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Abstract: The accurate estimation of the state of charge (SOC) of lithium-ion batteries is critical
in battery energy storage systems. This paper introduces a novel approach, the AdaBoost-BPNN
model, to overcome the limitations of traditional data-driven estimation methods, such as a low
estimation accuracy and poor generalization ability. The proposed model employs a back propagation
neural network (BPNN) for the preliminary estimation. Subsequently, an AdaBoost-BPNN model
is developed as a strong learner using the AdaBoost integration algorithm. Each BPNN sub-model
serves as a weak learner within the AdaBoost framework. The final output of the strong learner is
obtained by combining the individual outputs from the weak learners using weighting factors. This
adaptive adjustment of weighting factors enhances the accuracy of SOC estimation. The proposed
SOC estimation algorithm is evaluated and validated through experimental analysis. Throughout
the paper, theoretical analysis is conducted, and the proposed AdaBoost-BPNN model is validated
and verified using experimental results. The results demonstrate that the AdaBoost-BPNN model
outperforms traditional methods in accurately estimating SOC under various conditions, including
constant current-constant voltage (CCCV) charging, dynamical stress testing (DST), US06, a federal
check for urban driving schedule (FUDS), and pulse discharge conditions.
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With the rapid expansion of the automobile industry and the increasing pace of ur-
banization, environment-related concerns and energy issues have emerged as significant
Academic Editor: Carlos global priorities [1-3]. In response to these challenges, the development of electric vehicles
Miguel Costa has gained widespread attention due to their eco-friendly characteristics and the abundant
availability of electricity as an energy source [4-6]. Among the different types of batter-
ies, lithium-ion batteries are widely utilized for energy storage in electric vehicles. This
preference is primarily attributed to their advantages, including high power density, fast
charging capabilities, a long lifespan, and low self-discharge rates [7-10].

In a battery system, the state of charge (SOC) is a critical indicator to reflect the status
of a battery. It is defined as the ratio of available capacity to the total capacity of the

BY battery [11]. Accurately estimating the SOC is of utmost important for enhancing battery
Copyright: © 2023 by the authors.  system performance, preventing overcharging or over-discharging, and extending the
Licensee MDPI, Basel, Switzerland.  service life of the battery [12]. However, directly measuring the SOC value is not feasible,
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distributed under the terms and  djrectly, such as current, voltage, and temperature. As a result, accurately determining the
conditions of the Creative Commons SOCisa challenging task [1 3].
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among others. Coulomb counting (CC) [14] and open circuit voltage (OCV) [15] are the
most common traditional methods. The CC method involves integrating the current over
time to estimate the SOC [14]. However, the accuracy of this method heavily relies on the
precision of the initial SOC estimation and the current measurements. Otherwise, errors can
accumulate over time and impact estimation accuracy. On the other hand, the OCV method
establishes a lookup table, to correlate measured voltage values with corresponding SOC
values. Nevertheless, this method yields accurate results only when the battery remains
idle for extended periods. During charging or discharging operations, the varying current
makes it challenging to measure or calculate the OCV value accurately [15].

The circuit model-based method is another candidate to estimate SOC. Typically,
this method is combined with Kalman filter [15-17] and unscented Kalman filter [18]
to determine the model parameters. The accuracy of this method relies heavily on the
precision of the established equivalent circuit model. However, the reactions taking place
within the battery and the associated calculations are intricate. Additionally, extending the
equivalent circuit model to accommodate different battery types with varying materials or
dynamic behaviors presents significant challenges. Consequently, establishing an accurate
and universally applicable battery model continues to be a difficult task.

Given the limitations associated with conventional methods, such as low accuracy
and insufficient real-time performance, there is an increasing recognition of the necessity
of exploring alternative approaches for SOC estimation. In response to these constraints,
the data-driven approach has emerged as a prominent and transformative alternative,
capable of revolutionizing the field of SOC estimation. This shift towards data-driven
methodologies marks a significant turning point in the pursuit of more precise and real-
time SOC estimations. It offers a promising avenue to overcome the challenges that have
traditionally hindered progress in this field [19].

