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Abstract: The accurate detection of wind power outliers plays a crucial role in wind power forecasting,
while the inherited strong randomness and high fluctuations bring great challenges to this issue. This
work investigates the way to improve the outlier detection accuracy based on support vector machine
(SVM). Although SVM can achieve good results for outlier detection in theory, its performance is
heavily dependent on the hyper-parameters. Parameter optimization is not an easy task due to
its complex nonlinear multi-optimum nature; an improved Harris hawk optimization (IHHO) is
proposed to optimize the parameters of SVM for more accurate outlier detection. HHO takes the
cooperative behavior and chasing style of Harris’ hawks in nature called surprise pounce and can
effectively search the optimal one in large parameter space, but it tends to fall into local optimum. To
solve this issue, an improved Harris hawk optimization algorithm (IHHO) was proposed to obtain the
optimal parameters of SVM. First, Hammersley sequence initialization is carried out to acquire good
initial solutions. Then, a nonlinear factor control mode and an adaptive Gaussian–Cauchy mutation
perturbation strategy are proposed to avoid getting trapped in local optima. In this way, a novel wind
power outlier detection method named IHHO-SVM was constructed. The results on several wind
power data with outliers show that IHHO-SVM outperforms SVM and HHO-SVM, which achieves
the highest average F1 score of 96.63% and exhibits the smallest standard deviation. Compared
to commonly used models for detecting outliers in wind power, such as isolation forest (IF), local
outlier factor (LOF), SVM with grey wolf optimization (GWO-SVM), and SVM with particle swarm
optimization (PSO-SVM), the proposed IHHO-SVM model shows the best overall performance with
precision, recall, and F1 scores of 95.76%, 96.94%, and 96.35%, respectively.

Keywords: wind power; outlier detection; support vector machine; Harris hawk optimization

1. Introduction

The widespread utilization of renewable energy has led to the rapid development
of new power systems predominantly relying on clean energy sources globally [1,2]. As
a main type of renewable energy, wind power continues to improve its penetration rate
in current power systems [3,4]. However, due to the strong volatility and randomness of
wind power, wind power prediction has become crucial to help the efficient scheduling
and resource optimization of the power system to ensure a stable supply of electric energy.

During the operation of wind power units, factors such as complex environmental
conditions, equipment failures, and operational errors can lead to outlier power data [5].
Outliers will mislead the wind power prediction model and decrease the prediction accu-
racy. If the outliers can be detected accurately and replaced in some way, the power data
for prediction model construction are closer to the actual true case, which can make a solid
foundation for data-driven prediction [6].

As the inherent characteristics of wind power data, the data are often subject to
sudden changes. This means that traditional detection methods often struggle to identify
outliers accurately due to rapidly changing data, posing challenges to the precise detection
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of anomalies in wind power [7]. Methods for detecting outliers in wind power can be
categorized into statistical analysis and machine learning approaches [8]. Statistical analysis
methods primarily include the quartile method and statistical metrics method [9–11].
In [9], the quartile method is utilized to identify outlier values with different distribution
characteristics, which is efficient but not effective when dealing with a high proportion
of outlier data. In [10], a Gaussian mixture copula model is proposed to identify outlier
values, but it cannot effectively clean stacked outlier data. Machine learning methods
mainly include isolation forest (IF), local outlier factor (LOF), and SVM [12–17]. In [17], a
generalized isolation forest was proposed, which can achieve high accuracy in anomaly
detection tasks and improve detection speed, but the accuracy of detecting stacked outliers
in wind power data is insufficient. In [18], the LOF algorithm is used to identify outlier
values in wind power operational data. However, for complex datasets with stacked outlier
values, the LOF algorithm may fail to detect them accurately, and its parameters will impact
the accuracy. The SVM classification algorithm has demonstrated excellent performance in
handling nonlinear and imbalanced data [19,20] and is more suitable for dealing with wind
power outliers with randomness and volatility [21].

