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Abstract: The use of 4D seismic data in history matching has been a topic of great interest in the
hydrocarbon industry as it can provide important information regarding changes in subsurfaces
caused by fluid substitution and other factors where well data is not available. However, the high
dimensionality and uncertainty associated with seismic data make its integration into the history-
matching process a challenging task. Methods for adequate data reduction have been proposed in the
past, but most address 4D information mismatch from a purely mathematical or image distance-based
standpoint. In this study, we propose a quantitative and flow-based approach for integrating 4D
seismic data into the history-matching process. By introducing a novel distance parametrization
technique for measuring front mismatch information using streamlines, we address the problem
from a flow-based standpoint; at the same time, we maintain the amount of necessary front data at a
reduced and manageable amount. The proposed method is tested, and its results are compared on a
synthetic case against another traditional method based on the Hausdorff distance. The effectiveness
of the method is also demonstrated on a semi-synthetic model based on a real-case scenario, where
the standard Hausdorff methodology could not be applied due to high data dimensionality.

Keywords: four-dimensional seismic; history matching; ensemble smoother with multiple data
assimilation; distance-to-front; streamlines

1. Introduction

In this paper, we aim to explore and demonstrate the effectiveness of front re-parametri-
zation methods in the context of history matching for hydrocarbon reservoirs. Specifically,
we focus on a novel distance-to-front method using streamlines obtained from full physics
flow simulation aimed at enhancing the accuracy and efficiency of history-matching pro-
cesses in reservoir management. History matching is an important stage in the development
of every hydrocarbon field, playing a crucial role in both the modeling and simulation
phases. During the process of history matching, key properties of the reservoir model
are calibrated to match past production data. This not only allows inference of reservoir
properties from production data but also, ultimately, allows obtaining predictive model(s)
that reduce uncertainty in forecasting future production. The end goal is to use predictive
reservoir models to aid the development of future production strategies and support man-
agement decisions. The reliability of a reservoir model can be estimated when it is able to
reproduce all available data as accurately as possible. Currently, many oil and gas fields
have long historical data that can help constrain the history matching procedure, as well as
seismic data acquired during their production life.

The incorporation of time-lapse seismic data (4D seismic data) into the history-
matching workflow has been a topic of great interest over the years. Four-dimensional
seismic data can provide information in areas of the reservoir where no data are available;
more specifically, the data can be used as a tool to monitor changes in the subsurface
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originating from fluid substitution due to production [1–5] or changes in other subsurface
properties such as temperature or pressure [6]. These insights are vital for enhancing the
accuracy of history matching by aiding in more precisely calibrating reservoir models
to reflect actual conditions. Thus, the integration of 4D seismic data plays a pivotal role
in overcoming the limitations of conventional data, offering a more comprehensive un-
derstanding of the reservoir and ensuring more reliable and effective history-matching
outcomes.

From an industry standpoint, 4D seismic data have been primarily used as a qualitative
constraint on the reservoir model [7–12] as the understanding of the reservoir evolves and
revisions are made in a multidisciplinary framework, encompassing the domains of geology,
seismic, and reservoir engineering [13]. However, while it is possible to identify the changes
occurring on the subsurface, like saturation and pressure variations (e.g., [14,15]), using 4D
data in a qualitative way, we have no information on the magnitude of the change or with
what certainty.

On top of that, seismic interpretation can be subject to variations in its interpretation,
even when facing easy-to-interpret seismic data. In a study by Rankey and Mitchell [16],
the authors focus on the subjectivity of seismic data interpretation by presenting the same
seismic data to different interpreters. The interesting conclusion was that although the
data were unanimously considered easy to interpret, overconfidence in the interpreters
led to variations in the interpretation, which in turn reflected considerable differences in
volumetrics estimation. Apart from that, other uncertainties arising from non-repeatability
effects [17], noise, and imaging are present in 4D seismic data. On the plus side, this
can provide a great opportunity for the quantitative integration of 4D seismic data in
history-matching workflows as it allows access to uncertainty quantification over model
parameter estimates and fluid production forecasts analysis (e.g., [18–21]). Advancements
over the past decades, leading to the proposal and development of a range of stochastic
seismic inversion techniques, have provided ways of generating an ensemble of alternative
heterogeneous impedance representations that agree with the 3D seismic volume, account-
ing for the non-uniqueness of the inversion process. Nonetheless, the full integration
of quantitative 4D seismic data interpretation into the history-matching procedure is far
from straightforward, remaining a challenge to be addressed as well as a topic of great
interest. Several examples of quantitative approaches for integrating 4D seismic data exist
in the literature (e.g., [10,22–31]). Problems identified with the adoption of such techniques
on an industrial level are related to the practical feasibility and the inexistence of a fully
integrated software solution that can easily handle the integration of both production and
seismic data in a computer-aided history matching loop. However, the main concern is
related to the computational feasibility of incorporating the large amount of data associated
with seismic acquisition into existing workflows [32]. In particular, aspects related to the
high nonlinearity of the problem at hand include the limitation on the number of degrees
of freedom associated with the amount of data to be assimilated, questions on how to
address the contribution in the assimilation procedure of the different types of data in
consideration, how to elect relevant parameters for matching both seismic data and fluid
flow production while staying within the boundaries of a plausible geological and physical
model, over-conservative prior assumptions, and errors arising from the forward modelling
of seismic data and attributes [33]. Therefore, due to the complexity and computational cost
associated with the modeling of seismic attributes, presented workflows often fall into the
categories of either being able to provide only unique solutions to the problem or requiring
a significant reduction of the uncertainty space [34]. For this reason, alternative methods
for adding seismic data information to the history-matching procedure have been explored.
Recently, Rollmann et al. [35] presented a method using a convolutional neural network
trained to fit observed seismic history. However, results were only shown in a synthetic case,
and the overhead cost of gathering the necessary amount of training data (large amounts
of models that need to be classified) as well the time spent in appropriate architecture
development (which can be very case-specific) and computational costs associated with the
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training of the network are still big disadvantages. Furthermore, the integration of such
methods into the 4D history-matching workflow carries additional challenges (especially
under real or realistic case scenarios), remaining a topic for future research.

In an attempt to address the problem related to the varying nature of data within the
4D seismic history matching procedure, Tillier et al. [36] proposed a method based on the
local modified Hausdorff distance for measuring the dissimilarity between observed and
simulated seismic attributes. This idea was later expanded on by Abadpour et al. [37],
where coupled with an Ensemble Kalman Filter (EnKF) [38] workflow, the same Hausdorff
distance metric was used to compute the distance between observed and saturation fronts,
synthesized by binary image-based data reduction. The method showed promising results
in a synthetic case; however, unless some other precursory data reduction steps are consid-
ered, the direct application of this method, particularly within the scope of ensemble-based
workflows, becomes difficult to achieve in large-scale models as it implies computing the
inverse of a gain matrix that could be at least the square of the number of cells in the
model. There are also other issues related to binary image-based approaches, such as the
double-penalty effect (i.e., when a feature is predicted where it should not be and is not
predicted where it should), which, together with the amount and extension of data, add
complexity to the minimization procedure even if the mismatch can be easily quantifiable.

Other binary image-based methods have also been proposed over the past decade
(e.g., [39–43]). Similarly, such methods mainly focus on the conversion of hardening and
softening signals of 4D seismic data to a binary image. However, while providing an
effective and straightforward way of integrating 4D seismic information by reducing the
level of information in a continuous 4D signal into discrete states (0 and 1), the main
drawback is still related to the amount of data resulting from the computation of the
difference between observed and measured responses.