In data-driven models, the knowledge of the internal structure or chemical reactions
within the battery is not necessarily required [20]. Common data-driven methods include
the support vector machine (SVM) method [21], neural network (NN) method [22], and
the deep learning (DL) method [23], among others. The selection of model structure and
parameter settings greatly influence the estimation accuracy in these methods. Wang
et al. [21] proposed a joint estimation model based on the neural network and support
vector machine models, which successfully estimated the SOC and the electric quantity
within a maximum mean square error of 0.85%. However, this approach did not consider
the impact of temperature on the SOC, nor did it discuss the testing data under actual
electric vehicle conditions. Feng et al. [24] proposed a gated recurrent neural network.
In this network, current, voltage, and temperature are inputs, and it can achieve a less
than 3.5% estimation error under different temperature test conditions. However, this
method does not condition the optimization of model parameters, and the initial parameter
setting is not discussed. To address the issue of model parameter setting, a particle swarm
optimization was discussed by Mao et al. [25], based on Levy flight, to optimize the
SOC estimation model of BPNN. The results demonstrated a higher estimation accuracy
under various test conditions, compared to the traditional BPNN model without optimized
model parameters.

In addition to improving the accuracy of network estimation results, utilizing algo-
rithms to enhance network data is another potential solution. Wang et al. [26] introduced
a fusion model that combines the stacking method, support sector regression, AdaBoost
algorithm, and the random forest algorithm to predict battery SOC. However, this approach
significantly increased the computational costs. In fact, the AdaBoost algorithm can meet
the requirements at a low cost by combining various weak learners into a strong learner.
Li et al. [27] presented an AdaBoost-Rt-RNN model and validated its performance using
data from battery pulse discharge experiments. The results indicated that the ensemble
model was improved by the AdaBoost—Rt algorithm, which demonstrated better predic-
tive accuracy than a single RNN model. However, RNN’s complex structure makes it
susceptible to the vanishing gradient problem, particularly when using non-saturating
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activation functions, resulting in a reduced estimation accuracy. Xie et al. [28] proposed
an AdaBoost-Elman algorithm for lithium-ion battery SOC estimation. The proposed
algorithm combined the dynamic properties of Elman neural networks with the accuracy-
improving capability of the AdaBoost algorithm. This combination resulted in a strong
learner with a higher estimation accuracy and dynamic properties, enabling accurate state
of charge (SOC) estimations in the short term. Despite the strong dynamic performance
and memory capabilities of Elman neural networks, they have disadvantages, such as high
complexity and a tendency to overfit. When faced with complex problems or large datasets,
they require more computational resources and have very long training times. BPNN, on
the other hand, is less affected by the vanishing gradient problem and offers a simpler
structure, leading to higher modeling efficiency.

In light of the constraints posed by conventional methodologies, and with a conscious
effort to circumvent the inherent intricacies of complex model architectures and the pro-
tracted computational demands they entail, this research paper introduces a novel neural
network model that is meticulously engineered to address the formidable challenge of SOC
estimation within battery systems. This innovative approach ingeniously incorporates the
AdaBoost algorithm, orchestrating the sequential assembly of numerous weak learners and
judiciously assigning weighted importance to their input and output data. Consequently,
this method culminates in a profound enhancement of the accuracy achieved in SOC esti-
mation, marking a significant leap forward in this domain. The substantial contributions of
this paper, encompassing advancements in model optimization, algorithmic integration,
and SOC estimation precision, are encapsulated in the following summary:

(a) This paper introduces an BPNN model as a weak learner for SOC estimation. BPNN can
continuously update internal weights and thresholds to achieve result error reduction.

(b) The AdaBoost algorithm is employed to combine multiple weak learners. It calculates
the relative error rate of input data and assigns weights to the output data of each
weak learner.

(¢) The proposed SOC estimation model is evaluated and validated under various work-
ing conditions, including US06, FUDS, and pulse discharge scenarios. The perfor-
mance of the model is assessed to ensure its effectiveness and applicability.

The subsequent structure is organized as follows. Section 2 describes the optimization
steps of the weak learner and the composition of the strong learner and shows the specific
structure of the AdaBoost-BPNN model, as well as how to use this model to estimate SOC.
Section 3 uses the dataset to conduct experiments and validates the performance of the
presented model. Section 4 gives the conclusion.

2. Theoretical Analysis

In the proposed modeling approach, multiple BPNNs are employed as the weak
learners within the AdaBoost algorithm. The relative error of the output results from each
weak learner is compared to a predefined threshold ¢. Based on this comparison, the error
rate and output weight a; for the subsequent weak learner are calculated. By cascading
multiple weak learners, a strong learner is generated. The output of each BPNN is then
multiplied by weighting factors a; through a, to enhance the prediction accuracy of the
SOC. The following sections provide a detailed description and analysis of the design
process of the presented AdaBoost-BPNN model.

