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Abstract: This study aims to identify an equation for predicting the calorific value for heat-treated
biomass using structural analysis. Different models were constructed using 129 samples of cellulose,
hemicellulose, and lignin, and calorific values obtained from previous studies. These models were
validated using 41 additional datasets, and an optimal model was identified using its results and
following performance metrics: the coefficient of determination (R2), mean absolute error (MAE),
root-mean-squared error (RMSE), average absolute error (AAE), and average bias error (ABE). Finally,
the model was verified using 25 additional data points. For the overall dataset, R2 was ~0.52, and the
RMSE range was 1.46–1.77. For woody biomass, the R2 range was 0.78–0.83, and the RMSE range was
0.9626–1.2810. For herbaceous biomass, the R2 range was 0.5251–0.6001, and the RMSE range was
1.1822–1.3957. The validation results showed similar or slightly poorer performances. The optimal
model was then tested using the test data. For overall biomass and woody biomass, the performance
metrics of the obtained model were superior to those in previous studies, whereas for herbaceous
biomass, lower performance metrics were observed. The identified model demonstrated equal or
superior performance compared to linear models. Further improvements are required based on a
wider range of structural biomass data.

Keywords: woody biomass; herbaceous biomass; prediction model; calorific value

1. Introduction

Biomass is used as a countermeasure against environmental pollution. Research has
been conducted to use biomass as fuel [1], remove environmental pollution [2], or use it as
an environmental improvement agent [3]. These biomass can be analysed using various
methods, including elemental, proximate, and structural analyses. In the context of biomass
composition, structural analysis refers to the method of analysing the contents of cellulose,
hemicellulose, and lignin, which make up the biomass [4–6]. Cellulose is represented as
[C6H10O5]n and consists of linear chains composed of hundreds to thousands of D-glucose
units connected by beta (1→4) glycosidic bonds, as shown in Figure 1. Hemicellulose
is composed of hexose sugars, such as glucose, mannose, galactose, and rhamnose, and
pentose sugars, such as arabinose and xylose. They are classified based on the main sugar
residues in their backbones, which can be xylan, mannan, or glucan, as shown in Figure 2.
Lignin refers to hydrophobic phenolic molecules found in various components of woody
plants, such as conifers and hardwoods. Precursor molecules like p-coumaryl alcohol (H),
coniferyl alcohol (G), and sinapyl alcohol (S) (Figure 3) form complex three-dimensional
polymer structures via β-O-4 or carbon-carbon linkages [7,8].
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Previous studies have predicted calorific values of different biomass considering 
based on their structural characteristics. Howard [9] investigated the variation in calorific 
values based on different parts of pinewood and highlighted the correlation between ex-
tractives and calorific values. Tillman [10] utilised a single variable in a model to estimate 
the higher heating value (HHV) of wood, which was expressed as dry weight as well as 
on a dry ash-free basis. White [11] introduced four equations, one of which calculated the 
calorific value of wood-containing extractives, whereas the other three calculated the cal-
orific values of woods without extractives. Additionally, White proposed a fifth equation 
inspired by Tillman’s work. Callejón-Ferre et al. [12] predicted a correlation between the 
structural analysis and calorific values of plant residues within greenhouses in Almería, 
Spain. Subsequently, predictive equations for the heating value based on structural anal-
ysis were also proposed for various biomass and thermally treated biomass. Table 1 sum-
marizes some of the previous studies that predicted HHV by analysing the structure.  

Table 1. Models used in previous studies to predict a higher heating value (HHV) using structure 
analysis. 

Model Biomass Reference 𝐻𝐻𝑉 = 19.307 + 0.118[𝐸] Pine [9] 𝐻𝐻𝑉 = 0.17389[𝐻𝑜] + 0.26629ሺ100 − [𝐻𝑜] Extractive-free wood [10] 𝐻𝐻𝑉 = 17.9017 + 0.0744[𝐿] + 0.0661 [𝐸] Unextracted wood, four softwoods and four 
hardwoods 

[11] 𝐻𝐻𝑉 = 17.7481 + 0.0800[𝐿∗]ሺ100 − [𝐸]ሻ + 0.0886[𝐸] 
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Figure 1. Structure of cellulose.
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Figure 2. Structure of hemicellulose (arabinoglucuronoxylans).
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Previous studies have predicted calorific values of different biomass considering based
on their structural characteristics. Howard [9] investigated the variation in calorific values
based on different parts of pinewood and highlighted the correlation between extractives
and calorific values. Tillman [10] utilised a single variable in a model to estimate the
higher heating value (HHV) of wood, which was expressed as dry weight as well as
on a dry ash-free basis. White [11] introduced four equations, one of which calculated
the calorific value of wood-containing extractives, whereas the other three calculated the
calorific values of woods without extractives. Additionally, White proposed a fifth equation
inspired by Tillman’s work. Callejón-Ferre et al. [12] predicted a correlation between the
structural analysis and calorific values of plant residues within greenhouses in Almería,
Spain. Subsequently, predictive equations for the heating value based on structural analysis
were also proposed for various biomass and thermally treated biomass. Table 1 summarizes
some of the previous studies that predicted HHV by analysing the structure.

Table 1. Models used in previous studies to predict a higher heating value (HHV) using struc-
ture analysis.

Model Biomass Reference

HHV = 19.307 + 0.118[E] Pine [9]

HHV = 0.17389[Ho] + 0.26629(100− [Ho]) Extractive-free wood [10]

HHVB = 17.9017 + 0.0744[L] + 0.0661 [E] Unextracted wood, four softwoods and
four hardwoods

[11]
HHVB = 17.7481 + 0.0800[L∗](100− [E]) + 0.0886[E]

HHVB = 17.6132 + 0.0853[L∗] Extractive-free wood

HHVB = 17.4458 + 0.0907[L∗] Extractive-free softwood

HHVB = 18.0831 + 0.0637[L∗] Extractive-free hardwood
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Table 1. Cont.