Observed seismic amplitude fronts can be compared to saturation fronts when under
cases where pressure variation or compaction effects [1,34] or the effect of variation in
porosity or net-to-gross ratio can be neglected [33]. These can capture the main information
related to the drained area of a reservoir under production. Like binary image-based
methods, they can be looked at as a solution for applying data reduction to the problem
at hand. This type of front re-parametrization reduces the amount of seismic data to be
used by representing swept regions through a saturation front, which can capture the most
significant 4D seismic information. A reduction in the nonlinearity of the problem is also
achieved since front positions are closely related to uncertain petrophysical parameters
of the model (before or after the front location). Finally, full seismic inversion procedures
are avoided, and the method remains an option even when facing low-quality seismic
data sets. All of these qualities place such methods as good candidates for application on
history-matching workflows with the potential for increasing the performance of history-
matching workflows.

Kretz [44] proposed a history-matching workflow to match front positions based on
streamlined simulation. In their proposal, model permeabilities along the streamlines were
modified in order to match observed and simulated saturation front positions derived from
4D seismic data. The discrepancy between front positions was provided by the difference
in time-of-flight measured from the streamlines. The method showed great promise and
served as a starting point for research on other front parametrization-based methods used
in 4D history-matching workflows (e.g., [34,39,45,46]). However, the main drawback with
this method relates to the properties being updated only along cells intersected by the
path of the streamlines. This leads to models that lose their geologic consistency, no longer
honoring geostatistical assumptions, and could also lead to overfitting of the matched
production data. Finally, the application of the proposed method to realistic 3D cases was
not discussed, and results were presented only in simple 2D synthetic examples.

Trani et al. [34] proposed the re-parameterization of saturations extracted from 4D
seismic data in terms of front arrival times. The main disadvantage of this method was the
need to run the fluid flow simulations beyond the update time at which the seismic data
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are available (i.e., until all cells of the observed front location have been flooded). Later,
Trani [47,48] concluded that an ensemble of complete predictions with extended simulation
times could be replaced by an approximation of late arrival time by an arbitrarily large
value. In an attempt to address the problem with extended simulation times and based
on the work by Tillier et al. [36], Leeuwenburgh and Arts [45] and Zhang and Leeuwen-
burgh [46,47] proposed re-parameterizating front time-of-arrivals into distance-to-fronts.
In the work presented by Leeuwenburgh and Arts [45], the authors assumed that uniform
velocities in a monotonically expanding 3D front could be converted to distances calculated
using a fast-marching algorithm [49] for the solution of Eikonal equations to cartesian
grids [50]. These computed distances were then used as innovations in an ensemble history-
matching framework using the EnKF. Later, Zhang and Leeuwenburgh [46,47] proposed an
improvement over the method presented by Leeuwenburgh and Arts [45], where the use
of the fast-marching method was extended for applicability on corner point grids, thereby
improving the overall accuracy of the method. They presented their method in a simple 2D
synthetic case and applied it to the Norne field using the ensemble smoother with multiple
data assimilation (ES-MDA) [51], Appendix A.

In this paper, we focus on the simplicity and applicability of front re-parametrization
methods and present a flow-based alternative to previous distance-to-front methods. For
this, based on the work presented by Kretz [44], we propose a distance-to-front method
using streamlines obtained from full physics flow simulation.

In the following section, we introduce the concept of distance-to-front measurement
(Section 2.1), then we introduce fluid flow streamlines as a post-processing of flow simula-
tion and propose a method for calculating distances to fronts using streamline information
obtained from full-physics flow simulation (Section 2.2). We then present a set of numerical
experiments on a 2D synthetic case (Section 3.1) and a realistic 3D case based on a real case
scenario (Section 3.2), where the proposed method is applied and the obtained results are
discussed. Finally, the main conclusions of the work are presented in Section 4.

2. Methodology
2.1. Distance-to-Front Measurement

Measuring the distance to a front requires front extraction, normally from a seismic
attribute that can capture spatial changes in saturation or pressure over the subsurface.
These changes can often refer to a timelapse confirmation on features related to the dis-
placement of oil by water and/or gas, dissolution effects, or significant pressure changes.
By posing the problem in this way, we assume that the shape or boundary of these features
is enough to capture the relevant phenomena as opposed to using the original individual
cell amplitudes of 4D seismic data. Added to that, reducing the information to a relevant
shape or boundary can often be more informative and reliable while being an advantage in
terms of computational cost and efficiency.

Normally, within the feature-based 4D history-matching domain, grid-based geomet-
rical distance measurements are used (e.g., Euclidean, Hamming, fast-marching methods,
Chain-Vese, Hausdorff, etc.). However, one should address the choice of measuring sub-
surface changes from a dynamic perspective, as subsurface changes derive from dynamic
mechanisms related to fluid production and subsurface geology.

2.2. Using Streamlines for Distance-to-Front Calculation

In this regard, streamlines can be a solution to link both subsurface geology and fluid
production. Streamlines and streamline-based properties are valuable tools for understand-
ing reservoir connectivity and fluid flow patterns for large, heterogeneous models and
can be easily obtained through the post-processing of full-physic simulations. In order to
define a fluid flow streamline, three key properties are necessary: flow rate, time of flight,
and a cell ID pointing to a given cell in the reservoir grid. The grid cell ID is used to extract
relevant information from the grid and map solution variables between the streamline and
the global numerical grid.
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Streamline geometries (used for visualization purposes only) are then obtained through
the Pollock method [52,53], starting from a single cell of the model with the calculation of
a flow rate calculated for each of the cell faces (assumed to be uniform along the faces).
Along with pressure, the total flow rate in and out of each of the faces can then be calculated
based on the total Darcy velocity:

→
v t = −λt

→
∇P0 +

(
∑ jλjρj

)→
g , (1)

where
→
v is the flow velocity, λ is the phase mobility,

→
∇P is the pressure gradient, ρ is the

mass density, and
→
g is the acceleration due to gravity.

To conform with the orthogonal grid assumptions of the Pollock method (Figure 1), an
isoparametric transformation is applied to all of the grid cells of the model onto a unit cube
grid [54]. Consequently, for visualization purposes, this representation can be transformed
back into the spatial coordinate system (e.g., corner point gridding format). This way,
by being able to obtain a set of streamlines branching all cells of the model where flow
is occurring from a given source to a sink, we can use streamlines as a flow-based real
coordinate system medium to measure the distance between the true location of water-
saturated fronts and simulated saturation fronts obtained from the flow simulation of
candidate models.
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Figure 1. Streamline tracing scheme where a single streamline enters the Y0 face of a single cell and
exits the X1 face through the exit point. The curvature along the cell is guided by the calculated
in/out flow velocities of all faces of the cell.

