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Abstract: The growing interest in hydrogen production arises from its higher energy density, making
it an attractive option for energy storage and fuel applications. However, hydrogen production relies
heavily on fossil fuels, producing substantial CO2 emissions. Meanwhile, the organic fraction of
municipal solid waste (OFMSW), which constitutes a significant portion of solid waste, predominantly
ends up in landfills, leading to methane emissions. Harnessing hydrogen from OFMSW offers an
opportunity to offset methane emissions and promote cleaner hydrogen production compared to
conventional methods. Various pretreatment methods and production techniques have been explored
for hydrogen production from OFMSW, including bio-photolysis, photo-fermentation, microbial
electrolysis, and dark fermentation. This study presents a comparative analysis of these methods,
evaluating their efficiency, scalability, and potential challenges for hydrogen fuel production from
OFMSW. By exploring these avenues, this study found the current hydrogen fuel production scenarios
where OFMSW contributes a small portion due to the limited yield. Microbial electrolysis can help
to improve the yield and feedstock quality. This study recommends further investigation into the
advancement of sustainable hydrogen production and provides insights into overcoming the obstacles
associated with this promising field.

Keywords: hydrogen fuel; organic fraction of MSW (OFMSW); hydrogen production process
parameters; hydrogen production scenarios; critical challenges

1. Introduction

The generation of municipal solid waste (MSW) is rapidly escalating worldwide, pro-
pelled by increasing consumption patterns and population growth. Projections indicate a
staggering estimate of 3.76 billion tons of global MSW generation by 2050 [1]. Of significant
concern is the substantial portion of MSW consisting of organic matter, accounting for ap-
proximately 71%, and most of them are typically destined for landfills [2]. Within landfills,
the anaerobic digestion process gives rise to the release of methane (CH4), a potent green-
house gas. Landfill methane is responsible for approximately 14% of methane emissions
in the United States of America (USA) which is the third largest methane contributor [2].
Efforts have been made to mitigate landfill methane emissions through energy recovery
processes like landfill gas collection. However, a noteworthy quantity of methane continues
to escape into the atmosphere. It is crucial to recognize that methane has a global warming
potential 28 times higher than carbon dioxide (CO2) [3]. Consequently, there is an urgent
need for an alternative waste management system for the organic fraction of municipal
solid waste (OFMSW).

Waste-to-energy (WTE) plants present a potential solution to address methane emis-
sions. However, the construction and operation of WTE plants require substantial initial
investment, and concerns exist regarding emissions and ash disposal. Additionally, optimal
economics for WTE plants necessitate the availability of significant amounts of waste on
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a daily basis, leading to logistical challenges and a decline in the number of WTE plants
in the USA in recent years [4]. For instance, anaerobic digestion is another waste manage-
ment technique employed for OFMSW, involving the conversion of OFMSW into a slurry,
followed by methane production through natural microbial activity. Although this process
allows for energy generation through methane combustion, leakage remains a significant
issue in anaerobic digestion reactors, releasing substantial amounts of methane into the
atmosphere [5].

Composting offers an alternative approach to OFMSW management, where the waste
is transformed into compost that can be utilized as fertilizer. The efficiency of composting
is influenced by various process parameters, such as the carbon-to-nitrogen (C/N) ratio,
temperature, and aeration. Maintaining an optimal C/N ratio is crucial, as higher ratios
slow down the process, while lower ratios can lead to the production of harmful gases.
Additionally, composting heavily relies on the availability of raw materials to meet the
desired C/N ratio, which poses constraints [6]. However, composting, particularly when
derived from food waste, can produce valuable fertilizer containing different nutrients
beneficial for plants.

While traditional waste management methods have their respective advantages and
disadvantages, there exists substantial potential for hydrogen fuel production from OFMSW.
Hydrogen fuel has gained considerable attention due to its various benefits, including
zero emissions upon combustion (producing only water and energy). Moreover, hydrogen
exhibits an exceptionally high energy density, with approximately 122 MJ/kg, nearly three
times higher than conventional fossil fuels. Furthermore, hydrogen can be sourced from
renewable sources, enhancing its appeal as a sustainable energy solution [6].