Model Biomass Reference

HHVB = 0.0889[L] + 16.8218 Extractive-free wood and non-wood

[13]HHVB = 0.0893[L] + 16.9742 Extractive-free lignocellulosic materials

HHVB = 0.0877[L] + 16.4951 Extractive-free non-wood

HHVB = 0.0864[L] + 16.6922
Extractive-free sunflower shells, almond shells,

hazelnut shells, wood bark, olive husks,
hazelnut kernel husks, and walnut shells

[14]

HHV = 0.0979[L] + 16.292
Corn stover, corn cobs, sunflower shells, beech
wood, Ailanthus wood, hazelnut shells, wood

bark, olive husks, and walnut shells
[15]

HHV = 10.955 + 0.692[L]

Greenhouse crops [12]HHV = 8.211 + 0.150[H] + 0.767[L]

HHV = 7.405 + 0.163[H] + 0.065[C] + 0.682[L]

HHV = 16.1964 + 0.0555[L] Twenty biomass samples of agro-forestry
wastes and industrial wastes

[16]
HHV = 17.0704− 0.0202[H] + 0.0449[L]

HHV = 19.393 + 0.039[E]

Tree species from Oaxaca, Mexico [17]HHV = 23.527− 0.059[C]

HHV = 22.582− 0.051[C] + 0.032[E]

HHV = 17.893 + 0.068[L] Mixture of eight untreated and
heat-treated woods [18]

B converted from Btu/lb; * extractive free; [C] cellulose; [H] hemicellulose; [L] lignin; [E] extractive.

Equations for predicting the calorific value of heat-treated biomass have been proposed
for elemental and proximate analyses [19,20]. However, few equations are available to
predict the calorific value of heat-treated biomass based on structural analyses. Therefore, in
this study, we aimed to present an equation for predicting the calorific value of heat-treated
biomass based on structural analysis.

2. Materials and Methods
2.1. Collection of Data

From previous studies, 111 structural analyses and calorific value data were collated
for 59 woody and herbaceous biomass samples of 52 herbaceous plants [21–35]. All data
are summarised in Table S1. The distributions of the structural composition and calorific
value of the biomass are shown in Figures 4 and 5.
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2.2. Pearson Correlation Coefficient

The study employed the Pearson correlation coefficient (Equation (1)) to assess the rela-
tionships compositional (Cell, Hemi, and Lig) analyses and calorific value. This coefficient,
as defined in Equation (1), was employed to evaluate the extent of correlation between
two sets of data. It ranges from −1 to 1, where positive and negative values indicate a
direct and inverse relationship, respectively. Values closer to −1 or 1 signify a stronger
linear correlation, while those closer to 0 suggest a weaker correlation [36]. The analysis
involved deriving correlation equations with varying goodness-of-fit values through linear
and non-linear regressions applied to the final analysis data using IBM SPSS version 22.0.
However, for exponential and logarithmic regression models, they were not applied due to
the possibility of certain structural components becoming zero during thermal treatment.
The data analysis in this study employed a combination of the “stepwise” and “enter”
methods within the SPSS software. The input variables included C, H, L, squared (C2, H2,
and L2), and squared roots (C0.5, H0.5, and L0.5).

R =

(
∑n

i=1
(
Xi − X

)(
Yi −Y

))√
∑n

i=1
(
Xi − X

)2
√

∑n
i=1
(
Yi −Y

)2
(1)

2.2.1. Linear Regression

Linear regression is a statistical approach frequently employed to ascertain the value
of a dependent variable using an independent variable [37]. This method relies on a
mathematical equation that yields a single value by considering a combination of input
characteristics. The linear regression equation is represented as follows [38]:

ŷ = βO + x1β1 + x2β2 + x3β3 + . . . + xnβn (2)

2.2.2. Polynomial Regression

Polynomial regression is a statistical technique in which data are approximated using
a polynomial function [39]. It entails the incorporation of higher-order terms of variables to
estimate the polynomial regression and construct a curved response surface [40]. As there
is no universally applicable polynomial equation, the equation should be derived based on
the specific problem under consideration. The general expression for a polynomial function
is as follows [38]:

f (x) = co + c1x + c2x2 + . . . + cnxn (3)
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2.3. Model Evaluation

The suitability of the model was assessed using different performance metrics. Four
performance metrics were used, namely the coefficient of determination (R2), mean ab-
solute error (MAE), root-mean-squared error (RMSE), average absolute error (AAE), and
average bias error (ABE). R2 was employed because of its advantage in facilitating relative
performance comparisons using Equation (4). This quantifies the proportion of variance
in the dependent variable that is predictable from the independent variables [39]. MAE
was used because it measures the absolute difference between the observed and predicted
values in the same units (Equation (5)), which makes it intuitive and straightforward to
interpret. RMSE has the advantage of reducing the distortion in the values resulting from
squaring the errors (Equation (6)). However, its drawback is that errors < 1 become even
smaller owing to squaring, whereas errors > 1 become larger. AAE and ABE represent
the average errors in the correlation equation (Equations (7) and (8)). ABE is evaluated
such that positive values are rated higher, indicating a better fit, whereas negative values
suggest a somewhat lower fit [37,38]. These metrics provide a comprehensive evaluation of
the performance of a model by considering different aspects of its accuracy and fit.

R2 = 1− ∑n
i=1 ValueM −ValueP

∑n
i=1 ValueM −ValueP

, (4)

MAE =
∑n

i=1(ValuleM −ValueP)

n
, (5)

RMSE =

√(
1
n

)
∑n

i=1(ValueM −ValueP)
2 (6)

AAE =
1
n∑n

i=1

∣∣∣∣ValueP −ValueM

ValueM

∣∣∣∣, (7)

ABE =
1
n∑n

i=1

[
ValueP −ValueM

ValueM

]
, (8)

Validation of the optimal conditions was conducted based on the performance metrics
mentioned above, using the data listed in Table 2.