When identifying wind power outliers using SVM, careful selection of SVM model
appropriate hyper-parameters plays a crucial role in achieving optimal outlier classifica-
tion performance of outliers [22,23]. In the field of SVM hyper-parameters optimization
research, scholars have adopted various intelligent search algorithms, including particle
swarm optimization (PSO), grey wolf optimization (GWO), and Harris hawks optimization
(HHO) [24–29]. In [30], the advantages and disadvantages of the HHO algorithm, appli-
cation fields, and improved variants are outlined. That is, the diversity of the population
and convergence accuracy are maintained through certain strategies, so that the algorithm
can play the best role in the application. In [28], the HHO algorithm with two update
strategies is used to optimize the hyper-parameters of the SVM to improve the classification
accuracy; although the SVM models optimized by the HHO algorithm have shown good
performance in outlier detection, they still have the disadvantage of easily falling into local
optimum, resulting in low accuracy and stability of the model.

To obtain the optimal parameters of SVM more efficiently, an improved HHO is pro-
posed in this work. Firstly, Hammersley sequence initialization is employed to provide
the algorithm with higher-quality initial solutions at the beginning of the iteration, thus
enhancing the optimization efficiency. Secondly, a nonlinear factor control mode is pro-
posed to increase the population’s opportunities for performing global search. Finally,
an adaptive Gaussian–Cauchy mutation perturbation strategy is incorporated to main-
tain diversity during the population optimization process. Subsequently, the improved
IHHO algorithm is utilized to optimize the hyper-parameters of the SVM and construct
an IHHO-SVM model for wind power outlier detection. Experiment results show that the
proposed IHHO-SVM wind power outlier detection model mitigates the issue of easily
getting trapped in local optima during the optimization process. It demonstrates a robust
capacity to escape local extrema, thus significantly enhancing the accuracy, stability, and
generalization performance of outlier detection in wind power systems.

The proposed outlier detection based on the IHHO-SVM model has the following
features:

(1) The hyper-parameters of SVM are initialized by the Hammersley sequence, which
ensures a better initial solution at the beginning of the iteration.

(2) A novel nonlinear factor control strategy is designed to make SVM hyper-parameters
explore the parameter space globally with a greater chance, which helps to find the
global optimal solution.

(3) An adaptive Gauss–Cauchy mutation strategy is proposed to perturb the local optimal
solutions to help them jump out of the potential local optimum, which can improve
global optimization performance.
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2. Outlier Data Distribution in Wind Turbines
2.1. Wind Speed–Power Curve

Wind power generation is a renewable energy technology that converts wind energy
into electrical energy. In wind power data, the wind speed–power curve is mainly used to
analyze the relationship between wind speed and power. Between the cut-in wind speed
(the minimum wind speed at which the wind turbine can generate power) and the rated
wind speed (the minimum wind speed required to achieve rated power generation), the
power output of the wind turbine is proportional to the cube of the wind speed, indicating
that the wind speed is the most significant factor influencing power generation. In the ideal
state, the output power of the wind turbine can be represented by Equation (1):

P =


0 v < vin
1
2 CPρAv3 vin ≤ v < vn

Pn vn ≤ v ≤ vout

0 v > vout

(1)

where v represents the actual wind speed, vin is the cut-in wind speed, vout is the cut-out
wind speed, vn is the rated wind speed, P represents the output power of the wind turbine,
and Pn is the rated power.

2.2. Characteristics of Outlier Data Distribution

Wind turbines generally operate in a more complex environment, and wind power
data may be affected by conditions, such as adverse weather, unit failures, wind curtailment,
and power rationing. Therefore, the wind power distribution sampled by the SCADA
system presents high volatility, strong randomness, and intermittency in the time series, as
shown in Figure 1a. These factors constitute an important factor leading to outliers in wind
power data.

Energies 2023, 16, x FOR PEER REVIEW 3 of 18 
 

 

(3) An adaptive Gauss–Cauchy mutation strategy is proposed to perturb the local opti-
mal solutions to help them jump out of the potential local optimum, which can im-
prove global optimization performance. 