As shown in Figure 2a, a simple 2D five-spot reservoir model was used to illustrate
the method. Two fronts are presented, one originating from either the inversion or inter-
pretation of 4D seismic data (observed front, in black) and a second one representing the
same front on a given candidate model after flow simulation (simulated front, in grey).
By computing the fluid-flow streamlines over the simulation period, we obtained a set of
streamlines that connects both fronts. This way, it became possible to obtain the distance
between both features using flow-based distance measurement supported by streamlines
and to use the computed distance vector as an innovation in the history-matching workflow.
The same concept is shown for cases where the resulting simulated flow patterns were
obtained using an anisotropic permeability field (Figure 2b) and for the example of a more
heterogenous geological scenario representing a channelized structure (Figure 2c). From
Figure 2c, it also becomes clear that by applying this method, we gained added advantage
of capturing the distance between both fronts along the geological representation of our
model (grid geometry and petrophysical properties driving fluid flow) as opposed to using
a purely geometrical approach where such detail might be lost. A distance value of zero
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was assigned for all positions where both observed and measured front data coincided; for
the remaining unmatched locations, an added physical meaning was obtained by assigning
positive distances for locations where the measured front was ahead of the observed front
and vice versa.
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Figure 2. Streamline tracing with observed and predicted waterfronts for different model geologies at
the same time step. The observed fronts are indicated in black, simulated fronts in grey and production
streamlines in red. (a) streamlines obtained in an isotropic model, (b) streamlines obtained in an
anisotropic model, (c) streamlines obtained in an model representing a channelized structure.

Under cases where geology is uncertain (e.g., multiple different geological scenarios),
the same distance metric can be used. For this case, we considered an uncertain geological
scenario where we took two different channelized structures, honoring the well data but
with different orientations.

Figure 3 illustrates the application of the proposed method, where we evaluated the
4D seismic distance between both model propositions on a given monitor date.

To obtain the waterfronts at a given time t f (Figure 3b,e), we calculated the difference
between the water saturation at t f (Figure 3a,d) with the initial water saturation at t0. A
threshold was applied to binarize the information into drained/undrained regions, and
finally, we extracted the contour of the drained region (a perimeter in 2D and a surface in
3D) (Figure 3c). Since different candidate models have different simulated front shapes (e.g.,
in 2D having smaller or larger perimeters over a different number of model cells), distances
must be computed from the location of the observed front, which should be sourced from
seismic 4D interpretation and expertise related to the mechanisms driving the production
of a given reservoir. This way, the observed front location, comprising a set of cells to
which the distances are to be computed, is input into the algorithm. The final innovation
vector is calculated by gathering all the distance measurements obtained from the set of
shortest distance paths provided by computed streamlines connecting the observed front
to the simulated front. For illustration purposes, Figure 4 is a spatial representation of the
obtained innovation vector on top of the observed front location.

The same calculation can be carried out for different models, with the result being
a vector of innovations with the size of the number of cells on the observed front. By
being able to obtain sets of equally sized innovation vectors for a variety of models, the
proposed method can be easily integrated into any ensemble-based assimilation approach.
Algorithm 1 summarizes the use of the innovation vector in the context of an ensemble-
based history-matching workflow.
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Algorithm 1: Four-dimensional distance-to-front using streamlines

FOR EACH ENSEMBLE UPDATE STEP

1. Input array(s) of cells representing observed front(s) in the model grid.

2. Full physics flow simulation of all candidate members of the ensemble.

3. Calculate the difference between saturation data from the date of the seismic survey(s) to t0.

4. Binarize the output of step 3 into flooded/non-flooded regions according to a threshold.

5. Calculate the contour of the flooded region at the date of seismic survey(s).

6. Matching locations for the output of step 5 and step 1 are assigned a distance of 0.

7. Post-processing of streamlines coming from step 2.

8.
Extract the shortest distance given by the streamlines (step 7) connecting the observed front
(step 1) with the simulated front (step 5).

9. Merge array(s) of distances computed at step 6 and step 8.

CONTINUE TO THE NEXT UPDATE STEP

3. Results and Discussion
3.1. Synthetic 3D Case

In this section, we resort to a simple 3D channel reservoir to showcase the performance
of the proposed method for 4D seismic history matching using streamlines for distance-to-
front measurement. The reservoir comprises an anticlinal trap with three facies, containing
a North-West to South-East trending leaking normal fault with a throw towards North-East.
It has an extension of 5900 × 3800 m with a thickness of 52 m and is discretized into a
60 × 39 × 5 grid with 11,682 active cells in total. The used model attempted to represent
the flow of two immiscible phases (oil and water) with a connate water saturation of 0.15,
residual oil saturation of 0.15, and initial formation pressure of 400 bar. Out of the three
facies in the model, two were permeable, and one acted as a horizontal barrier in the middle
layer of the reservoir. The model had two injectors and two producing wells located in the
best-quality facies. The true model was randomly sampled from an ensemble of realizations
generated through truncated Gaussian simulation (TGS) [55,56] and conditioned to the
information at well locations. The average permeability was 650 mD and 150 mD in the
best and background facies, respectively. The average porosity in the best facies was 0.3,
and in the background facies, it was 0.18. Field production spanned a total of 20 years, with
production occurring through the intervention of two producing wells located on each side
of the normal fault and an injector well located in the south.

The considered uncertain parameters in the reservoir were facies location, populated
by the respective spatial distributions of porosity, the permeability and net-to-gross ratio
(NTG) of each of the facies, and an ensemble of 100 realizations used to sufficiently avoid
sampling errors and rank deficiency in the updated procedure.

True front positions for dates were obtained by running a flow simulation on a model
outside of the ensemble until, respectively, 8 and 16 years after the initial production
date. The resulting saturation maps were then processed in order to extract waterfront
positions through the binarization of the saturation differences between monitor dates and
initial condition, with a threshold (a threshold of 0.02 was used for this case) to obtain
a swept region and interpretation of the front position over the binarized swept region
(Figure 5). The Bayesian formalism on data assimilation problems normally requires
the likelihood function to be responsible for assigning the weighting of data mismatch
terms [33]. Regardless, there are examples in the literature of 4D history-matching attempts
where observation errors were selected according to what the authors believed to be an
“acceptable” result in terms of match quality [47,57–59]. In our case, we considered the
interpreted front position to have an uncorrelated error with a standard deviation of 150 m,
which consisted of approximately the size of three grid blocks along the XY direction. The
resulting front positions for all seismic monitor dates, along with the historical production
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data, were used in an assisted history-matching scheme using ES-MDA with five iterations
and 100 candidate models per iteration to update the underlying uncertain parameters
towards matching both production and seismic data. For all candidate models, we resorted
to a full physic reservoir simulator to run fluid flow simulation and obtain saturation data
on monitor dates as well as average bottom-hole-pressure (WBPC3), flow rates (oil and
water), and water cut. A set of three experiments were run to show the capabilities of
the proposed method. We considered a scenario where only production data were used
for history matching (NO4D), a scenario where the Hausdorff distance [37] was used to
measure waterfront position mismatches (4DHDF), and finally, our proposed method,
using streamlines for distance-to-front measurement (4DSLN).
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Figure 5a shows the observed seismic data in a binarized form (initial minus monitor
date saturation) for one of the provided seismic monitors of the experiment and also the true
front that we intended to match. Figure 5b shows the distribution of the simulated swept
regions provided by the same binarized saturation information but averaged over all grid
blocks for all members of the ensemble. We observed that there was a significant spread of
the simulated swept regions (blue to red variation, Figure 5b), especially to the north of the
reservoir where the model was less swept at this stage of the production schedule.