As shown in Figure 1, hydrogen fuel has more than 2.75 times higher energy value
per unit weight, higher heating value, zero carbon emission, and insignificant fuel density
compared to other fuel types. Energy conversion from hydrogen fuel requires the oxidation
of hydrogen which emits water only. On the other hand, conventional gasoline emits
almost 1 kgC per unit weight of carbon emission (CE). Therefore, hydrogen fuel could
be one of the most environmentally friendly fuels. However, due to the excessively low
density of hydrogen (Figure 1d), storage and transportation remain challenging. There is
one disadvantage to occupying more volume for hydrogen fuel. Even though the liquid
hydrogen density is 0.07 g/cm3, hydrogen fuel requires 2.6 times more volume than
gasoline [7]. The low density is also a limiting factor for storage. Hydrogen’s low density
necessitates a significant volume for storage [8].
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Hydrogen is a versatile energy carrier that can be produced through the electrolysis of
water [10]. In 2021, the global demand for hydrogen surged to 94 million tons, which is 5%
more than the pre-pandemic levels. The majority of this growth was driven by conventional
applications in the refining and industrial sectors, alongside a growing trend in emerging
uses like fuel cell vehicles. It is estimated that the total life-cycle cost for hydrogen-powered
fuel cell vehicles is lower than for diesel-powered buses. Some noteworthy advancements
include the adoption of hydrogen in steel production, the introduction of hydrogen fuel cell
trains in Germany, and the initiation of multiple pilot projects within the shipping industry.
Furthermore, the power sector is increasingly focusing on hydrogen and ammonia as
key areas of interest. However, this process demands a significant amount of electricity
using electrolysis (the Gibbs free energy for electrolysis at 298 K is 273.13 kJ) to break
the water molecule, and if the electricity originates from fossil fuel sources, the overall
environmental impact can be compromised. On the other hand, the use of renewable energy,
such as wind, solar, or hydropower-generated electricity to produce hydrogen exhibits
better environmental benefits [11]. Currently, the majority of hydrogen production relies on
fossil fuel sources, as illustrated in Figure 2, highlighting most of the scenarios of hydrogen
production from different fuel sources. Almost 50% of hydrogen fuel is produced from
natural gas. The remaining 50% of the hydrogen fuels are produced from other sources,
like coal gasification and electrolysis. Fossil fuels are a potential source of hydrogen gas,
and their utilization raises concerns due to their associated environmental consequences.
For instance, in steam methane reforming (SMR), coal gasification, and methane pyrolysis
processes, the production of one mole of hydrogen results in the release of 0.25, 0.83, and
0.05 mol of carbon dioxide (CO2), respectively [12]. Similarly, wood and coal combustion
generate 10 and 2 atoms of CO2, respectively in exchange for one mole of hydrogen [13].
These findings emphasize the carbon-intensive nature of hydrogen production from fossil
fuel sources. Emitted carbon from fossil fuel sources is non-biogenic [14], while only
0.1% of hydrogen fuel comes from other sectors, like municipal solid waste, agro-residues,
wastewater, and so on. This illustrates OFMSW as a potential underexplored source for
hydrogen fuel production. OFMSW comprises mainly biomass like paper, food waste,
and yard waste. Emissions from biomass are biogenic. As a result, the emissions to
produce hydrogen fuel from biomass are carbon-neutral [15]. OFMSW primarily consists
of cellulose, hemicellulose, starch, and sugar, all of which contain abundant hydrogen.
Extracting this hydrogen could be a sustainable alternative to hydrogen fuel. Theoretically,
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one mole of sugar can yield up to 12 moles of hydrogen (Equations (1) to (3)), highlighting
the substantial hydrogen potential within OFMSW. It is a potential source of hydrogen.

C6H12O6 + 6H2O + Light→ 6CO2 +12 H2 (1)

CH3COOH + 2H2O + Light→2CO2 + 4H2 (2)

CH3CH2COOH + 6H2O + Light→ 4CO2 + 10H2 (3)
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Figure 2. Contribution of different types of fuel for global hydrogen production [16].