Table 2. Validation data for suggested model.

Biomass Type Cell [%] Hemi [%] Lig [%] HHV [MJ/kg] Ref.

Mixed waste wood Woody 38.30 25.50 22.00 17.50

[27]

Torrefied mixed waste wood (200 ◦C) Woody 41.10 26.30 26.50 19.20

Torrefied mixed waste wood (250 ◦C) Woody 43.70 7.70 31.40 19.90

Torrefied mixed waste wood (300 ◦C) Woody 36.20 5.30 43.70 20.80

Oak waste wood Woody 38.30 25.50 22.00 18.60

Torrefied Oak waste wood (200 ◦C) Woody 41.10 26.30 26.50 19.10

Torrefied Oak waste wood (250 ◦C) Woody 43.70 7.70 31.40 21.20

Torrefied Oak waste wood (300 ◦C) Woody 36.20 5.30 43.70 22.50

Miscanthus Herbaceous 41.40 19.70 22.60 16.41

Torrefied miscanthus (200 ◦C) Herbaceous 41.90 21.20 23.10 19.15

Torrefied miscanthus (250 ◦C) Herbaceous 44.10 8.40 41.60 21.10

Torrefied miscanthus (300 ◦C) Herbaceous 35.00 3.20 52.30 21.28
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Table 2. Cont.

Biomass Type Cell [%] Hemi [%] Lig [%] HHV [MJ/kg] Ref.

Hops Herbaceous 42.2 0 26.20 16.59

Torrefied hops (200 ◦C) Herbaceous 42.9 0 26.80 18.80

Torrefied hops (250 ◦C) Herbaceous 47.00 0 35.10 18.90

Torrefied hops (300 ◦C) Herbaceous 39.90 0 38.70 20.70

Torrefied pine chip (225 ◦C) Woody 41.23 12.87 38.42 19.48

[41]

Torrefied pine chip (250 ◦C) Woody 41.90 6.93 45.70 20.08

Torrefied pine chip (275 ◦C) Woody 39.54 0.99 53.30 21.82

Torrefied pine chip (300 ◦C) Woody 12.84 0.56 79.99 25.38

Logging residue chip Woody 37.49 13.26 26.15 18.79

Torrefied logging residue chip (225 ◦C) Woody 41.04 14.77 33.20 19.79

Torrefied logging residue chip (250 ◦C) Woody 38.57 5.87 42.49 21.21

Torrefied logging residue chip (275 ◦C) Woody 34.08 5.23 52.80 22.03

Torrefied logging residue chip (300 ◦C) Woody 6.10 1.04 85.06 26.41

Torrefied Cotton Balls Herbaceous 29.44 24.22 34.20 18.73
[42]

Torrefied Sunflower Herbaceous 31.00 29.35 24.73 19.65

Wet torrefied bamboo
(180 ◦C 30 min 0 M HCl) Herbaceous 42.61 25 23.18 17.79

[43]
Wet torrefied bamboo

(180 ◦C 15 min 0.2 M HCl) Herbaceous 34.97 0 33.94 24.19

Wet torrefied bamboo
(180 ◦C 30 min 0.2 M HCl) Herbaceous 13.96 0 36.98 24.86

Corn straw Herbaceous 39.12 30.95 10.73 18.61

[44]Torrefied corn straw (160 ◦C) Herbaceous 38.03 28.86 10.12 19.17

Torrefied corn straw (180 ◦C) Herbaceous 37.11 28.12 9.87 19.79

Torrefied oat hull (285 ◦C) Herbaceous 33.52 0.72 45.65 22.45 [29]

Torrefied bamboo (280 ◦C 10 min) Herbaceous 49.76 8.60 39.79 19.88

[45]Torrefied bamboo (280 ◦C 30 min) Herbaceous 49.40 5.56 43.12 20.11

Torrefied bamboo (280 ◦C 60 min) Herbaceous 47.40 2.03 50.40 20.42

Sweet sorghum bagasse Herbaceous 29.80 24.40 5.24 17.30

[46]Torrefaction
sweet sorghum bagasse Herbaceous 19.90 4.80 16 23

To compare the optimal model selected based on the validation data with those of
previous studies, we used the test dataset provided in Table 3 for verification.

Table 3. Verification test dataset for comparison validation model and previous studies.

Biomass Type Cell [%] Hemi [%] Lig [%] HHV [MJ/kg] Ref.

Softwood Woody 47.40 13.80 23.50 18.00

[47]Torrefied softwood Woody 36.60 2.65 23.20 22.30

Torrefied hardwood Woody 46.70 1.20 15.70 22.40
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Table 3. Cont.

Biomass Type Cell [%] Hemi [%] Lig [%] HHV [MJ/kg] Ref.