A BPNN is a type of artificial neural network designed for supervised learning tasks. It
consists of an input layer, one or more hidden layers, and an output layer of interconnected
neurons. The key principle of BPNN is to iteratively adjust the weights and biases of
these connections to minimize the error between the network’s predictions and the actual
target values. This optimization process is performed through gradient descent, where
the network computes the gradient of the error with respect to its weights and updates
them in the opposite direction of the gradient, gradually reducing the prediction error over
multiple training iterations. BPNN leverages the chain rule to propagate error gradients
backward through the layers, hence the name backpropagation, and this iterative learning
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process allows it to learn complex relationships and make accurate predictions in various
domains, including pattern recognition, classification, and regression tasks. In this paper,
the structure of BPNN, serving as the weak learner, is illustrated in Figure 1. Voltage,
current, and temperature are utilized as the input of this model, while SOC is the output. w;
and b; are the weighting factor and threshold from input layer to hidden layer, respectively.
w, and b, are the weighting factor and threshold from the hidden layer to the output layer.

Voltage
Current

Temperature

Input Hidden Output

Figure 1. Structure of BPNN for SOC estimation.

From Figure 1, the chain derivative rule for BPNN is as follows:
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where 7 is the learning rate, net; represents the output of hidden layer, and f(x) is the
activation function. In this paper, tansig is used as the activation function of BPNN.

The AdaBoost algorithm is an ensemble learning technique that combines multiple
weak learners to create a strong learner. Initially, all training samples are equally weighted,
and weak learners are trained. In each iteration, high error samples are given higher impor-
tance, encouraging the next weak learner to focus on the previously challenging instances.
The final ensemble bestows more influence upon learners with superior performance,
and their collective decisions are amalgamated to yield precise predictions. AdaBoost
is renowned for its effectiveness in handling intricate datasets, as it emphasizes difficult
examples and culminates in a formidable and accurate prediction model.

After establishing each individual BPNN model as a weak learner, multiple weak
learners are cascaded, using the AdaBoost algorithm, to create a strong learner. The
complete schematic diagram of the AdaBoost-BPNN model is illustrated in Figure 2. The
iterative calculation process of the AdaBoost algorithm is discussed below.
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Figure 2. AdaBoost-BPNN schematic diagram.

(1) Model Input:

We assume that the training set consists of n sample pairs (x1, y1), . . ., (xj, y]-), e oo (0, Y-
The number of weak learners is determined as k, and the threshold ¢ is set to evaluate the
acceptability of the weak learners’ predictions. In this paper, the threshold of relative error,
¢, is defined as the average value of the error rates across all weak learner.

(2) Parameter Initialization:

The initial weak learner is assigned a serial number i = 1. The error weight for
each sample in the input parameters of the initial weak learner is denoted as Dy = 1/n.
Additionally, the initial error rate of each weak learner is set as ¢; = 0.

(3) Iterative Calculations:

The training set is utilized as the input data of the weak learner as shown in Figure A1l
of Appendix A. The relative error, denoted as ARE;(j), for each sample is calculated, based
on the corresponding output f;(x;), as given by (6):

i(xj) — yj

ARE;(j) = v
j

(6)

If ARE;(j) > ¢, the error rate is updated as ¢; = }_D;(j). Subsequently, the error weight
for each sample in the training set of the next weak learner is calculated based on the error
rate, as given by (7):

. D;(j) { &2 ARE;(j) < ¢

D; = x i’ NS = 7
#10) = B 1, ARE;(j) > ¢ 7
where Dy, represents the normalization factor, which can make the sum of the updated

weights equal to one.
The output weight a; of the current weak learner is calculated, as given by (8):

1

%= Zexp(fei]) ®)
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After each iteration, the sequence number i of weak learners increases by one. The
estimated value of SOC is estimated, as given by (9):

k

SOC =) a;fi(x) )

i=1
where f;(x) indicates the output data of the ith weak learner.

3. Results

In this section, the experimental results, using both open-source battery data and
laboratory hardware, are presented and discussed, to validate the performance of the
proposed AdaBoost-BPNN model. During the data acquisition process, the sliding filter
algorithm and low-pass filter are utilized, to filter and reduce noise in the data.