The conventional approach to hydrogen production poses challenges to achieving
the net-zero emission goal. OFMSW represents a renewable source for hydrogen produc-
tion [17]. For instance, in a study by Luo et al. [18], the pyrolysis of mixed MSW yielded
18% hydrogen as a byproduct of syngas production. Another approach by Wei et al. [19]
involved supercritical water gasification, which resulted in the production of 12 mol/kg
of hydrogen using food waste as a simulated feedstock. The thermal gasification of MSW
generates hydrogen as part of syngas, which can be utilized as fuel [20]. The most widely
used methods for producing hydrogen fuel from biomass involve thermal processes, such
as the steam reforming of methane and gasification. However, steam methane reforming
necessitates higher temperatures (800 K to 1000 K) and increased pressure, resulting in
elevated operational costs. Impurities are frequently present in municipal solid waste, and
impurities like ash and lignin can negatively impact the efficiency of hydrolysis processes.

In contrast, biological approaches for hydrogen production can be carried out at am-
bient temperatures, and the influence of contaminants on hydrogen production is less
significant. This study aims to explore the production of hydrogen through biological
methods, specifically fermentation, and investigate the pretreatment techniques for hydro-
gen fuel production. This study primarily emphasizes the hydrogen production process
through biological pathways, with a special focus on the pretreatment phase. Furthermore,
it addresses the complexities associated with the collection and sorting of the organic
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fraction of municipal solid waste (OFMSW). Additionally, this study provides a detailed
examination of several pivotal process parameters essential to the hydrogen production
process.

2. Feedstocks: Collection and Pretreatment Process

OFMSW emerges as a promising resource for hydrogen fuel production, which refers
to the biodegradable component of municipal solid waste (MSW), encompassing food
waste, yard waste, paper, and potentially other materials, such as wood chips, textiles,
and leather. Within this waste stream, food scraps and leftovers constitute the largest
proportion, accounting for approximately 60%, while green waste comprises around 34%
of the biodegradable waste [21]. These findings underscore the substantial potential of
OFMSW as a valuable feedstock for hydrogen fuel production, as listed in Table 1.

Table 1. Hydrogen yield from different waste types through the dark fermentation process [22].

Waste Type Microorganism Hydrogen Yield Reference

Wastewater Mixed culture 1.6 ± 0.3 L/L [23]

Agricultural waste Mixed culture 71.8 ± 5.19 mL/g [24]

Food waste Mixed culture Controlled at 4.0–4.6
219.9 mL/g [25]

Plastic waste - >92 vol% [26]

Fruit and vegetable
waste Mixed culture 3.46 mol/mol total

sugar [27]

Cone Mixed culture 107.7 kg/t-bio [28]

Micro algae Mixed culture 31–36% [29]

Cocoa waste - 107 L kg−1 [30]

Pine tree (saw dust) - 0.1–0.4% [28]

Palm oil mill
effluent Mixed culture 108.35 mL/g

–Reducing sugars [31]

Date seed waste Mixed culture 103.97 mmol/L
glucose [32]

Starch
wastewater Mixed culture 5.79 mmol/g—COD [31,33]

Beverage
wastewater - 1.53 mol/mol-

hexose [31,34]

OFMSW, including
paper, cardboard No external inoculum 57.3 mL/g [25]

As shown in Table 1, different types of waste have different yields based on the
process parameters and feedstock variability. Wastewater to hydrogen followed by the
dark fermentation process had the highest yield when Rhodobacter sphaeroides B-3059
bacteria was used [23].

One of the critical challenges of OFMSW is the feedstock composition. OFMSW is very
heterogeneous. OFMSW will have spatial and temporal variation. Its composition varies
based on the region, demographics, citizens’ behavior, and so on [35,36]. Based on the
composition of OFMSW, the process parameters may vary. Therefore, it is very important
to optimize the process parameters based on the compositional changes. Predictive analysis
of the OFMSW composition will help to optimize the process parameters. A typical waste
management system that is focused on landfilling and incineration does not require source
separation. This impacts the feedstock quality. Therefore, effective feedstock separation
by ensuring the education of people and enhancing the waste management system is
important. The effective source OFMSW collection will be another important parameter
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in the hydrogen fuel production economy. The collection process involves maximum
cost in waste management. For instance, smart bin systems for waste collection based on
multi-sensory applications can help to reduce the collection cost [37].

