 
	Planning Objective Function 
	Economic Objective Function 
	Objective Function of Renewable Energy Consumption 

	Planning Constraints 
	Solution of Model 
	Conventional Monte Carlo Method 
	Multilinear Monte Carlo Method 


	Example Analysis 
	Simulation Model 
	Comparison of the Methods 
	Scheme Verification 

	Conclusions 
	References