Norway spruce Woody 41.70 26.00 30.90 20.37

[46]Torrefied Norway spruce (260 ◦C 8 min) Woody 42.30 23.20 30.40 20.65

Torrefied Norway spruce (260 ◦C 25 min) Woody 40.10 13.50 33.90 21.51

Corn straw Herbaceous 39.12 30.95 10.73 18.61
[44]

Torrefied corn straw (160 ◦C) Herbaceous 38.03 28.86 10.12 19.17

Torrefied miscanthus (230 ◦C 15 min) Herbaceous 44.50 18.50 26.80 19.30

[48]

Torrefied miscanthus (250 ◦C 15 min) Herbaceous 44.90 12.20 32.80 19.70

Torrefied miscanthus (250 ◦C 30 min) Herbaceous 43.30 9.90 36.20 19.90

Torrefied willow (230 ◦C 15 min) Woody 39.70 18.10 28.70 19.60

Torrefied willow (250 ◦C 15 min) Woody 40.50 15.30 30.30 19.90

Torrefied willow (270 ◦C 15 min) Woody 41.10 12.90 33.40 20.20

Torrefied willow (230 ◦C 30 min) Woody 39.30 16.80 29.60 19.60

Torrefied willow (250 ◦C 30 min) Woody 40.30 14.70 31.40 19.80

Torrefied willow (270 ◦C 30 min) Woody 41.60 14.20 32.90 20.50

Bamboo Herbaceous 48.03 24.13 27.83 19.00

[49]

Wet torrefied bamboo (200 ◦C) Herbaceous 50.22 22.68 27.10 19.40

Wet torrefied bamboo (220 ◦C) Herbaceous 49.88 25.09 25.03 19.60

Dry torrefied bamboo (180 ◦C) Herbaceous 43.13 25.04 31.84 19.10

Dry torrefied bamboo (200 ◦C) Herbaceous 36.78 27.96 35.25 19.40

3. Results and Discussion
3.1. Result of Pearson Correlation Coefficient

The results of the Pearson’s correlation coefficient are summarized in Figure 6. In the
case of cellulose, a positive correlation was observed with hemicellulose, while a negative
correlation was found with calorific value. The reason for the positive correlation between
hemicellulose and cellulose is likely because they share precursor structures composed of
pentose or hexose sugar monomers. For hemicellulose, there was a negative correlation
with calorific value and lignin. Particularly, the strong negative correlation of −0.7668
with lignin suggests that in heat-treated samples, the presence of hemicellulose decreases
while the lignin content increases due to the decomposition of hemicellulose. In the case of
cellulose, it decomposes at high temperatures and decreases like hemicellulose, which is
inversely proportional to the increase in HHV. However, due to lower decomposition rate
compared with hemicellulose, it has a negative correlation, but it appears to be a weaker
correlation than the correlation between hemicellulose and HHV. Lignin, on the other
hand, exhibited a strong positive correlation of 0.6518 with the calorific value. This can be
attributed to the fact that lignin is a polymer with a high carbon content, and in heat-treated
samples, the lignin content tends to be higher, leading to an increase in calorific value.
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3.2. Prediction Model Using Total Biomass

The equations for predicting the calorific value of the overall biomass are summarised
in Table 4. Given the diverse characteristics of the various biomass samples, they exhibited
substantial variations, which likely contributed to the lower R2 values. Various input
variables were applied, and the highest R2

P value of 0.5814 was obtained for T3.

Table 4. Calorific value prediction model using overall lignocellulosic biomass.

No. Equation R2
P [-] 1 RMSEP [-] 2 MAEP [%] 3 AAEP [%] 4 ABEP [%] 5

T1 HHV = 22.011− 0.649H0.5 + 0.0000424L2 0.5423 1.3858 1.1006 5.3455 0.4302

T2

HHV = −4.205 −0.003C2 + 0.576C− 1.931C0.5

+0.003H2 − 0.589H + 7.491H0.5

+0.007L2 − 1.337L + 10.134L0.5

+0.013CH − 1.313CH0.5

0.5719 1.5215 1.1764 5. 7280 2.1895

T3
HHV = −2.918 +0.228C− 0.269H + 5.553H0.5

−1.115L + 0.006L2 + 8.469L0.5

+0.01CH − 1.138CH0.5
0.5814 1.5455 1.1924 5.8641 2.9964

1 coefficient of determination, 2 root mean square error, 3 mean absolute error, 4 average absolute error, 5 average
bias error.

T1 and T2 had an R2
P value of 0.5423 and 0.5719, respectively. T3 had the highest

value of RMSEP at 1.5455, whereas T1 had the lowest RMSEP of 1.3858. AAEP for T1 was
calculated as 5.3455%. However, T2 and T3 exhibited an error rate of 5.7280% and 5.8641%,
respectively. Furthermore, among the prediction models that used the overall biomass, the
predicted values were higher, resulting in positive ABEP values. T1 exhibited the lowest
ABEP of 0.4302%. Hence, T2 predicted more accurately than the ABEP of T2 and T3, which
were 2.1895% and 2.9964%, respectively. Given that the performance metrics did not meet
the desired level of accuracy, a decision was made to enhance the model’s performance
by separating the predictions for woody and herbaceous biomass. This separation was
undertaken as the simultaneous prediction of both hardwoods and softwoods may have
contributed to the reduced accuracy observed in the model.

3.3. Prediction Model Using Woody Biomass

Three prediction models for woody biomass are presented in Table 5. When compared
to the previous prediction models for lignocellulosic biomass, the R2

P values for woody
biomass were notably higher, ranging from 0.82 to 0.83. Similarly, the RMSEP values for
these models fell within the range of 0.96 to 1.18.
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Table 5. Calorific value prediction model using woody biomass.

No. Equation R2
P [-] RMSEP [-] MAEP [%] AAEP [%] ABEP [%]

W1
HHV = 31.257− 0.039C + 0.001C2 − 0.88C0.5

+0.074H − 0.001H2 − 1.738H0.5

−0.001L2 + 0.463L0.5
0.7811 1.2810 1.0860 5.3534 2.8879

W2
HHV = 31.027+ 0.000316C2 − 1.118C0.5 − 1.398H0.5

−0.001L2 + 0.462L0.5 0.8222 1.1888 0.8724 4.0008 −1.7930

W3 HHV = 27.567− 0.28C0.5 − 1.333H0.5 0.8392 0.9626 0.7238 3.5106 0.2286

Interestingly, in most cases, an increase in the number of input variables tended to
result in higher R2

P values, which could indicate a risk of overfitting. However, it is
worth noting that for the prediction models of woody biomass, the model with the highest
number of input variables, W1, exhibited the lowest R2

P value and the highest RMSEP.
On the contrary, the model with the fewest input variables, W3, demonstrated reasonable
performance, boasting an R2

P of 0.8392 and an RMSEP of 0.9626.