3.1. Model Evaluation Index

To mitigate slow convergence and lengthy training times, the input data are normal-
ized to the range of [—1,1] using the normalization formula given by (10):
2(x — x*
x= 2T (10)
Xmax — X¥min
where x is the original input data and x; is the normalized value of x, Xmax and xp,in are the
maximum and minimum input values, respectively, and x" is the average of Xmax and Xpin.
The root mean square error (RMSE) and maximum error (MAX) are utilized as evalua-
tion indicators. The calculation equations are given by (11) and (12):

_ I v v
RMSE = mi;(yl Y?) (11)

MAX = max(|Y; — Y{'|) (12)

where m represents the number of samples, Y; and Y;" are the real value and estimated
output value, respectively.

3.2. Experimental Results and Discussion

In order to conduct a comprehensive and rigorous assessment of the performance
of the proposed AdaBoost-BPNN model, we have meticulously curated a dataset that
encompasses a diverse range of critical parameters and variables. This dataset incorporates
vital information such as terminal voltage, load current, charge and discharge capacity,
battery temperature, and sampling frequency. Notably, these data points have been meticu-
lously collected from a lithium-ion battery subjected to the demanding conditions of the
DST, US06, and the FUDS cycles. By encompassing such a rich and multifaceted dataset,
our evaluation endeavors are poised to provide a thorough and holistic analysis of the
AdaBoost-BPNN model’s performance under a spectrum of challenging and real-world
operating scenarios. This dataset is sourced from the CALCE battery research group of the
University of Maryland [29] and the parameters of the battery are shown in Table 1. In the
dataset, the battery undergoes an initial charging process from 0% SOC to 100% SOC using
the CCCV method, which is followed by a complete discharge under each working/driving
condition. The DST data are utilized as the training dataset, while the US06 and FUDS data
are employed as the test dataset.
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Table 1. Parameters of battery.

Parameters Value
Capacity rating 1100 mAh
Cell chemistry LiFePO4
Voltage rating 33V
Diameter 18 mm
Length 65 mm

In this test, the current, voltage, and temperature data of the lithium-ion battery during
CCCV charging operation are collected. Based on the dataset, the estimation results and
errors of the BPNN model, Particle Swarm Optimization (PSO) — BPNN model, and the
presented AdaBoost-BPNN model are shown in Figure 3 and Table 2. It can be observed
that the presented AdaBoost-BPNN model has the best performance with 0.21% RMSE
and 0.14% MAE. In Figure 3a, from 200 s to 300 s duration time, the other three models
have an obvious estimation error within +3%, while the presented model reduces this
value to within £1%. Furthermore, as can be seen in Figure 3b, AdaBoost-BPNN exhibits
smaller errors, compared to BPNN and PSO-BPNN. The maximum error for BPNN and
PSO-BPNN is close to 4%, while AdaBoost-BPNN only has a 1.4% error. This indicates that
not only does the AdaBoost-BPNN model have a high accuracy, but it also has minimal
error fluctuations, avoiding sudden changes in error.
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Figure 3. SOC estimation results and errors under CCCV charging: (a) SOC estimation results;
(b) errors.

Table 2. SOC estimation results under CCCV charging.

Model RMSE (%) MAX (%)
BPNN 0.77 3.6
PSO-BPNN 0.60 4.1
AdaBoost-BPNN 0.21 14
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Figures 4 and 5 illustrate the SOC estimation results under US06 and FUDS test
conditions. Observing the results, it is evident that the standard BPNN exhibits significant
fluctuations. This is because the BPNN model has random initial parameters, which can
lead to underfitting and result in high disturbances in its estimation. After optimizing the
initial parameters of BPNN using the PSO algorithm, the PSO-BPNN model demonstrates
reduced fluctuations, while the AdaBoost-BPNN model achieves the smoothest estimation,
that closer aligns with the reference values. Unlike the principles of the PSO algorithm, the
AdaBoost algorithm does not directly optimize the initial parameters of BPNN. Instead, it
assigns different weights to the relationship between the output results of BPNN and the
input variables. This way, it reduces the impact of error data on the results, making the
results more accurate. Figure 6 provides a comparison of errors among the three models
under both driving cycles at a temperature of 20 °C. It is apparent that the AdaBoost-BPNN
model exhibits smaller errors compared to the other models. Among them, BPNN even
reaches a maximum error of over 25%, while the error range of PSO-BPNN lies between
+5% and £10%. On the other hand, AdaBoost-BPNN demonstrates remarkably smooth
error performance, with a maximum error not exceeding 3%.