2.1. Collection Process

Effective waste sorting poses a significant challenge in the management of municipal
solid waste (MSW). Among the various strategies, source separation has proven to be one
of the most efficient methods for sorting materials. In the case of the OFMSW, separate col-
lection becomes essential. Consequently, the establishment of a dedicated collection route
becomes imperative, taking into consideration the collection frequency and addressing
potential threats from rodents [38].

To ensure the viability of hydrogen generation plants, their proximity to the munic-
ipality becomes crucial. Additionally, providing additional collection facilities, such as
rail transport, can enhance accessibility to hydrogen generation plants. Expanding their
capacity to receive a greater amount of waste would facilitate the establishment of larger
facilities, enabling economically feasible hydrogen generation plants. For example, Gomes
et al. [39] conducted a study comparing the separate collection of OFMSW in a municipality
in Portugal, revealing that the overall cost of separate collection was comparable to other
waste management methods [39].

2.2. Pretreatment Process for Hydrogen Production

Hydrogen fuel generation requires some pretreatment before going to any production
process. Pretreatment varies based on the composition of the feedstock. Figure 3 illustrates
different categories of pretreatment processes for hydrogen production.
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The two main categories of physical pretreatment are thermal pretreatment and auto-
claving. The primary aim of thermal treatment is to facilitate the solubilization or hydrolysis
of biomass. By subjecting the biomass to elevated temperatures, the denaturing of mi-
crobes and the breaking of chemical bonds are achieved. Given that the OFMSW primarily
consists of cellulose-based waste, an appropriate pretreatment temperature range of 50
to 220 ◦C for a duration of 24 h can be employed for thermal pretreatment. On the other
hand, autoclaving is a sterilization technique that utilizes high temperature and pressure to
effectively eliminate harmful microbes. This process involves subjecting the materials to a
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temperature of 121 ◦C and applying a pressure of 15 psi. Autoclaving not only achieves
sterilization but also ensures the removal of potentially harmful microorganisms from the
treated biomass. Pretreatment via an acid or alkali solution is also a potential candidate
for preparing hydrogen fuel feedstock. The pretreatment process involves the utilization
of strong acids and bases, such as H2SO4, HCl, and H2O2. Acid pretreatment leads to the
dissolution of cellulose and hemicellulose, while basic pretreatment aims to reduce the
crystallinity of unstructured and unmodified cellulose. This step is particularly important
in the context of hydrogen production, as it helps improve the thermodynamic stability
of the system, considering that hydrogen production tends to lower the pH of the system.
Apart from physical and chemical pretreatment methods, biological pretreatment can play
a crucial role in the feedstock. Biological pretreatment by enzymes is an excellent way to
remove lignins and enhance cellulose stability. This pretreatment approach helps to break
down the lignin matrix and improve the accessibility of cellulose for subsequent processing.
Additionally, enzymatic pretreatment plays a crucial role in converting cellulosic feedstock
into sugars, which are highly suitable for hydrogen production. Enzymes facilitate the
breakdown of complex carbohydrates into simpler sugar molecules, providing a valuable
substrate for subsequent hydrogen production processes. Since OFMSW is heterogenous in
size, shape, and properties, homogenization is important to facilitate further processing.
Particle size reduction will increase the surface area of the feedstock, thereby enhancing
the reaction rate. This is achieved by reducing the size of the feedstock through processes
such as chipping and grinding. Ultrasonication is a common method used for mechanical
pretreatment, which involves the application of high-frequency sound waves to break
down the biomass and achieve a smaller particle size, resulting in a higher surface area for
improved reaction kinetics.

3. Hydrogen Fuel Production Process

Hydrogen production through the splitting of water molecules is a fundamental pro-
cess, with the choice of energy sources playing a pivotal role in achieving environmentally
friendly results. The conventional reliance on fossil fuel-based energy poses a challenge to
the goal of achieving net-zero emissions. Consequently, the utilization of solar energy has
emerged as a highly appealing alternative. The enhancement of photocatalytic activity is
essential for efficient hydrogen production.