3.4. Prediction Model for Herbaceous Biomass

The prediction models for herbaceous biomass are outlined in Table 6. The R2
P values

for these models varied in the range of 0.82 to 0.87. Interestingly, the model with the fewest
input variables, H1, had the lowest R2

P, whereas the model with the most input variables,
H3, had the highest R2

P. However, when considering the RMSEP, H1 had the highest value
at 1.2958. In terms of ABEP, only H2 had a positive value, while H1 and H3 had negative
values, indicating an underestimation in the latter cases. The reason for the low accuracy of
herbaceous biomass was due to be extractive and non-uniformity compared with woody
biomass. In general, it is known that the extractive and ash content of herbaceous biomass
is higher than that of woody biomass [50,51]. Because this was not considered in this study,
it was determined to be low.

Table 6. Calorific value prediction model using herbaceous biomass.

No. Equation R2
P [-] RMSEP [-] MAEP [%] AAEP [%] ABEP [%]

H1
HHV = 24.918 +0.002Ho2 − 1.36Ho0.5 + 2.813H0.5

−0.003L2 + 0.165L− 0.67CH0.5 0.8256 1.2958 1.1723 5.9563 −5.8252

H2
HHV = 15.513 +0.002C2 − 1.283C0.5 − 0.297H

+0.007H2 + 2.688H0.5 − 0.388L
+4.23L0.5 + 0.003CH − 0.504CH0.5

0.8561 0.6294 0.5243 2.7030 1.8674

H3
HHV = 14.738 +0.002C2 − 1.246C0.5 + 0.007H2

−0.31H + 2.8H0.5 − 0.429L
+4.524L0.5 + 0.003CH − 0.521CH0.5

0.8739 0.4836 0.3698 1.8929 −0.2333

3.5. Validation of Calorific Value Prediction Models

A validation process was carried out to determine the most suitable model among
the presented models. Table 7 displays the validation outcomes for overall lignocellulosic
biomass. The validation results reveal that T2 achieved the highest R2

CV, standing at
0.7870. However, it also displayed the lowest RMSECV, which was 1.1258. Both T1 and T3
demonstrated R2

CV values of approximately 0.4920. Comparing MAECV and AAECV, T2
demonstrated satisfactory performances. In conclusion, based on the validation results, T2
emerged as the optimal model.
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Table 7. Validation of the results obtained from the model using overall lignocellulosic biomass.

R2
CV [-] RMSECV [-] MAECV [%] AAECV [%] ABECV [%]

T1 0.4920 1.9178 1.3871 6.6409 0.3278
T2 0.7870 1.1258 0.9180 4.3728 0.3878
T3 0.4902 1.9198 1.4490 7.0107 1.2695

Regarding woody biomass (Table 8), most models displayed R2
CV values within the

range of 0.60 to 0.69. However, W3 stood out with the highest R2
CV value of 0.8108. The

RMSECV values generally fell between 1.44 and 1.45 for most models, although W1 had a
slightly higher RMSECV at 2.0387. When considering ABECV, W3 had the highest value,
reaching 5.2810, compared to W1 and W2 with values of 3.7659. Despite its higher ABECV,
W3 was deemed the optimal choice due to its combination of a high R2

CV, low RMSECV,
and a reduced number of input variables.

Table 8. Validation of the results obtained from the model using woody biomass.

R2
CV [-] RMSECV [-] MAECV [%] AAECV [%] ABECV [%]

W1 0.6217 2.0387 1.8632 9.1077 7.6093
W2 0.6933 1.4568 1.2382 5.9518 3.7659
W3 0.8108 1.4423 1.2070 5.9422 5.2810

In the case of herbaceous biomass (Table 9), the R2
CV values were notably higher,

increasing within the range of 0.528 to 0.8959. Additionally, their RMSECV values ranged
from 1.3266 to 2.1312, respectively. The R2

cv of H1 was the highest at 0.8959, but RMSECV
was 2.1312, higher than H2’s 1.3266. H2 and H3 showed better performance in RMSECV,
MAECV, AAECV, and ABECV. Despite a lower R2

cv, H2 was determined to be optimal.

Table 9. Validation of the results obtained from the model using woody biomass.

R2
CV [-] RMSECV [-] MAECV [%] AAECV [%] ABECV [%]

H1 0.8959 2.1312 1.9740 9.4032 −9.3217
H2 0.8528 1.3266 1.0707 5.0002 −3.5535
H3 0.8672 1.5457 1.3415 6.2997 −5.3494

3.6. Comparison of the Model with Previous Models

Using a verification dataset, we conducted a comparison between the calorific value
prediction model developed in our study and models from previous research. For this study,
we chose the model by Demirbaş [13], which was based on non-wood biomass, and the model
by Domingos et al. [18], which utilized equations formulated using heat-treated biomass.

The biomass test results are outlined in Table 10. The RMSE values for T2, Demir-
baş [13], and Domingos et al. [18] were recorded as 0.7702, 1.3534, and 1.1298, respectively.
The T2 model proposed in our study exhibited the lowest RMSE. In the case of torrefied
biomass, Domingos et al. [18] displayed a lower RMSE compared to Demirbaş [13]. The R2

values were relatively low due to the variations in biomass properties, with a notably low
R2 value of 0.0059 observed in previous studies. Since both previous studies predicted only
lignin as a variable, R2 was observed to have the same value. In the case of previous studies,
it was predicted based on lignin alone, but other studies indicate that there are other prop-
erties that have significant weight in changes in HHV in addition to lignin [50,52]. Through
actual analysis, it was confirmed that cellulose and hemicellulose affected HHV. In all
model, a negative ABE was noted, indicating an underestimation, as depicted in Figure 7a.
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Table 10. Validation of the results obtained from the model using overall biomass.