Reference

BPNN

— PSO-BPNN
— AdaBoost—BPNN

Reference
BPNN 08
— PSO-BPNN

— AdaBoost—BPNN

02
0 1000 2000 3000 4000 5000 6000 7000 . ° 0 1000 2000 3000 4000 5000 6000 7000
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Figure 4. SOC estimation results under US06 driving cycle at: (a) 0 °C; (b) 20 °C; (c) 30 °C; (d) 50 °C.
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Figure 5. SOC estimation results under FUDS test condition at various temperatures: (a) 0 °C;
(b) 20 °C; (c) 30 °C; (d) 50 °C.
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Figure 6. SOC estimation errors at 20 °C under: (a) US06 driving cycle; (b) FUDS driving cycle.

It is evidently clear from the comprehensive analysis of the results that the AdaBoost—
BPNN model stands out prominently by consistently demonstrating notably smaller errors,
in comparison with the other competing models under examination. This conspicuous
superiority in error minimization underscores the robustness and effectiveness of the
AdaBoost-BPNN model, affirming its superior performance and highlighting its capability
to substantially outperform its counterparts in this evaluative context.

Tables 3 and 4 present the RMSE and MAX values for BPNN, PSO-BPNN, and
AdaBoost-BPNN models at different temperatures during US06 and FUDS driving cycles.
The results clearly demonstrate that the standard BPNN model yields an imprecise SOC
estimation, with a RMSE ranging from 3% to 6%. Moreover, the MAX value reaches 33.19%
under the US06 driving cycle at 0 °C, which is deemed unacceptable. However, with the
standard BPNN employing the AdaBoost algorithm for cascading, significantly improved
estimation results are achieved. The RMSE is reduced to around 0.5%, and the MAX value
is lowered to below 2.5%, indicating the enhanced accuracy of the proposed model.

Table 3. SOC estimation results for US06 at various temperatures.

RMSE (%) MAX (%)
US06 PSO- AdaBoost- PSO- AdaBoost-
BPNN BPNN BPNN BPNN BPNN BPNN
0°C 5.76 1.55 0.58 33.19 8.63 213
20°C 4.64 1.32 0.56 24.19 6.30 2.45
30 °C 3.48 1.23 0.42 14.39 4.79 1.89
50 °C 3.65 1.16 0.49 9.74 5.58 2.00

Table 4. SOC estimation results for FUDS at various temperatures.

RMSE (%) MAX (%)
FUDS PSO- AdaBoost- PSO- AdaBoost-
BPNN BPNN BPNN BPNN BPNN BPNN
0°C 717 1.50 0.67 38.44 7.89 2.90
20°C 5.94 1.49 0.63 27.36 8.74 2.61
30°C 452 1.44 0.62 27.47 7.61 2.29
50 °C 3.91 1.73 0.75 17.64 8.36 3.67

3.3. Hardware Setup Test and Discussion

In order to validate the proposed AdaBoost-BPNN model, a hardware test bench
platform is constructed, as depicted in Figure 7. The test bench comprises a Smacq USB-
3223 data collector, two DC power sources, an electric load, an 18,650 lithium-ion battery,
a temperature sensor, and a computer. This setup is used to conduct pulse discharge
experiments with the 18,650 lithium-ion battery. The 18,650 lithium-ion battery used in
the experiments has a 2.6 Ah capacity and 3.7 V nominal voltage. The data collector plays
a crucial role in gathering voltage and temperature measurements from the battery at
a sampling frequency of 100 kHz. The temperature sensor measures the voltage across
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the thermistor using a voltage divider circuit, and then the voltage data are converted
into temperature data using a lookup table. In addition, a calibration algorithm is also
conducted to reduce the temperature sensing error. The experimental setup involves
discharging the battery with a pulse load current of 2.6 A for a duration of 360 s, followed
by a resting period of 720 s. This discharge process is repeated 10 times.

Battery cell

Figure 7. Schematic of battery test bench.

The estimation results and corresponding error curves with the BPNN model, PSO-
BPNN model and the proposed AdaBoost-BPNN model are shown in Figure 8 and sum-
marized in Table 5. We utilize 60% of the data as a training data set, and the remaining 40%
of the data are treated as a test dataset.