3.1. Electrocatalytic Hydrogen Evolution

The introduction of a heterojunction between the donor polymer (PTB-Th) and the non-
fullerene acceptor (EH-IDTBR) in organic nanoparticles has been shown to boost photolytic
activity. Additionally, the controlled synthesis of g-C3N4 and the formation of an isotype
heterojunction that promotes charge separation can increase photocatalytic hydrogen evolu-
tion. The optimization of the charge separation, specific surface area, and material diffusion
sites further contributes to overall improved hydrogen production [40]. Notably, the interfa-
cial Ti-N (triple bond, length as m-dash) bonding in a g-C3N4/TiH1.92 type-II heterojunction
photocatalyst significantly enhances photocatalytic [41] hydrogen evolution from water
splitting [42]. Furthermore, a route derived from metal–organic frameworks (MOFs) to
prepare composition-tunable Fe–Ni bimetallic phosphides as efficient electrocatalysts has
been explored. The selective control of the phosphating temperature allows for obtaining
electrocatalysts with specific nanostructures, influencing the crystallinity, morphology, and
composition. The synergistic modulation of these parameters enables efficient electrocat-
alytic hydrogen evolution and oxygen evolution reactions, ultimately achieving overall
water splitting [43]. The use of noble platinum (Pt) group electrocatalysts in large-scale
applications is limited, prompting the exploration of earth-abundant/non-noble catalysts,
like molybdenum carbide (MoxC: MoC or Mo2C). This material has garnered attention for
its Pt-like catalytic activity, cost-effectiveness, chemical stability, and natural abundance.
Various approaches, including increasing surface-active sites and conductivity through
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modification methods, as well as phase engineering and doping, have been demonstrated
to enhance the performance of molybdenum carbide electrocatalysts [44].

Additionally, solar-driven photoelectrochemical (PEC) water splitting stands out as a
promising technology for sustainable hydrogen production, hinging on the development
of efficient and stable photoanodes for the water oxidation reaction. The thickness and mi-
crostructure of semiconductor films play a crucial role in determining their PEC properties.
In this context, three-dimensional (3D) interconnected nanoporous Ta3N5 film photoanodes
with controlled thickness were successfully developed through galvanostatic anodization
and NH3 nitridation. Notably, porous Ta3N5 nanoarchitectures (NAs), with a thickness
of 900 nm exhibited the highest PEC performance due to optimal light-harvesting and
charge separation [45]. There are two main types to produce bio-hydrogen: light-dependent
processes and light-independent processes. Among the light-dependent processes, bio-
photolysis and photo fermentation are prominent methods. Biophotolysis encompasses
both direct and indirect pathways for hydrogen production, utilizing light energy to drive
the conversion of water into hydrogen. On the other hand, photo fermentation involves
using photosynthetic microorganisms to produce hydrogen from organic compounds in
the presence of light. In contrast, dark fermentation is a light-independent process that
occurs under anaerobic conditions. It involves the fermentation of organic matter, resulting
in the production of hydrogen and organic acids. The produced hydrogen can then be
further utilized through microbial electrolysis cells or subjected to the photo fermentation
process for enhanced hydrogen production.

3.2. Photobiological Hydrogen Production

By utilizing these different processes, hydrogen can be efficiently produced from
various sources, offering versatile options for sustainable hydrogen fuel production as
shown in Figure 4. For example, bio-photosynthesis, as a method for hydrogen production,
involves splitting water molecules into hydrogen and oxygen using either sunlight or
electricity. However, this process is known to have certain limitations. Firstly, the efficiency
of utilizing light energy in the bio-photosynthesis process is relatively low. Additionally,
the presence of oxygen can significantly hinder the efficiency of hydrogen production.
Due to the sensitivity of bio-photosynthesis to oxygen, its presence can impede hydrogen
production and limit the overall hydrogen yield. As a result, the process may not be as
efficient as desired for large-scale hydrogen production. Researchers continue to explore
and develop strategies to optimize bio-photosynthesis and overcome these challenges,
aiming to improve the efficiency and yield of hydrogen production in this process.

Indirect bio-photosynthesis utilizes the hydrogenase enzyme and sunlight to split the
water molecule into oxygen and hydrogen. This process is also oxygen-sensitive and has
low-light utilization. So, the yield remains very low.