2. Outlier Data Distribution in Wind Turbines 
2.1. Wind Speed–Power Curve 

Wind power generation is a renewable energy technology that converts wind energy 
into electrical energy. In wind power data, the wind speed–power curve is mainly used 
to analyze the relationship between wind speed and power. Between the cut-in wind 
speed (the minimum wind speed at which the wind turbine can generate power) and the 
rated wind speed (the minimum wind speed required to achieve rated power generation), 
the power output of the wind turbine is proportional to the cube of the wind speed, indi-
cating that the wind speed is the most significant factor influencing power generation. In 
the ideal state, the output power of the wind turbine can be represented by Equation (1): 

3

0
1
2

0

in

P in n

n n out

out

v v

C Av v v v
P

P v v v
v v

ρ

<

 ≤ <= 
 ≤ ≤


>

 (1) 

where v  represents the actual wind speed, inv  is the cut-in wind speed, outv  is the cut-
out wind speed, nv  is the rated wind speed, P  represents the output power of the wind 
turbine, and nP  is the rated power. 

2.2. Characteristics of Outlier Data Distribution 
Wind turbines generally operate in a more complex environment, and wind power 

data may be affected by conditions, such as adverse weather, unit failures, wind curtail-
ment, and power rationing. Therefore, the wind power distribution sampled by the 
SCADA system presents high volatility, strong randomness, and intermittency in the time 
series, as shown in Figure 1a. These factors constitute an important factor leading to out-
liers in wind power data. 

  

(a) (b) 

Figure 1. Distribution of wind power and wind speed. (a) Line diagram of wind power distribu-
tion; (b) Distribution points of wind speed and power. 

By analyzing the scatter diagram of wind speed-power distribution in Figure 1b, 
these data points can be divided into the following three categories: normal power points, 
stacked outliers, and discrete outliers. The distribution of normal power points is regular 

Figure 1. Distribution of wind power and wind speed. (a) Line diagram of wind power distribution;
(b) Distribution points of wind speed and power.

By analyzing the scatter diagram of wind speed-power distribution in Figure 1b,
these data points can be divided into the following three categories: normal power points,
stacked outliers, and discrete outliers. The distribution of normal power points is regular
and is positively correlated with the cubic velocity. The accumulation outlier is generally
caused by factors such as unit shutdown and power curtailment in the power grid. When
the wind speed is greater than zero, the power is at a low level, which is not affected
by the wind speed and is generally distributed horizontally at the bottom of the wind
power scatter diagram. Discrete outliers are usually caused by signal transmission noise,
extreme weather, and other reasons. Compared with stacked outliers, they have strong
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uncontrollability and randomness and are usually randomly distributed near the wind
power curve.

Wind power data with outliers cannot accurately reflect the real output of the generator
unit, which can impact the effectiveness of state monitoring and power prediction for wind
turbine units. This, in turn, can lead to unstable system operation and pose risks of
overload or inadequate power supply. Therefore, it is crucial to accurately detect outliers in
wind power.

3. Principle of the IHHO-SVM Wind Power Outlier Detection Model
3.1. Support Vector Machine

The idea behind support vector machine classification is to find an optimal hyper-
plane that separates samples of different classes and maximizes the margin between the
two classes.

For nonlinear separable sample sets, the classification problem can be formulated as a
convex quadratic programming problem, as shown in Equation (2). min

ω,b,ξi

1
2 ||ω||2 + C

m
∑

i=1
ξi, i = 1, 2, . . . , m

s.t.yi(ω
T f (xi) + b) ≥ 1− ξi

(2)

where ω represents the normal vector of the hyperplane, C is the penalty coefficient, m is
the number of samples, yi ∈ {−1, 1} is the class label, ξi(ξi ≥ 0) is the slack variable, and
f (xi) is the mapping function.