0.5
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Figure 8. SOC estimation results and errors under pulse discharge condition: (a) SOC estimation
results; (b) errors.
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Table 5. SOC estimation results under the sectional pulse discharge condition.

Model RMSE (%) MAX (%)
BPNN 1.26 12.32
PSO-BPNN 1.07 12.21
AdaBoost-BPNN 0.63 3.62

From the experimental results, it is shown that we can achieve a lower error rate with
the proposed AdaBoost-BPNN model throughout the entire discharging process, whereas
both the BPNN and PSO-BPNN models exhibit increased estimation errors during the
transient stage of load current changes. The MAX error of both the BPNN and PSO-BPNN
models exceeds 12% and is concentrated at the points where the current changes occur. On
the other hand, the MAX error of the AdaBoost-BPNN model is 3.62%.

In addition, as can be seen from Figure 8, under pulse discharge conditions, SOC
exhibits both a steady state and a declining state. When the discharge current is 0 A, the
SOC value remains constant, and at this time, the predicted values of both BPNN and
PSO-BPNN fluctuate near the actual value, while the AdaBoost-BPNN model’s predicted
values are very close to the actual value. When the discharge currentis 2.6 A, the SOC value
linearly decreases, and at this point, the results of all three models can closely approximate
the actual value. However, during the transition of SOC between the steady state and
declining state, all three models show noticeable errors in their predictions. Particularly,
when SOC is at 30%, the prediction errors for BPNN and PSO-BPNN models exceed
10%, whereas the AdaBoost-BPNN model’s error is below 2% at this point. This indicates
that the proposed model exhibits excellent predictive performance in both static and
dynamic scenarios.

In summary, the AdaBoost-BPNN model, as introduced and thoroughly examined
within the confines of this research paper, emerges as the unequivocal champion in the realm
of SOC estimation accuracy, when juxtaposed with the conventional and widely utilized
BPNN and PSO-BPNN models. The comprehensive battery of experiments and meticulous
data analyses conducted herein serve as incontrovertible evidence of the AdaBoost-BPNN
model’s exceptional prowess in delivering a top-tier performance. Across a spectrum
of performance metrics, the empirical results emphatically underscore the AdaBoost-
BPNN model’s superiority, establishing it as the undisputed leader in the domain of SOC
estimation for battery systems, thereby ushering in a new era of precision and reliability in
this critical field of study.

4. Additional Discussion
4.1. Comparison of Different Models

In order to evaluate the estimation performance of the proposed model, it is compared
with some advanced existing methods, including long short-term memory (LSTM), convo-
lutional neural network (CNN), gated recurrent unit (GRU), fully convolutional network
(FCN), and recurrent neural network (RNN), and some improved methods [30-33]. In
addition, there have been some hybrid models, such as LSTM-centralized Kalman filter
(CKF), and LSTM-adaptive centralized Kalman filter (ACKF), recently proposed for SOC
estimation, and they have also achieved good results [31]. Table 6 shows the RMSE and
MAX of various models under the FUDS driving cycle at 20 °C.

It can be observed that the proposed model exhibits a high estimation accuracy.
Among the showcased models, the LSTM model, improved with attention technique,
demonstrates good performance in the FUDS condition, ranking just below the hybrid
model LSTM-ACKEF and the proposed model. The LSTM-Attention and Bi-GRU models
perform similarly in terms of accuracy. The remaining models exhibit slightly lower
accuracies. Overall, at 20 °C, under FUDS conditions, the proposed model outperforms
existing advanced deep learning methods and hybrid models in SOC estimation accuracy.
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Table 6. SOC estimation results of different methods for FUDS at 20 °C.