Equation R2 RMSE MAE AAE ABE

T2

HHV = −4.205 −0.003C2 + 0.576C− 1.931C0.5

+0.003H2 − 0.589H + 7.491H0.5

+0.007L2 − 1.337L + 10.134L0.5

+0.013CH − 1.313CH0.5

0.5171 0.7702 0.5768 2.9346 −0.2742

Demirbaş [13] HHVB = 0.0877[L] + 16.4951 0.0058 1.3534 0.8719 4.2037 −3.1029

Domingos et al. [18] HHV = 17.893 + 0.068[L] 0.0058 1.1299 0.7384 3.5927 −0.4441
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In the case of woody biomass (Table 11), the W3 model proposed in our study dis-
played the lowest RMSE. Conversely, the Demirbaş equation had a higher RMSE of 1.7427
compared to the other two equations. Also, the R2 value was higher for W3, measuring
0.4152. When considering ABE, W3 was the only equation with a positive value, while that
of Demirbaş exhibited a significantly negative value of −4.8843%, indicating an underesti-
mation. Consequently, as depicted in Figure 7b, W3 is represented by a positive trendline,
whereas the two equations from previous studies exhibit negative trends.

Table 11. Comparison of the model with those defined in previous studies by using woody biomass
test dataset.

Equation R2 RMSE MAE AAE ABE

W3 HHV = 27.567− 0.28C0.5 − 1.333H0.5 0.4152 1.2668 1.0902 5.3992 2.7024

Demirbaş
[13] HHVB = 0.0877[L] + 16.4951 0.0894 1.7427 1.2145 5.7017 −4.8843

Domingos et al.
[18] HHV = 17.893 + 0.068[L] 0.0894 1.4359 0.9479 4.4850 −2.3996

For herbaceous biomass (Table 12), H1 showed an RMSE of 0.5176, whereas Domin-
gos et al. [18] reported an RMSE of 0.5784. The Demirbaş equation exhibited the highest
RMSE among the three at 0.6208. However, the R2 value for the Demirbaş and Domin-
gos et al. equation was the highest. Regarding the ABE, only the H1 and Demirbaş equation
showed negative values, whereas the Domingos et al. equation had positive values. This
is illustrated in Figure 7c. The trend line of Domingos et al. exhibited an upward positive
trend, suggesting that predictions from the equations tended to overestimate the values. In
contrast, the Demirbaş equation and H1 resulted in an underestimation.
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Table 12. Comparison of the model with those defined in previous studies by using herbaceous
biomass test dataset.

Equation R2 RMSE MAE AAE ABE

H1

HHV = 15.513 +0.002C2 − 1.283C0.5 − 0.297H
+0.007H2 + 2.688H0.5

−0.388L + 4.23L0.5 + 0.003CH
−0.504CH0.5

0.0830 0.5176 0.4677 2.4114 −0.8891

Demirbaş
[13] HHVB = 0.0877[L] + 16.4951 0.4382 0.6208 0.4608 2.4060 −0.9652

Domingos et al.
[18] HHV = 17.893 + 0.068[L] 0.4382 0.5784 0.4869 2.5220 1.9026

4. Conclusions

In this study, the calorific value of lignocellulose using structural analyses was pre-
dicted. Building on previous research, we predicted the calorific value by classifying
biomass as overall lignocellulose biomass, woody biomass, and herbaceous biomass. When
using the overall biomass dataset, the presented models yielded relatively low R2

P values,
ranging from 0.5423 to 0.5814. However, when analysing the models separately for woody
and herbaceous biomass, R2 values of woody biomass ranged from 0.7811 to 0.8392, and
those of herbaceous biomass ranged from 0.8256 to 0.8739.

The optimal model was identified after validation. Equations (9)–(11) were identified
as the optimal model equations.

HHV = −4.205 −0.003C2 + 0.576C− 1.931C0.5 + 0.003H2 − 0.589H
+7.491H0.5 + 0.007L2 − 1.337L + 10.134L0.5 + 0.013CH
−1.313CH0.5

(9)

HHV = 27.567− 0.28C0.5 − 1.333H0.5 (10)

HHV = 24.918 +0.002Ho2 − 1.36Ho0.5 + 2.813H0.5 − 0.003L2 + 0.165L
−0.67CH0.5 (11)

Furthermore, the chosen equations were assessed using a test dataset, revealing that T1
and W3 exhibited improved performance compared to previous studies, while H1 showed
lower performance compared to prior research. Although the R2 of H1 was low, the RMSE
was low compared to previous studies, so it is seemed to be sufficiently usable. In the case
of other studies, they were conducted in an extractive-free biomass, but it is important
to note that this study presented a calorific value prediction model that did not consider
extractive-free biomass. Also, the accuracy of the model using cellulose, hemicellulose, and
lignin was confirmed to be higher than that of the conventional lignin-based calorific value
prediction model.

This study aimed to encompass various biomass types but was based on a dataset of
111 biomass samples for model construction. However, the prediction rates for calorific
values were relatively low for herbaceous and lignocellulosic biomass datasets. Future
research should prioritize the development of models capable of predicting cellulose,
hemicellulose, lignin, and calorific values across various biomass types and a wide range
of heat treatment conditions.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/en16237896/s1, Table S1: Data from previous studies, 111 structural
analyses and calorific value data.
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14. Demirbaş, A. Biodiesel Fuels from Vegetable Oils via Catalytic and Non-Catalytic Supercritical Alcohol Transesterifications and
Other Methods: A Survey. Energy Convers. Manag. 2003, 44, 2093–2109. [CrossRef]

15. Acar, S.; Ayanoglu, A. Determination of Higher Heating Values (HHVs) of Biomass Fuels. Energy Educ. Sci. Technol. Part A Energy
Sci. Res. 2012, 28, 749–758.