By introducing the Lagrange function, the dual principle, and the SVM kernel func-
tions, the decision function can be obtained as shown in Equation (3).

f (x, α) = sgn(
m

∑
i=1

yiαiK(xi, yi) + b) (3)

K(xi, xj) = exp(
−||xi − xj||2

2g2 ) (4)

where αi(αi ≥ 0) is the Lagrange multiplier, K(xi, xj) is the Gaussian kernel function, and
g is the parameter of the kernel function.

3.2. Harris Hawks Optimization Algorithm

The HHO simulates the predation process within a group of Harris hawks to search
for the optimal solution through individual collaboration and competition. This algorithm
consists of three stages: the exploration stage, the transition from the exploration to the
exploitation stage, and the exploitation stage.

3.2.1. Exploration

When searching for the position of prey, Harris hawks update their position as follows:

X(t + 1) =

{
Xrand(t)− r1|Xrand(t)− 2r2X(t)| q ≥ 0.5
(Xrabbit(t)− Xmean(t))− r3(lb + r4(ub− lb)) q < 0.5

(5)

Xmean(t) =
1
N

N

∑
i=1

Xi(t) (6)

where t is the current iteration number; Xrand is the position of the randomly selected
individual in the current population; Xmean is the average position of the current population;
Xrabbit is the best individual in the current population; r1, r2, r3, r4 and q are random
numbers inside (0,1); ub and lb are the upper and lower boundaries of the population
exploration space; N denotes the population size; and Xi represents the position of a
Harris hawk.
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3.2.2. Transition from Exploration to Exploitation

The transition behavior of a Harris hawk from the global exploration phase to the local
phase is simulated as the prey energy attenuation process. The mathematical expression is
as follows:

E = 2(1− t
T
) (7)

E1 = EE0 (8)

where T represents the maximum number of iterations, E represents the escape energy
factor of the prey, E0 is a random number in the range of (−1, 1), and E1 represents the
escape energy of the prey, which ranges from (−2, 2). When |E1| ≥ 1, global exploration is
performed. When |E1| < 1, local development is conducted.

3.2.3. Exploitation

In this phase, the Harris hawk determines four possible attack strategies based on the
prey’s escape probability r and escape energy E1.

1. Soft Besiege

When r ≥ 0.5 and |E1| ≥ 0.5, the Harris hawk uses the soft Besiege mode for encircling
prey. Its mathematical expression is as follows:

X(t + 1) = ∆X(t)− E1|JXrabbit(t)− X(t)| (9)

∆X(t) = Xrabbit(t)− X(t) (10)

J = 2(1− r5) (11)

where ∆X(t) represents the difference between the current population and prey position at
iteration t, J represents the prey’s jumping distance, and r5 is a random number within the
range of (0,1).

2. Hard Besiege

When r ≥ 0.5 and |E1| < 0.5, the Harris hawk uses the hard Besiege mode for
encircling prey. Its mathematical expression is as follows:

X(t + 1) = Xrabbit(t)− E1|∆X(t)| (12)

3. Soft Besiege with Progressive Rapid Dives

When r < 0.5 and |E1| ≥ 0.5, the Harris hawk needs to adopt a progressive rapid dive
with a soft besiege attack strategy. Its mathematical expression is as follows:

Y = Xrabbit − E1|JXrabbit(t)− X(t)| (13)

Z = Y + S× LF(D) (14)

X(t + 1) =
{

Y F(Y) < F(X(t))
Z F(Z) < F(X(t))

(15)

where LF represents the Levy flight function, S is a random vector of dimension D,
D represents the dimensionality of the problem, and F denotes the fitness function of
the problem.