FUDS
Methods
RMSE (%) MAX (%)

LSTM [31,32] 3.30 19.3

RNN [30] 2.73 /

Base on search algorithm (BSA)-GRNN [30] 2.17 /

Business intelligence (BI)-GRU [30] 1.30 /

LSTM-Attention [33] 1.18 /
PSO-BPNN 1.49 8.74
LSTM-CKEF [31] 2.80 14.3
LSTM-ACKE [31] 0.90 2.70
Proposed model 0.63 2.61

4.2. Discussion for Computational Burden

While the proposed model can significantly enhance SOC estimation accuracy, it is
essential to avoid incurring an excessive computational burden in the process. To evaluate
the computational load of the proposed model, it is compared with the BPNN and PSO-
BPNN models. Table 7 presents the results and computation time for SOC estimation
under FUDS at 20 °C. Compared to the BPNN, the proposed model exhibits a superior
performance with highly accurate results, although it requires a longer computation time.
The BPNN yields estimation results that exhibit significant fluctuations, as evidenced by its
RMSE and MAX values of 5.94% and 27.36%, respectively. In contrast, the proposed hybrid
model delivers highly accurate and smooth results, with RMSE and MAX values of only
0.63% and 2.61%. Although the proposed model takes less than twice the computation time
of the BPNN, it produces errors that are 9-10 times smaller. Overall, the proposed model
demonstrates better performance than both the BPNN and PSO-BPNN models, in terms of
RMSE and MAX, while still maintaining an acceptable computation time.

Table 7. Computation burden results for FUDS at 20 °C.

Method RMSE (%) MAX (%) Computation Time (s)
BPNN 5.94 27.36 0.49
PSO-BPNN 1.49 8.74 0.77
Proposed model 0.63 2.61 0.97

5. Conclusions

This paper introduces a novel AdaBoost-BPNN model for the accurate and general-
izable estimation of battery SOC. The model is thoroughly evaluated through extensive
simulations and hardware experiments. Its performance is systematically compared against
conventional BPNN and PSO-BPNN models. The results demonstrate that the proposed
model consistently outperforms the others in terms of SOC estimation accuracy, especially
during discharge scenarios that represent common driving cycles and pulse current dis-
charges. Impressively, when subjected to the demanding US06 driving cycle, the proposed
model achieves an RMSE of only 0.42% and a maximum error (MAX) of just 1.89%. Simi-
larly, under the FUDS driving cycle, the RMSE and MAX are further reduced to impressive
values of 0.60% and 2.29%, respectively. Notably, even when exposed to the challenging
conditions of pulse current discharges, the proposed model maintains a high level of
accuracy in SOC estimation. These comprehensive results unequivocally highlight the
profound effectiveness and robustness of the AdaBoost-BPNN model, establishing it as an
exceptionally reliable tool for achieving highly precise battery SOC estimations across a
wide range of operating scenarios.

Our future research endeavors will continue to focus on advancing the field of SOC
estimation, with a specific emphasis on lithium-ion batteries. We plan to delve deeper
into this domain, aiming to unravel the intricate relationships between different model
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structures and various battery parameters that inherently impact the performance of
SOC estimation techniques. Furthermore, we are dedicated to continuously refining the
algorithm, driven by an unwavering pursuit of excellence, to achieve the formidable
goals of real-time control and precise correction of battery SOC values. This multifaceted
approach will further solidify our commitment to enhancing the accuracy and applicability
of SOC estimation methodologies in the realm of lithium-ion batteries.
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Nomenclature

S0OC State of charge

BPNN Back propagation neural network
CcC Coulomb counting

DST Dynamic stress test

FUDS Federal urban driving schedule
MAX Maximum error

MOA Math optimizer accelerated

MOP Math optimizer probability

ocv Open circuit voltage

RMSE Root mean square error

RNN Recurrent neural network
SYMBOL

N Learning rate

net; The output of hidden layer

k The number of weak learners

@ The average value of the error rate
ARE;(j) The relative error

filx)) The output function

Dsum The normalization factor

X; The normalized value of x

Xmax The maximum value of input data
Xmin The minimum value of input data
x* The average of ¥max and Xpin

m The number of samples

Y; The real output value

Y;* The estimated output value
Appendix A

In this section, the modeling approach of individual BPNN models is presented. The
modeling environment used is MATLAB 2021b, and the built-in BPNN function of the
software is employed for modeling. In the AdaBoost algorithm, multiple individual BPNN
models are combined to form a strong learner for a more accurate SOC prediction. These
BPNN models are constructed using the same method, wherein the input parameters of the
model are battery voltage, current, and temperature, and the output is the corresponding
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SOC. For the model’s hyperparameters, an empirical setting method is utilized to achieve
the highest accuracy in SOC prediction. The number of hidden layers is set to one, and the
number of neurons is set to ten, determined through sensitivity experiments. The structure
of an individual BPNN is shown in Figure Al.

Temperature

Input Hidden Output

Figure Al. Structure of individual BPNN for SOC estimation.
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