The synthesized results of the three ran experiments are presented in Figure 6, where
we can observe the match of the swept regions at the end of the update procedure. From the
obtained results, we can see that the absence of additional seismic information of the NO4D
method provided a poor match concerning the observed seismic data (Figure 6b). The
initial and final spreads of the swept regions also did not vary substantially, although we
arrived at a fairly good match concerning the production data (Figure 7a). This reinforces
the idea that seismic data integration is crucial for history matching as, while the solutions
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provided might be considered moderately accurate in terms of matching well production
data, they are, in fact, inaccurate in terms of matching real waterfront movement along the
reservoir as the reservoir is being produced, greatly reducing any forecasting capabilities
of the model. For the case of the experiment using 4DHDF, the final solution was a close
match when compared to the observed seismic information (Figure 6c). This was also
accompanied by a very good match in production data (Figure 7b). However, for cases
where the grid cell count is higher, the applicability of the method is debatable. In fact, we
were able to run the experiment on this simplistic and small 3D model, but the method
became more unfeasible with increased model sizes at operational levels (often in the order
of millions of cells). Under such conditions, calculating the ensemble update can rapidly
become computationally intractable as it requires the inversion of a square matrix at least
the size of the grid. Regarding the proposed method (4DSLN), we observed that the final
match of the swept regions was nearly identical to the one obtained by the 4DHDF method
(Figure 6d), with the same being observed on the match of production data (Figure 7c).
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of swept areas for NO4D (b), 4DHDF (c), and 4DSLN (d). Colormap represents block average
binarized ∆SW measured over the final ensemble (dimensionless).
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Figure 7. Evolution of production match quality from initial (blue) to final (red) ensembles, along
with the available observed production data and associated uncertainty (black error bars). NO4D (a),
4DHDF (b), and 4DSLN (c).
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Figure 8 further explores the obtained results by showing the difference (grid block
average) obtained between the swept regions of the final ensemble and the ground truth
for all three ran experiments. We can again see that not using seismic information renders
the final solution far from the truth (Figure 8a), whereas using seismic data provides a
much closer match (Figure 8b,c). Moreover, we can see that using the proposed streamlined
distance-to-front method provides very similar results when compared to 4DHDF, the
advantage of using a substantially reduced amount of data (Figure 9).
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Regarding the production match of the field-producing wells (two producers and
one injector), Figure 8 shows the final obtained results in terms of well water cut (WWCT)
for producer P2. Well P2 can be taken as a sufficient example as in all cases, the same
match quality was observed for all present wells in the model. We can see that in all ran
experiments, a reduction of the production ensemble spread was observed. As mentioned
previously, and as can be observed in Figure 8, not using seismic data can potentially lead
to a final ensemble where production data matching is improved; however, the inclusion
of seismic information drastically increases the quality of the final match. In fact, both
experiments using seismic data information for the update procedure provided very good
matches with similar qualities when coupled with the 4DSLN method, obtaining residually
improved results when compared to 4DHDF.
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The results for all ran experiments are further demonstrated in Figure 9, depicting the
root mean square error (RMSE) defined as follows:

RMSE =

√
∑n

i=1(ŷi − yi)
2

n
, (2)

where n is the number of observations, and ŷ and y are, respectively, the predicted and ob-
served values. Figure 9 shows the minimization of the obtained production data mismatch
for all run experiments. Immediately, we can observe that although the incorporation
of production data considerably reduced production data mismatch relative to the prior
ensemble (NO4D), the added value for the inclusion of seismic data was reflected in the
ability to further improve predictions (4DHDF and 4DSLN). We also observed that the final
production match quality was similar for both methods using seismic information.

In order to examine the quality of the updates to the facies model, we compared the
obtained solutions to the elected ground truth model. In Figure 10, we show the probability
map for good facies (shown in dark red) in layer 3 of the reservoir for the initial and final
ensembles. Immediately, we can observe the potential for the inclusion of seismic data,
as the experiment that used only well production data to constrain the update (NO4D)
was unable to capture the spatial distribution patterns of the true model. Furthermore,
the convergence towards the optimum solution is hardly visible, as almost no change
occurred between the initial and final ensembles. This information, when considering the
somewhat satisfactory results for production mismatch shown in Figures 6b and 8a for
the same experiment, serves as a good example to stress the importance of using seismic
information, illustrating a case of non-uniqueness observed in history matching. In fact,
for the NO4D experiment, while many solutions may adequately fit the production data,
the lack of seismic information to further constrain the update procedure will render the
final ensemble of models less reliable for forecasting future production data. On the other
hand, we can observe that 4DHDF and 4DSLN are able to arrive at a final ensemble that
better resembles the true model. Using a full grid distance measurement, 4DHDF was able
to accurately capture the spatial distribution of the facies locations in the final ensemble.
Similarly, 4DSLN was able to arrive at a final ensemble that captured the most relevant
spatial distribution patterns for fluid flow prediction, namely the connection of the North-
East and South-East regions to the center of the model, with the advantage of using a much
lower amount of seismic data for this purpose.

3.2. Realistic 3D Case

For the final example, we applied the proposed method to a realistic 3D case based on a
real field, where the application of 4DHDF could not be achieved due to the large amount of
data. The reservoir is a turbiditic depositional environment located in offshore Africa. The
grid size was 194 × 203 × 48 with cell dimensions of 50 × 50 × 3 m on average over the i, j,
and k directions. The field was produced by eight producing wells, and five injector wells
provided pressure support. Twelve years of historical oil and water production, as well as
bottom-hole pressure, were available. The model had 13 different flow units (Figure 11)
populated by a total of three different facies types with different spatial continuity patterns
(realizations are obtained using the TGS algorithm), with each facies type having specific
petrophysical property distributions and dynamic parametrizations according to the quality
of the rock they represented (poor to good sands). The reservoir was compartmentalized
by a total of 25 faults with varying transmissibilities.

For our experiment, we considered both geological and engineering uncertain pa-
rameters. Facies locations over the different flow units were considered to be uncertain
geologic parameters, and a set of connectivity regulating parameters (fault transmissibili-
ties, sedimentological and aquifer connection, and region transmissibilities), pore volume
and productivity multipliers, were assumed to be uncertain engineering parameters, 28 in
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total. Table 1 presents a summary of the uncertain parameters as well as their assumed
uncertainty bounds.
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Table 1. Uncertain parameters and their associated uncertainty bounds.

Parameter Type Count Minimum Maximum

Pore Volume Multipliers 13 0.85 1

Fault Transmissibility Multipliers 10 1 × 10−6 1

Region Transmissibility Multipliers 3 1 × 10−6 1

Productivity Index Multipliers 2 0.001 1

Total 28 Parameters

We generated an initial ensemble of 100 equiprobable candidate models using TGS
to model facies locations based on variograms estimated from well log data. To sample
over the uncertain engineering parameters, we resorted to Latin hypercube sampling based
on the available prior knowledge. An extra model, elected as the ground truth, was also
generated based on the same geological and engineering prior assumption. The location of
the true seismic fronts at both monitor dates was assumed to be obtained from a standard
seismic inversion procedure followed by additional processing and interpretation and
corresponding to the information obtained after 6.2 and 9.7 years of fluid flow simulation
on the ground truth model. The control parameters for the fluid flow simulation were set
to operate the producers at historic reservoir volume rates and the injectors at historic fluid
rates. The interpreted front locations were assumed to have uncorrelated errors with a
standard deviation of 200 m (around four grid blocks).