2H2O + light energy→ 2H2 + O2 (4)

3.2.1. Photo Fermentation

As shown in Figure 5, photo fermentation is a process that involves the use of a light
source and non-sulfur bacteria to decompose volatile organic acids, resulting in the release
of hydrogen gas (Equation (5)). The bacteria involved in this process possess a photosystem
that has a limited ability to split water molecules. As a result, the natural thermodynamics
of the process are not favorable for efficient hydrogen production.

CH3COOH + 2H2O + light energy→ 4H2+ 2CO2 ∆Go + 104 kJ (5)

To overcome this thermodynamic limitation, additional energy or electron sources
must be provided to facilitate the reaction and make it energetically favorable. The process
can be driven towards hydrogen production with improved efficiency by supplying extra
energy or electron sources. Researchers are exploring various strategies to optimize this
process and enhance its thermodynamic feasibility for efficient hydrogen gas generation.
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3.2.2. Dark Fermentation

Dark fermentation (Figure 6), conducted under anaerobic conditions, is a relatively
faster process compared to photo fermentation and bio-photosynthesis. It also exhibits
higher yield percentages, with studies reporting up to 30% yield [46]. In contrast, photo
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fermentation and bio-photosynthesis processes typically have lower efficiencies ranging
from 0.1% to 0.5%. As a result, dark fermentation has emerged as one of the most employed
techniques for hydrogen fuel production.

Energies 2023, 16, x FOR PEER REVIEW 11 of 17 
 

 

 
Figure 6. Dark fermentation for hydrogen production. 

Research has shown that psychrophilic bacteria, such as those isolated from Antarc-
tica, have the potential for biohydrogen production. The temperature range for psychro-
phile microorganisms is 0 to 25 °C. Similarly, hyperthermophilic and extremely thermo-
philic bacteria and archaea, including Caldicellulosiruptor saccharolyticus, Thermoanaer-
obacter tengcongensis, Thermotoga maritima, and Pyrococcus furiosus, have been found 
to efficiently produce hydrogen. The use of thermophilic fermentation, particularly by 
Thermotoga species, has also been identified as a promising strategy for biohydrogen pro-
duction [41]. Thermophiles bacteria works effectively from the 45 to 65 °C temperature 
range. Furthermore, the potential for the commercial application of thermophilic biohy-
drogen production has been highlighted, with a focus on metabolic pathways, enzymes, 
and fermentation of commercially viable substrates [48]. 

The following reaction (Equations (6) to (9)) occurs during hydrogen production 
from biomass: 

C6H12O6  +  6H2O → 6CO2  +  12H2 (6)

C6H12O6  +  2H2O → 2CH3COOH  +  2CO2  +  4H2 (7)

C6H12O6  +  6H2O → 2CH3CH2CH2COOH  +  2CO2  +  2H2 (8)

C6H12O6 → CH3COOH  +  CH3CH2COOH  +  CO2  +  H2 (9)

In the process of dark fermentation, along with hydrogen fuel production, valuable 
metabolites, such as acetic acid, butyric acid, and lactic acid are also generated. These or-
ganic acids have various applications and can be utilized in different industries. 

However, it is important to note that a significant amount of carbon dioxide (CO2) is 
also produced alongside hydrogen during dark fermentation. To ensure cleaner hydrogen 
production and reduce the environmental impact, it is crucial to implement effective CO2 
separation techniques. By separating and capturing the CO2, the purity of the produced 
hydrogen can be enhanced, making it more suitable for various applications, including 
fuel cells and other hydrogen-based technologies. Implementing efficient CO2 separation 

Figure 6. Dark fermentation for hydrogen production.

During dark fermentation, the biomass undergoes hydrolysis, converting it into glu-
cose. Subsequently, in the absence or limited presence of oxygen, the glucose undergoes
fermentation. This fermentation process generates hydrogen fuel. However, alongside
hydrogen fuel production, organic acids are also formed. These organic acids can reduce the
overall production rate of hydrogen fuel. Researchers are exploring strategies to optimize
dark fermentation and mitigate the inhibitory effects of organic acids to enhance hydro-
gen production efficiency [47]. Dark fermentation requires microbes for the fermentation
process. Since OFMSW has different types of waste for which the degradation rate varies,
mixed culture microorganisms are required for its fermentation.