16. Álvarez, A.; Pizarro, C.; García, R.; Bueno, J.L. Spanish Biofuels Heating Value Estimation Based on Structural Analysis. Ind.
Crops Prod. 2015, 77, 983–991. [CrossRef]

17. Ruiz-Aquino, F.; Ruiz-Ángel, S.; Feria-Reyes, R.; Santiago-García, W.; Suárez-Mota, M.E.; Rutiaga-Quiñones, J.G. Wood Chemical
Composition of Five Tree Species from Oaxaca, Mexico. Bioresources 2019, 14, 9826–9839. [CrossRef]

18. Domingos, I.; Ayata, U.; Ferreira, J.; Cruz-Lopes, L.; Sen, A.; Sahin, S.; Esteves, B. Calorific Power Improvement of Wood by Heat
Treatment and Its Relation to Chemical Composition. Energies 2020, 13, 5322. [CrossRef]

19. Qian, C.; Li, Q.; Zhang, Z.; Wang, X.; Hu, J.; Cao, W. Prediction of Higher Heating Values of Biochar from Proximate and Ultimate
Analysis. Fuel 2020, 265, 116925. [CrossRef]

20. Oh, K.C.; Kim, J.; Park, S.Y.; Kim, S.J.; Cho, L.H.; Lee, C.G.; Roh, J.; Kim, D.H. Development and Validation of Torrefaction
Optimization Model Applied Element Content Prediction of Biomass. Energy 2021, 214, 119027. [CrossRef]

21. Ben, H.; Ragauskas, A.J. Torrefaction of Loblolly Pine. Green Chem. 2012, 14, 72–76. [CrossRef]
22. Cahyanti, M.N.; Doddapaneni, T.R.K.C.; Madissoo, M.; Pärn, L.; Virro, I.; Kikas, T. Torrefaction of Agricultural and Wood Waste:

Comparative Analysis of Selected Fuel Characteristics. Energies 2021, 14, 2774. [CrossRef]

https://doi.org/10.1007/s42853-023-00175-z
https://doi.org/10.1016/j.jenvman.2022.116790
https://doi.org/10.22698/jales.20220023
https://doi.org/10.1016/j.rser.2018.06.042
https://doi.org/10.1002/bip.1974.360131005
https://doi.org/10.1016/j.joei.2017.12.003
https://doi.org/10.1016/j.copbio.2019.02.019
https://doi.org/10.1016/j.pbi.2008.03.005
https://doi.org/10.1016/j.fuel.2013.08.023
https://doi.org/10.1016/S0196-8904(00)00050-9
https://doi.org/10.1016/S0196-8904(02)00234-0
https://doi.org/10.1016/j.indcrop.2015.09.078
https://doi.org/10.15376/biores.14.4.9826-9839
https://doi.org/10.3390/en13205322
https://doi.org/10.1016/j.fuel.2019.116925
https://doi.org/10.1016/j.energy.2020.119027
https://doi.org/10.1039/C1GC15570A
https://doi.org/10.3390/en14102774


Energies 2023, 16, 7896 14 of 15

23. Lin, Y.Y.; Chen, W.H.; Colin, B.; Pétrissans, A.; Lopes Quirino, R.; Pétrissans, M. Thermodegradation Characterization of
Hardwoods and Softwoods in Torrefaction and Transition Zone between Torrefaction and Pyrolysis. Fuel 2022, 310, 122281.
[CrossRef]

24. Reza, M.T.; Uddin, M.H.; Lynam, J.G.; Coronella, C.J. Engineered Pellets from Dry Torrefied and HTC Biochar Blends. Biomass
Bioenergy 2014, 63, 229–238. [CrossRef]

25. Arous, S.; Koubaa, A.; Bouafif, H.; Bouslimi, B.; Braghiroli, F.L.; Bradai, C. Effect of Pyrolysis Temperature and Wood Species on
the Properties of Biochar Pellets. Energies 2021, 14, 6529. [CrossRef]

26. Chin, K.L.; H’ng, P.S.; Go, W.Z.; Wong, W.Z.; Lim, T.W.; Maminski, M.; Paridah, M.T.; Luqman, A.C. Optimization of Torrefaction
Conditions for High Energy Density Solid Biofuel from Oil Palm Biomass and Fast Growing Species Available in Malaysia. Ind.
Crops Prod. 2013, 49, 768–774. [CrossRef]

27. Ivanovski, M.; Goricanec, D.; Krope, J.; Urbancl, D. Torrefaction Pretreatment of Lignocellulosic Biomass for Sustainable Solid
Biofuel Production. Energy 2022, 240, 122483. [CrossRef]

28. Chen, W.H.; Hsu, H.C.; Lu, K.M.; Lee, W.J.; Lin, T.C. Thermal Pretreatment of Wood (Lauan) Block by Torrefaction and Its
Influence on the Properties of the Biomass. Energy 2011, 36, 3012–3021. [CrossRef]

29. Valdez, E.; Tabil, L.G.; Mupondwa, E.; Cree, D.; Moazed, H. Microwave Torrefaction of Oat Hull: Effect of Temperature and
Residence Time. Energies 2021, 14, 4298. [CrossRef]

30. Granados, D.A.; Ruiz, R.A.; Vega, L.Y.; Chejne, F. Study of Reactivity Reduction in Sugarcane Bagasse as Consequence of a
Torrefaction Process. Energy 2017, 139, 818–827. [CrossRef]

31. Ma, Z.; Zhang, Y.; Shen, Y.; Wang, J.; Yang, Y.; Zhang, W.; Wang, S. Oxygen Migration Characteristics during Bamboo Torrefaction
Process Based on the Properties of Torrefied Solid, Gaseous, and Liquid Products. Biomass Bioenergy 2019, 128, 105300. [CrossRef]