Figure 12 shows the initial water saturation on a randomly selected model from the
initial ensemble and the corresponding streamlines obtained on both monitor dates. The
interpreted waterfronts for the ground truth model are also superimposed on the image.
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Figure 12. Top view of the initial Sw (blue—0 to red—1) for a realization of the realistic 3D. Well
locations (circles with black borders) and two arbitrarily interpreted fronts (dashed black lines)
extracted at two different seismic monitoring dates (a). Post-processed fluid flow streamlines (colors
represent the time of flight) obtained at the dates of the first and second seismic monitors (b,c).

In the same randomly selected model from the initial ensemble, using a threshold
to binarize the change in saturation at the seismic monitor dates, we obtained the swept
regions on each monitor date. Figure 13 shows the swept regions and front locations of
the same randomly selected model on both monitor dates against the ones obtained from
the ground truth. The mismatch between the observed and simulated fronts was observed,
resulting from excessive water sweeping over the model.
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from the initial ensemble (center) and the best solution found on the final ensemble. We 
can observe that the final best-matching solution is a clear improvement when compared 
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well (PROD 4) associated with the front arrival at the date of the seismic acquisition. The 
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matched the correct time of waterfront arrival and the correct water volume production. 

Figure 13. Top view of the front mismatch at monitor date one (a) and two (b). The property shown
(dark gray) is the simulated response in terms of binarized ∆Sw along with the associated simulated
front (red) obtained for this realization.

We set up the experiment using an ES-MDA update scheme of the 100 members of the
initial ensemble over five iterations. Figure 14 compares, at the first monitor date and on
layer 12 of the model, the true front location with a random unmatched realization from the
initial ensemble (center) and the best solution found on the final ensemble. We can observe
that the final best-matching solution is a clear improvement when compared to the initial
guess example. Further, we superimposed the water cut ratio of a producing well (PROD
4) associated with the front arrival at the date of the seismic acquisition. The best matching
realization (shown in red) was able to match the water cut ratio perfectly. We can also see
that the front arrival time, closely related to the date of the seismic monitor (red dashed
line), matches the water breakthrough of the well, meaning we successfully matched the
correct time of waterfront arrival and the correct water volume production.
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Figure 14. (a) Ground truth Sw along with the associated true front (black) for the first monitor date.
(b) Example of simulated Sw of a randomly selected model from the initial ensemble, highlighting an
excessive water sweep going over the front (red arrows). (c) Final best-matched model of Sw along
with WWCT production curves for PROD4 (c-top). Injectors producers are represented respectively
in blue and red circles.

The same match quality was observed for the second monitor date (Figure 15) on a
different layer of the reservoir (layer 14).

By comparing the swept regions and front location of the ground truth with the best-
obtained solution, we observed a very good match concerning the front location and the
production data of an associated well at the true front location (PROD 6).
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Figure 15. (a) Ground truth Sw along with the associated true front (black) for the second monitor
date. (b) Final best-matched model of Sw along with WWCT production curves for PROD6 (b-top).
Injectors producers are represented respectively in blue and red circles.

A summary of the run, in terms of front location matches, from initial to final ensemble
is illustrated in Figure 16. We can see the average and standard deviations of the distances
measured to the front at every grid block point where the true front is located (up). We
can also observe that before and after history matching, the final obtained front locations
much more closely matched the truth (as they are closer to 0) and that, at the same time,
the uncertainty over the final ensemble of solutions was substantially reduced.
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in regard to the mean distances measured over the ensemble is represented in gray shade. In the
bottom, the initial and final grid block average (red and black dots) and standard deviation (red and
grey area) of distance-to-front obtained for all layers of the model where a front was interpreted.

Regarding the convergence on uncertain parameters over the run, Figure 17 shows the
probability of facies locations from the initial to final ensemble, compared to the ground
truth. We can immediately observe that, for this particular model, the most predominant
facies type is facies 1 (in blue), taking the bulk of the task of governing fluid flow production
and reservoir connectivity. The final ensemble shows the convergence towards the true
locations of the three facies types, but most importantly, the correct spatial continuity and
connectivity patterns that can be observed in the true model.
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Figure 17. Summary of the probability of rock type obtained from the run experiment. The initial
(top) and final (middle) matches of facies type (blue, green, red) match are compared against the
ground truth (bottom).

An example of the convergence that can be observed on selected uncertain engineering
parameters for the experiment is shown in Figure 18. During the course of the run, we
observed the convergence of the parameter distributions towards true values at the same
time that the misfit was also being reduced.

The same can be seen for the production plots of water cut and bottom-hole pressure
for all producing wells of the model (Figure 19). We can clearly observe the gradual
reduction of the mismatch from the initial to the final iteration, with the final ensemble
providing good match quality over all wells.
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Figure 18. Scatter plot of the parameter value (x-axis) vs. misfit (y-axis) for the convergence of a
selected set of parameters (true value in green circle) from the initial (blue) to the final iteration (red).
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Figure 19. Run evolution in terms of production match for WWCT (first and second rows) and
WBPC3 (third and fourth rows) from the initial (blue) to the final iteration (red), along with the
observations (black error bars) and acquisition date of used seismic monitors (dashed green lines).
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4. Conclusions

A novel parametrization scheme was proposed to quantify the differences between
simulated and measured seismic data in terms of distances between fluid front positions
measured by streamlines. The methodology was presented with the help of a simplistic
2D case and applied both on a synthetic and realistic 3D case with seismic and production
data, highlighting the advantages and good performance of the proposed scheme when
compared to other commonly used schemes. Although the presented cases were of synthetic
and semi-synthetic nature, the application of the proposed method to real-case scenarios
should not inherently present any disadvantages. Naturally, the success in achieving
positive outcomes, as with all methods, hinges on the quality of the models and the data
at hand.

The obtained results show that the proposed parametrization can achieve similar
results when compared to other methods resorting to a reduced amount of data. The
streamlined information used for distance measurement can be easily obtained as post-
processing of standard full-physics simulation outputs.

Despite the advantages of using streamlines for distance measurement, there could
be some potential disadvantages when processing a large number of streamlines, as could
be the case with very large models. However, these challenges can be mitigated through
parallelization methodologies or, for example, by refining the way streamlines are post-
processed. For instance, focusing the processing on the cells where fluid fronts are located
can significantly speed up the process. Some limitations in terms of precision may poten-
tially arise when the models, and consequently the simulated fronts, are too far from the
ground truth. This is due to the inherent requirement of obtaining streamlines that intersect
both fronts in order to accurately compute distance data through them. Despite this, any
missing information can be easily complemented by other distance metrics.

The capabilities of the method were not only showcased on a simplistic 3D model
with simple reservoir conditions and production schedules but also on a more complex
and realistic 3D model, where the Hausdorff distance method becomes computationally
intractable, having obtained encouraging results both on fluid front and production data
match. The method is expected to be effectively applicable to a range of reservoir types
beyond those demonstrated in this study. Furthermore, the parametrization scheme is able
to be adaptable and functional across diverse geological settings.

While the application of the innovative parametrization scheme was showcased within
the framework of assisted history matching using an ensemble history matching method-
ology (ES-MDA), its application can be easily extended to any other history-matching
workflow or even to different domains of application other than hydrocarbon exploration,
e.g., CO2 monitoring.

Future areas of research may involve advancements in how streamlines are calculated
to be fit-for-purpose for the type of methodology presented here. This may include methods
relying on the focusing of information on regions pertaining to both the simulated and
real fronts. Another avenue of investigation that could prove interesting is implementing
localization techniques using information derived from streamlines. This approach could
potentially enhance the method’s performance by refining the accuracy and efficiency of the
parameterization scheme, especially in complex geological settings where the alignment of
simulated and real fluid fronts is critical. These developments could lead to more nuanced
and effective history matching in reservoir simulation, thus broadening the scope and
applicability of the proposed method.