Research has shown that psychrophilic bacteria, such as those isolated from Antarctica,
have the potential for biohydrogen production. The temperature range for psychrophile
microorganisms is 0 to 25 ◦C. Similarly, hyperthermophilic and extremely thermophilic
bacteria and archaea, including Caldicellulosiruptor saccharolyticus, Thermoanaerobac-
ter tengcongensis, Thermotoga maritima, and Pyrococcus furiosus, have been found to
efficiently produce hydrogen. The use of thermophilic fermentation, particularly by Ther-
motoga species, has also been identified as a promising strategy for biohydrogen produc-
tion [41]. Thermophiles bacteria works effectively from the 45 to 65 ◦C temperature range.
Furthermore, the potential for the commercial application of thermophilic biohydrogen
production has been highlighted, with a focus on metabolic pathways, enzymes, and
fermentation of commercially viable substrates [48].

The following reaction (Equations (6) to (9)) occurs during hydrogen production from
biomass:

C6H12O6 + 6H2O→ 6CO2 + 12H2 (6)

C6H12O6 + 2H2O→ 2CH3COOH + 2CO2 + 4H2 (7)
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C6H12O6 + 6H2O→ 2CH3CH2CH2COOH + 2CO2 + 2H2 (8)

C6H12O6 → CH3COOH + CH3CH2COOH + CO2 + H2 (9)

In the process of dark fermentation, along with hydrogen fuel production, valuable
metabolites, such as acetic acid, butyric acid, and lactic acid are also generated. These
organic acids have various applications and can be utilized in different industries.

However, it is important to note that a significant amount of carbon dioxide (CO2) is
also produced alongside hydrogen during dark fermentation. To ensure cleaner hydrogen
production and reduce the environmental impact, it is crucial to implement effective CO2
separation techniques. By separating and capturing the CO2, the purity of the produced
hydrogen can be enhanced, making it more suitable for various applications, including
fuel cells and other hydrogen-based technologies. Implementing efficient CO2 separation
processes plays a vital role in achieving cleaner and more sustainable hydrogen production
from dark fermentation [47].

3.3. Microbial Electrolysis Cell (MEC)

Figure 7 illustrates a microbial electrolysis cell (MEC), a galvanic cell type, the anode
and cathode are connected, and the medium used is the waste material. This process
enables the conversion of acetic acid, among other organic compounds, into hydrogen fuel
through a sufficient electricity supply.
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Initially, MECs were developed with a double-chamber system, where the anode and
cathode were separated by a proton exchange membrane. This design facilitated easier
control of the process parameters. However, the single-chamber MEC system has proven
to be more advantageous in terms of efficiency and cost-effectiveness. As a result, the
single-chamber MEC configuration is predominantly utilized in practice.

In the MEC, the following reaction in Equations (10)–(12) takes place:
At the anode:

CH3COOH→ 2H+ + 2e− + CO2 (10)

At the cathode:
2H+ + 2e− → H2 (11)

Overall reaction:
CH3COOH→ H2 + CO2 (12)
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In MECs, the choice of electrode materials plays a crucial role. The electrodes need
to possess high electrical conductivity to facilitate efficient electron transfer during the
electrochemical reactions. Commonly used conductive materials include carbon and carbon
cloth due to their excellent conductivity and cost-effectiveness.

Platinum is recognized as a highly efficient electrode material due to its catalytic
properties. However, its high cost limits its widespread use in MEC applications. As
an alternative, molybdenum disulfide (MoS2) has emerged as a promising candidate for
electrode materials in MECs. MoS2 offers several advantages, including its relatively low
cost and good electrochemical activity. It exhibits catalytic behavior similar to platinum,
making it a viable and more affordable alternative for hydrogen production in MECs.

The selection of appropriate electrode materials in MECs is crucial for achieving opti-
mal performance and cost-effectiveness, and materials like carbon, carbon cloth, platinum,
and MoS2 are among the options considered based on their conductivity, catalytic activity,
and economic viability.