32. Kanwal, S.; Chaudhry, N.; Munir, S.; Sana, H. Effect of Torrefaction Conditions on the Physicochemical Characterization of
Agricultural Waste (Sugarcane Bagasse). Waste Manag. 2019, 88, 280–290. [CrossRef]

33. Xu, F.; Linnebur, K.; Wang, D. Torrefaction of Conservation Reserve Program Biomass: A Techno-Economic Evaluation. Ind. Crops
Prod. 2014, 61, 382–387. [CrossRef]

34. Joshi, Y.; Di Marcello, M.; De Jong, W. Torrefaction: Mechanistic Study of Constituent Transformations in Herbaceous Biomass.
J. Anal. Appl. Pyrolysis 2015, 115, 353–361. [CrossRef]

35. Chen, C.; Qu, B.; Wang, W.; Wang, W.; Ji, G.; Li, A. Rice Husk and Rice Straw Torrefaction: Properties and Pyrolysis Kinetics of
Raw and Torrefied Biomass. Environ. Technol. Innov. 2021, 24, 101872. [CrossRef]

36. Chicco, D.; Warrens, M.J.; Jurman, G. The Coefficient of Determination R-Squared Is More Informative than SMAPE, MAE,
MAPE, MSE and RMSE in Regression Analysis Evaluation. PeerJ Comput. Sci. 2021, 7, e623. [CrossRef]

37. Majumder, A.K.; Jain, R.; Banerjee, P.; Barnwal, J.P. Development of a New Proximate Analysis Based Correlation to Predict
Calorific Value of Coal. Fuel 2008, 87, 3077–3081. [CrossRef]

38. Elmaz, F.; Yücel, Ö.; Mutlu, A.Y. Makine Öğrenmesi Ile Kısa ve Elemental Analiz Kullanarak Katı Yakıtların Üst Isı Değerinin
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48. Grams, J.; Kwapińska, M.; Jędrzejczyk, M.; Rzeźnicka, I.; Leahy, J.J.; Ruppert, A.M. Surface Characterization of Miscanthus × Gi-
ganteus and Willow Subjected to Torrefaction. J. Anal. Appl. Pyrolysis 2019, 138, 231–241. [CrossRef]

49. Yang, W.; Wu, S.; Wang, H.; Ma, P.; Shimanouchi, T.; Kimura, Y.; Zhou, J. Effect of Wet and Dry Torrefaction Process on Fuel
Properties of Solid Fuels Derived from Bamboo and Japanese Cedar. Bioresources 2017, 12, 8629–8640. [CrossRef]

50. Smit, A.; Huijgen, W. Effective Fractionation of Lignocellulose in Herbaceous Biomass and Hardwood Using a Mild Acetone
Organosolv Process. Green Chem. 2017, 19, 5505–5514. [CrossRef]

https://doi.org/10.1016/j.fuel.2021.122281
https://doi.org/10.1016/j.biombioe.2014.01.038
https://doi.org/10.3390/en14206529
https://doi.org/10.1016/j.indcrop.2013.06.007
https://doi.org/10.1016/j.energy.2021.122483
https://doi.org/10.1016/j.energy.2011.02.045
https://doi.org/10.3390/en14144298
https://doi.org/10.1016/j.energy.2017.08.013
https://doi.org/10.1016/j.biombioe.2019.105300
https://doi.org/10.1016/j.wasman.2019.03.053
https://doi.org/10.1016/j.indcrop.2014.07.030
https://doi.org/10.1016/j.jaap.2015.08.014
https://doi.org/10.1016/j.eti.2021.101872
https://doi.org/10.7717/peerj-cs.623
https://doi.org/10.1016/j.fuel.2008.04.008
https://doi.org/10.7240/jeps.558378
https://doi.org/10.1016/j.csda.2013.09.007
https://doi.org/10.1016/j.ejpe.2015.06.001
https://doi.org/10.1016/j.biortech.2010.08.028
https://doi.org/10.3390/en14144218
https://doi.org/10.1021/acssuschemeng.5b00296
https://doi.org/10.1016/j.biortech.2022.126905
https://www.ncbi.nlm.nih.gov/pubmed/35219788
https://doi.org/10.1016/j.fuel.2015.08.052
https://doi.org/10.1016/j.fuproc.2015.02.021
https://doi.org/10.1016/j.biortech.2015.12.007
https://www.ncbi.nlm.nih.gov/pubmed/26708487
https://doi.org/10.1016/j.jaap.2018.12.028
https://doi.org/10.15376/biores.12.4.8629-8640
https://doi.org/10.1039/C7GC02379K


Energies 2023, 16, 7896 15 of 15

51. Thammasouk, K.; Tandjo, D.; Penner, M.H. Influence of Extractives on the Analysis of Herbaceous Biomass†. J. Agric. Food Chem.
1997, 45, 437–443. [CrossRef]

52. Enes, T.; Aranha, J.; Fonseca, T.; Lopes, D.; Alves, A.; Lousada, J. Thermal Properties of Residual Agroforestry Biomass of
Northern Portugal. Energies 2019, 12, 1418. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1021/jf960401r
https://doi.org/10.3390/en12081418

	Introduction 
	Materials and Methods 
	Collection of Data 
	Pearson Correlation Coefficient 
	Linear Regression 
	Polynomial Regression 

	Model Evaluation 

	Results and Discussion 
	Result of Pearson Correlation Coefficient 
	Prediction Model Using Total Biomass 
	Prediction Model Using Woody Biomass 
	Prediction Model for Herbaceous Biomass 
	Validation of Calorific Value Prediction Models 
	Comparison of the Model with Previous Models 

	Conclusions 
	References