5. Patents

Berthet, P., Trani, M. [60]. A method for obtaining at least one physical property of a
subsurface volume of a hydrocarbon reservoir over time (European priority Application,
filing date 4 December 2020, publication number EP4009086).
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Appendix A

First introduced by Emerick and Reynolds [51,52] as an extension to the standard ES
method, the multiple data assimilation (MDA) method was developed with the purpose of
enhancing the performance of the ensemble Kalman filter [38] and ensemblesmoother [58]
under nonlinear conditions. In this iterative approach, all data are assimilated multiple
times by applying an inflation parameter αk to the covariance matrix of measurement
errors. This was proven to be equivalent to the single data assimilation case for linear-
Gaussian systems, given that the measurement error covariance matrix is appropriately
scaled [51,52].

Therefore, considering the standard ES update equation, the inflation parameter αk is
included as follows:

mk+1
j = mk

j + Ĉk
md

(
Ĉk

dd + αkCd

)−1(
dobs − g

(
mk

j

)
+ ej

)
, (A1)

where k + 1 and k are the indexes of the iterative procedure, where k = 1, 2, . . . , Na with

Na being the total number of assimilations; Ĉf
md is the cross-covariance matrix between the

a priori vector of model parameters, mf, and the predicted data vector, g
(
mf); Ĉf

dd is the
covariance matrix of the predicted data of size Nd ×Nd; dobs is the vector of observed data;
ej is the perturbation vector added to the observed data; Cd is the covariance matrix of the
observed data error of size Nd ×Nd.

To implement ES-MDA, the values of the inflation factor αk in each iteration need to
be defined. The necessary condition for choosing the inflation factor is the following:

Na

∑
k=1

1
αk

= 1. (A2)

A lack of consensus exists on how to choose the values of αk, with αk = Na being
commonly used. On the same note, the number of iterations Na must be set beforehand,
with generally accepted values ranging from 4 to 10 iterations. Improved versions of
the method have been proposed where αk and Na are chosen automatically [59]. For the
present work, the authors opted to use αk = Na = 5.

References
1. Landrø, M. Discrimination between pressure and fluid saturation changes from time-lapse seismic data. Geophysics 2001, 66,

836–844. [CrossRef]
2. Lumley, D.E. Time-lapse seismic reservoir monitoring. Geophysics 2001, 66, 50–53. [CrossRef]
3. Thore, P.; Hubans, C. 4D seismic-to-well tying, a key step towards 4D inversion. Geophysics 2012, 77, R227–R238. [CrossRef]
4. Thore, P.; Blanchard, T.D. 4D propagated layer-based inversion. Geophysics 2015, 80, R15–R29. [CrossRef]
5. Grana, D.; Mukerji, T. Bayesian inversion of time-lapse seismic data for the estimation of static reservoir properties and dynamic

property changes. Geophys. Prospect. 2014, 63, 637–655. [CrossRef]

https://doi.org/10.1190/1.1444973
https://doi.org/10.1190/1.1444921
https://doi.org/10.1190/geo2011-0267.1
https://doi.org/10.1190/geo2014-0088.1
https://doi.org/10.1111/1365-2478.12203


Energies 2023, 16, 7984 21 of 23

6. Maharramov, M.; Biondi, B.L.; Meadows, M.A. Time-lapse inverse theory with applications. Geophysics 2016, 81, R485–R501.
[CrossRef]

7. Kazemi, A.; Stephen, K.D.; Shams, A. Seismic History Matching of Nelson Using Time-Lapse Seismic Data: An Investigation of
4D Signature Normalization. SPE Reserv. Evaluation Eng. 2011, 14, 621–633. [CrossRef]

8. Maleki, M.; Davolio, A.; Schiozer, D.J. Qualitative time-lapse seismic interpretation of Norne Field to assess challenges of 4D
seismic attributes. Lead. Edge. 2018, 37, 754–762. [CrossRef]

9. Lygren, M.; Husby, O.; Osdal, B.; El Ouair, Y.; Springer, M. History matching using 4D seismic and pressure data on the Norne
field. In Proceedings of the 67th EAGE Conference & Exhibition, Madrid, Spain, 13–16 June 2005; European Association of
Geoscientists & Engineers: Utrecht, The Netherlands, 2005; p. cp-1. [CrossRef]

10. Roggero, F.; Ding, D.Y.; Berthet, P.; Lerat, O.; Cap, J.; Schreiber, P.-E. Matching of Production History and 4D Seismic Data--
Application to the Girassol Field, Offshore Angola. In Proceedings of the SPE Annual Technical Conference and Exhibition,
Anaheim, CA, USA, 11–14 November 2007; OnePetro: Richardson, TX, USA, 2007. [CrossRef]

11. Castro, S.A.; Caers, J.; Otterlei, C.; Meisingset, H.; Hoye, T.; Gomel, P.; Zachariassen, E. Incorporating 4D seismic data into
reservoir models while honoring production and geologic data: A case study. Lead. Edge. 2009, 28, 1498–1505. [CrossRef]

12. Le Ravalec, M.; Tillier, E.; Da Veiga, S.; Enchery, G.; Gervais, V. Advanced integrated workflows for incorporating both production
and 4d seismic-related data into reservoir models. Oil Gas Sci. Technol. Rev. d’IFP Energies Nouv. 2012, 67, 207–220. [CrossRef]

13. Roggero, F.; Lerat, O.; Ding, D.; Berthet, P.; Bordenave, C.; Lefeuvre, F.; Perfetti, P. History matching of production and 4D
seismic data: Application to the Girassol field, offshore Angola. Oil Gas Sci. Technol. Rev. d’IFP Energies Nouv. 2012, 67, 237–262.
[CrossRef]

14. Byerley, G.; Singer, L.; Rose, P. Resaturated pay: A new infill target type identified through the application and continuous
improvement of 4D seismic at the Forties Field. Lead. Edge. 2016, 35, 831–838. [CrossRef]

15. Calvert, M.A.; Hoover, A.R.; Vagg, L.D.; Ooi, K.C.; Hirsch, K.K. Halfdan 4D workflow and results leading to increased recovery.
Lead. Edge. 2016, 35, 840–848. [CrossRef]

16. Rankey, E.C.; Mitchell, J.C. That’s why it’s called interpretation: Impact of horizon uncertainty on seismic attribute analysis. Lead.
Edge. 2003, 22, 820–828. [CrossRef]

17. Zhou, W.; Lumley, D. Nonrepeatability effects on time-lapse 4D seismic full-waveform inversion for ocean-bottom node data.
Geophysics 2021, 86, R547–R561. [CrossRef]

18. Sarkar, S.; Gouveia, W.P.; Johnston, D.H. On the inversion of time-lapse seismic data. In Proceedings of the 2003 SEG Annual
Meeting, Dallas, TX, USA, 26–31 October 2003; OnePetro: Richardson, TX, USA, 2003. [CrossRef]

19. Buland, A.; El Ouair, Y. Bayesian time-lapse inversion. Geophysics 2006, 71, R43–R48. [CrossRef]
20. Suman, A.; Fernández-Martínez, J.L.; Mukerji, T. Joint Inversion of Production and Time-Lapse Seismic Data: Application to Norne Field;