4. Critical Process Parameters and Challenges of Hydrogen Production

Figure 8 illustrates the crucial process parameters that have an impact on hydrogen
production. For instance, the temperature is a critical factor influencing hydrogen produc-
tion as it directly affects microbial activity [49]. The activity of microbes is highly sensitive
to temperature, and operating outside the optimal temperature range can significantly
impair microbial activity, leading to lower hydrogen yields [50]. Moreover, the amount of
acid production during fermentation is also influenced by the temperature [51].
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In addition, the pH is another crucial parameter that plays a vital role in hydrogen
production [52]. During fermentation, the generation of volatile fatty acids causes a decrease
in pH. Microbes have a specific pH range within which they can function optimally,
typically between pH 5 and 7 [53]. If the pH drops below this range, the microbial activity
will be hindered, resulting in decreased hydrogen production. Therefore, controlling and
maintaining the pH within the suitable range can significantly improve the hydrogen
production efficiency [54].
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Partial pressure of hydrogen also affects the hydrogen production process. Some
reversible reactions involving ferredoxin and hydrogenase occur during hydrogen gen-
eration. Lowering the partial pressure of hydrogen can facilitate the flow of hydrogen
gas. Techniques such as vacuuming or stirring can lower the partial pressure and enhance
hydrogen production [55].

Lignin hindrance is a challenge associated with lignocellulosic materials used as feed-
stock. During pretreatment, these materials generate inhibitors that can impede enzymatic
reactions during hydrolysis and fermentation, limiting hydrogen production.

The hydraulic retention time (HRT) is the time period for which the microbes are
retained in the system. Different microbes have varying growth times, and a lower reten-
tion time reduces the opportunity for microbial growth, potentially impacting hydrogen
production rates [56].

The choice of microorganisms is crucial, as different microbes have specific capabili-
ties and work optimally with different feedstocks. Optimizing the operating conditions,
including the temperature, pH, and selecting appropriate microorganisms, is essential for
maximizing hydrogen production. Additionally, considering the C/N ratio of the feedstock
is important for efficient microbial activity and hydrogen yield.

Hydrogen is a highly promising fuel source, but its current yield percentage poses
challenges to achieving techno-economic feasibility. While there is significant focus on
hydrogen production from wastewater treatment and agricultural residue, research on
hydrogen production from OFMSW is relatively limited. The heterogeneity of OFMSW
negatively impacts hydrogen generation. To improve hydrogen yield from OFMSW, var-
ious technological developments can be pursued. One approach is to integrate multiple
production routes to enhance productivity. Another avenue is the application of genetic
engineering to develop more efficient microorganisms for hydrogen production. Addi-
tionally, the use of catalysts can positively contribute to the hydrogen production process.
For instance, in the electrolysis process, employing nano-materials as electrodes has the
potential to improve hydrogen production efficiency.

It is worth noting that hydrogen production from OFMSW does emit some CO2. There-
fore, an effective carbon capture technique can significantly reduce the carbon footprint
on the environment. Implementing proper technologies and effective waste management
systems can facilitate the conversion of OFMSW into hydrogen while minimizing the
environmental impact.

5. Conclusions and Recommendation

This study concludes that the organic fraction of municipal solid waste could be one of
the potential and sustainable feedstocks for hydrogen production. In addition, it could be
an alternative waste management approach by deploying an efficient conversion technique
to produce clean and green hydrogen fuel. Implementing this approach can minimize
the greenhouse gas emissions from landfills and other associated negative impacts on the
environment. On the contrary, this study also identified key challenges for the collection
and pretreatment of OFMSW. Recent studies have revealed that a smart bin system, public
awareness, and effective ultrasonic pretreatment could minimize these challenges. From
the comprehensive study of different production methods, this study revealed that the dark
fermentation technique could be a promising technique for high-yield hydrogen production.
However, implementing effective CO2 capture can play a vital role in achieving cleaner
and sustainable hydrogen production from the dark fermentation process. Finally, this
study also identified six process parameters and their impact on hydrogen production.
Furthermore, this study critically analyzed the challenges associated with green hydrogen
production from the organic fraction of municipal solid waste.

This study recommends further investigation into the advancement of sustainable
hydrogen production and provides insights into overcoming the obstacles associated with
this promising field.
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