Stanford University: Stanford, CA, USA, 2013. [CrossRef]
21. Alvarez, E.; MacBeth, C.; Brain, J. Quantifying remaining oil saturation using time-lapse seismic amplitude changes at fluid

contacts. Pet. Geosci. 2016, 23, 238–250. [CrossRef]
22. Arenas, E.; van Kruijsdijk, C.; Oldenziel, T. Semi-automatic history matching using the pilot point method including time-lapse

seismic data. In Proceedings of the SPE Annual Technical Conference and Exhibition, New Orleans, LA, USA, 30 September–3
October 2001; OnePetro: Richardson, TX, USA, 2001. [CrossRef]

23. Fagervik, K.; Lygren, M.; Valen, T.S.; Hetlelid, A.; Berge, G.; Dahl, G.V.; Sønneland, L.; Lie, H.E.; Magnus, I. A method for
performing history matching of reservoir flow models using 4d seismic. In Proceedings of the 2001 SEG Annual Meeting, San
Antonio, TX, USA, 9–14 September 2001; OnePetro: Richardson, TX, USA, 2001. [CrossRef]

24. Gosselin, O.; Berg, S.v.D.; Cominelli, A. Integrated history-matching of production and 4D seismic data. In Proceedings of the
SPE Annual Technical Conference and Exhibition, New Orleans, LA, USA, 30 September–3 October 2001; OnePetro: Richardson,
TX, USA, 2001. [CrossRef]

25. Gosselin, O.; Aanonsen, S.I.; Aavatsmark, I.; Cominelli, A.; Gonard, R.; Kolasinski, M.; Ferdinandi, F.; Kovacic, L.; Neylon, K.
History matching using time-lapse seismic (HUTS). In Proceedings of the SPE Annual Technical Conference and Exhibition,
Denver, CO, USA, 5 October 2003; OnePetro: Richardson, TX, USA, 2003. [CrossRef]

26. van Ditzhuijzen, R.; Oldenziel, T.; van Kruijsdijk, C. Geological parameterization of a reservoir model for history matching
incorporating time-lapse seismic based on a case study of the Statfjord field. In Proceedings of the SPE Annual Technical
Conference and Exhibition, New Orleans, LA, USA, 30 September–3 October September 2001; OnePetro: Richardson, TX,
USA, 2001. [CrossRef]

27. Dong, Y.; Oliver, D.S. Quantitative Use of 4D Seismic Data for Reservoir Description. SPE J. 2005, 10, 91–99. [CrossRef]
28. Haverl, M.; Aga, M.; Reiso, E. Integrated Workflow for Quantitative Use of Time-Lapse Seismic Data in History Matching–A

North Sea Field Case (SPE94453). In Proceedings of the 67th EAGE Conference & Exhibition, Madrid, Spain, 13–16 June 2005;
European Association of Geoscientists & Engineers: Utrecht, The Netherlands, 2005; p. cp-1. [CrossRef]

29. Portella, R.C.M.; Emerick, A.A. Use of Quantitative 4D-Seismic Data in Automatic History Match. In Proceedings of the SPE
Latin American and Caribbean Petroleum Engineering Conference, Rio de Janeiro, Brazil, 20 June 2005; OnePetro: Richardson,
TX, USA, 2005. [CrossRef]

30. Stephen, K.D.; Soldo, J.; Macbeth, C.; Christie, M.A. Multiple model seismic and production history matching: A case study. SPE
J. 2006, 11, 418–430. [CrossRef]

https://doi.org/10.1190/geo2016-0131.1
https://doi.org/10.2118/131538-PA
https://doi.org/10.1190/tle37100754.1
https://doi.org/10.3997/2214-4609-pdb.1.C003
https://doi.org/10.2118/109929-MS
https://doi.org/10.1190/1.3272706
https://doi.org/10.2516/ogst/2011159
https://doi.org/10.2516/ogst/2011148
https://doi.org/10.1190/tle35100831.1
https://doi.org/10.1190/tle35100840.1
https://doi.org/10.1190/1.1614152
https://doi.org/10.1190/geo2020-0577.1
https://doi.org/10.1190/1.1817575
https://doi.org/10.1190/1.2196874
https://doi.org/10.1190/1.3628063
https://doi.org/10.1144/petgeo2016-037
https://doi.org/10.2118/71634-MS
https://doi.org/10.1190/1.1816429
https://doi.org/10.2118/71599-MS
https://doi.org/10.2118/84464-MS
https://doi.org/10.2118/71318-MS
https://doi.org/10.2118/84571-PA
https://doi.org/10.3997/2214-4609-pdb.1.C028
https://doi.org/10.2118/94650-MS
https://doi.org/10.2118/94173-PA


Energies 2023, 16, 7984 22 of 23

31. Dadashpour, M.; Kleppe, J.; Landro, M. Porosity and permeability estimation by gradient based history matching using time-lapse
seismic data. In Proceedings of the SPE Middle East Oil and Gas Show and Conference, Red Hook, NY, USA, 11–14 March 2007;
OnePetro: Richardson, TX, USA, 2007. [CrossRef]

32. Luo, X.; Bhakta, T.; Jakobsen, M.; Nævdal, G. Efficient big data assimilation through sparse representation: A 3D benchmark case
study in petroleum engineering. PLoS ONE 2018, 13, e0198586. [CrossRef]

33. Oliver, D.S.; Fossum, K.; Bhakta, T.; Sandø, I.; Nævdal, G.; Lorentzen, R.J. 4D seismic history matching. J. Pet. Sci. Eng. 2021, 207,
109119. [CrossRef]

34. Trani, M.; Arts, R.; Leeuwenburgh, O. Seismic history matching of fluid fronts using the ensemble Kalman filter. SPE J. 2012, 18,
159–171. [CrossRef]

35. Rollmann, K.; Soriano-Vargas, A.; Almeida, F.; Davolio, A.; Schiozer, D.J.; Rocha, A. Convolutional Neural Network Formulation
to Compare 4-D Seismic and Reservoir Simulation Models. IEEE Trans. Syst. Man, Cybern. Syst. 2021, 52, 3052–3065. [CrossRef]

36. Tillier, E.; Le Ravalec, M.; Da Veiga, S. simultaneous inversion of production data and seismic attributes: Application to a synthetic
sagd produced field case. Oil Gas Sci. Technol. Rev. d’IFP Energies Nouv. 2012, 67, 289–301. [CrossRef]

37. Abadpour, A.; Bergey, P.; Piasecki, R. 4D seismic history matching with ensemble Kalman filter-assimilation on Hausdorff
distance to saturation front. In Proceedings of the SPE Reservoir Simulation Symposium, Woodlands, TX, USA, 18–20 February
2013; OnePetro: Richardson, TX, USA, 2013. [CrossRef]

38. Evensen, G. The Ensemble Kalman Filter: Theoretical formulation and practical implementation. Ocean Dyn. 2003, 53, 343–367.
[CrossRef]

39. Jin, L.; Alpak, F.O.; Hoek, P.J.v.D.; Pirmez, C.; Fehintola, T.; Tendo, F.; Olaniyan, E.E. A comparison of stochastic data-integration
algorithms for the joint history matching of production and time-lapse-seismic data. SPE Reserv. Eval. Eng. 2012, 15, 498–512.
[CrossRef]

40. Jin, L.; Weber, D.; Hoek, P.v.D.; Alpak, F.; Pirmez, C. 4D Seismic history matching using information from the flooded zone. First
Break. 2012, 30, 11. [CrossRef]

41. Obidegwu, D.; Chassagne, R.; MacBeth, C. Seismic assisted history matching using binary maps. J. Nat. Gas Sci. Eng. 2017, 42,
69–84. [CrossRef]

42. Tillier, E.; Da Veiga, S.; Derfoul, R. Appropriate formulation of the objective function for the history matching of seismic attributes.
Comput. Geosci. 2012, 51, 64–73. [CrossRef]

43. Davolio, A.; Schiozer, D.J. Probabilistic seismic history matching using binary images. J. Geophys. Eng. 2017, 15, 261–274.
[CrossRef]

44. Kretz, V.; Vallès, B.; Sonneland, L. Fluid front history matching using 4D seismic and streamline simulation. In Proceedings of the
SPE Annual Technical Conference and Exhibition, Houston, TX, USA, 26–29 September 2004; OnePetro: Richardson, TX, USA,
2004. [CrossRef]

45. Leeuwenburgh, O.; Arts, R. Distance parameterization for efficient seismic history matching with the ensemble Kalman Filter.
Comput. Geosci. 2014, 18, 535–548. [CrossRef]

46. Zhang, Y.; Leeuwenburgh, O. Ensemble-based seismic history matching with distance parameterization for complex grids. In
Proceedings of the ECMOR XV-15th European Conference on the Mathematics of Oil Recovery, Amsterdam, The Netherlands,
29 August–1 September 2016; European Association of Geoscientists & Engineers: Utrecht, The Netherlands, 2016; p. cp-494.
[CrossRef]

47. Zhang, Y.; Leeuwenburgh, O. Image-oriented distance parameterization for ensemble-based seismic history matching. Comput.
Geosci. 2017, 21, 713–731. [CrossRef]

48. Trani, M.; Moncorgé, A.; Bergey, P.; Chen, Y. Fluid Front History Matching Using an Iterative Ensemble Smoother. In Proceedings
of the 77th EAGE Conference and Exhibition 2015, Madrid, Spain, 1–4 June 2015; European Association of Geoscientists &
Engineers: Utrecht, The Netherlands, 2015; Volume 2015, pp. 1–5. [CrossRef]

49. Sethian, J.A. A fast marching level set method for monotonically advancing fronts. Proc. Natl. Acad. Sci. USA 1996, 93, 1591–1595.
[CrossRef] [PubMed]

50. Hassouna, M.S.; Farag, A.A. MultiStencils fast marching methods: A highly accurate solution to the eikonal equation on cartesian
domains. IEEE Trans. Pattern Anal. Mach. Intell. 2007, 29, 1563–1574. [CrossRef]

51. Emerick, A.A.; Reynolds, A.C. History matching time-lapse seismic data using the ensemble Kalman filter with multiple data
assimilations. Comput. Geosci. 2012, 16, 639–659. [CrossRef]

52. Emerick, A.A.; Reynolds, A.C. Ensemble smoother with multiple data assimilation. Comput. Geosci. 2013, 55, 3–15. [CrossRef]
53. Pollock, D.W. Semianalytical computation of path lines for finite-difference models. Groundwater 1988, 26, 743–750. [CrossRef]
54. Sovold, K.; Rian, D.T.; Sandvik, A. Front Tracking Applied to the Simulation of Water Flooding in a Braided River System. In

Proceedings of the SPE Latin America Petroleum Engineering Conference, Rio de Janeiro, Brazil, 14–19 October 1990; OnePetro:
Richardson, TX, USA, 1990. [CrossRef]

55. Journel, A.G.; Isaaks, E.H. Conditional indicator simulation: Application to a Saskatchewan uranium deposit. J. Int. Assoc. Math.
Geol. 1984, 16, 685–718. [CrossRef]

56. Matheron, G.; Beucher, H.; de Fouquet, C.; Galli, A.; Guerillot, D.; Ravenne, C. Conditional simulation of the geometry of fluvio-
deltaic reservoirs. In Proceedings of the Spe Annual Technical Conference and Exhibition, Dallas, TX, USA, 27–30 September
1987; OnePetro: Richardson, TX, USA, 1987. [CrossRef]

https://doi.org/10.2118/104519-MS
https://doi.org/10.1371/journal.pone.0198586
https://doi.org/10.1016/j.petrol.2021.109119
https://doi.org/10.2118/163043-PA
https://doi.org/10.1109/TSMC.2021.3051649
https://doi.org/10.2516/ogst/2012004
https://doi.org/10.2118/163635-MS
https://doi.org/10.1007/s10236-003-0036-9
https://doi.org/10.2118/146418-PA
https://doi.org/10.3997/1365-2397.2012011
https://doi.org/10.1016/j.jngse.2017.03.001
https://doi.org/10.1016/j.cageo.2012.07.031
https://doi.org/10.1088/1742-2140/aa99f4
https://doi.org/10.2118/90136-MS
https://doi.org/10.1007/s10596-014-9434-y
https://doi.org/10.3997/2214-4609.201601815
https://doi.org/10.1007/s10596-017-9652-1
https://doi.org/10.3997/2214-4609.201413164
https://doi.org/10.1073/pnas.93.4.1591
https://www.ncbi.nlm.nih.gov/pubmed/11607632
https://doi.org/10.1109/TPAMI.2007.1154
https://doi.org/10.1007/s10596-012-9275-5
https://doi.org/10.1016/j.cageo.2012.03.011
https://doi.org/10.1111/j.1745-6584.1988.tb00425.x
https://doi.org/10.2118/21084-MS
https://doi.org/10.1007/BF01033030
https://doi.org/10.2118/16753-MS


Energies 2023, 16, 7984 23 of 23

57. Avansi, G.D.; Maschio, C.; Schiozer, D.J. Simultaneous history-matching approach by use of reservoir-characterization and
reservoir-simulation studies. SPE Reserv. Eval. Eng. 2016, 19, 694–712. [CrossRef]

58. Skjervheim, J.-A.; Evensen, G.; Hove, J.; Vabø, J.G. An ensemble smoother for assisted history matching. In Proceedings of the
SPE Reservoir Simulation Symposium, The Woodlands, TX, USA, 21–23 February 2011; OnePetro: Richardson, TX, USA, 2011.
[CrossRef]

59. Emerick, A.A. Analysis of the performance of ensemble-based assimilation of production and seismic data. J. Pet. Sci. Eng. 2016,
139, 219–239. [CrossRef]

60. Berthet, P.; Trani, M. A Method for Obtaining at Least One Physical Property of a Subsurface Volume of a Hydrocarbon
Reservoir Over Time (European Priority Application, Filing Date 4 December 2020, Publication Number EP4009086). Available
online: https://www.sumobrain.com/patents/wipo/Method-obtaining-at-least-one/WO2022117735A1.html (accessed on 1
November 2023).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.2118/179740-PA
https://doi.org/10.2118/141929-MS
https://doi.org/10.1016/j.petrol.2016.01.029
https://www.sumobrain.com/patents/wipo/Method-obtaining-at-least-one/WO2022117735A1.html

	Introduction 
	Methodology 
	Distance-to-Front Measurement 
	Using Streamlines for Distance-to-Front Calculation 

	Results and Discussion 
	Synthetic 3D Case 
	Realistic 3D Case 

	Conclusions 
	Patents 
	Appendix A
	References