4. Hard Besiege with Progressive Rapid Dives

When r < 0.5 and |E1| < 0.5, the Harris hawk attempts to increase the hunting
success rate by reducing the average distance to the prey. The mathematical expression is
as follows:

Y = Xrabbit(t)− E1|JXrabbit(t)− Xmean(t)| (16)
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X(t + 1) =
{

Y F(Y) < F(X(t))
Z F(Z) < F(X(t))

(17)

3.3. Improved Harris Hawks Optimization (IHHO)
3.3.1. Hammersley Sequence Initialization Populations

Random initialization in the HHO algorithm often leads to uneven population dis-
tribution, clustering, or stacking, which adversely affects the quality of initial solutions.
Furthermore, during the early stage of global exploration, the algorithm may have limited
coverage and fail to adequately explore potential optimal solution regions. To address this
issue and improve search traversal, this paper proposes using the Hammersley sequence
for population initialization. Hammersley is a uniformly distributed point sequence with
low difference properties. Compared with traditional random number generation meth-
ods, the Hammersley sequence can cover the whole space more uniformly when filling
high-dimensional space. This feature makes the Hammersley sequence more efficient when
optimizing the initial population of the algorithm and also improves the distribution of
the population in the initial space to be more uniform, which helps the algorithm to obtain
better initial values.

The Hammersley sequence maps integer indices to values in different dimensions,
generating a set with lower discrepancy. The main steps are as follows:

1. Determine any natural number n by a polynomial of the given prime p:

n =
m

∑
i=0

ai pi = am pm + . . .+a2 p2 + a1 p1 + a0 p0 (18)

where ai ∈ [0, p− 1].
2. Reverse the coefficients ai in order and mirror them to the right of the decimal point,

then calculate their value.

φp(n) = a0 p−1 + a1 p−2 + . . . + am p−m−1 (19)

3. Set the dimension to d and obtain the values of the Hammersley sequence.

H(n) = (
n
N

, φp1(n), φp2(n), . . . , φpd−1(n)) (20)

where N represents the number of sample points, and p is a prime number determined
based on the dimension; n = 0, 1, 2 . . . , N − 1.

Figure 2a illustrates the issues related to random initialization, such as clustering,
stacking, and uneven distribution. However, Figure 2b shows the effectiveness of employ-
ing the Hammersley sequence as an initialization method to achieve a uniform distribution
across the spatial extent. This approach takes better consideration of each region, which is
beneficial for optimization algorithms to obtain higher-quality initial solutions.

3.3.2. Nonlinear Factor Control Mode

The transition from HHO’s global exploration to local exploitation is controlled by the
prey’s escape energy. In the early stages of iteration, the probability of linear escape energy
for global exploration gradually decreases until the middle and later stages of iteration,
where the population only focuses on local exploitation. This can easily lead the algorithm
to get stuck in a local optimum. In order to overcome these limitations, we consider the
periodicity and radian of the inverse triangular function, and the increase and decrease in
the exponential function, and propose a nonlinear escape energy update strategy, which
enables HHO to have a greater probability of global exploration in the whole iteration
process and rapid local exploration in the later stage. The proposed strategy is shown in
Equation (21).
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E∗ = 2× (arccos
t
T
× 2

π
)

k
(21)

E2 = E∗E0 (22)

where E2 represents the nonlinear escape energy range (−2, 2). E∗ is the nonlinear escape
energy factor, when E∗ ≥ 1, global exploration is conducted; when E∗ < 1, local exploita-
tion is performed. k is the decay rate coefficient with 0 < k < 1. When k is close to 0, it can
lead to insufficient local exploration in the later stages of iteration. When k is close to 1, it
can result in inadequate global search capability in the later stages of iteration. To balance
the local exploitation and global search ability throughout the algorithm iteration process,
this paper sets k = 0.8.

As shown in Figure 3, the proposed nonlinear update strategy improves the limitations
of the original algorithm, which only conducts global exploration after the mid-iteration
stage and has a relatively low probability of global exploration in the early stage. This
strategy prevents the early stagnation of the algorithm and facilitates a more extensive
exploration of the global optimal solution.
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3.3.3. Adaptive Gaussian–Cauchy Perturbation Strategy

In the HHO algorithm, the population tends to converge towards the region of the
current best solution, which reduces the diversity of the population and can lead to the
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problem of the algorithm getting trapped in local optima. In order to overcome this
problem, we consider the characteristics of Gaussian and Cauchy distributions, set an
adaptive weight coefficient by increasing the number of iterations, and use this strategy to
perturb the optimal individual that remains unchanged for two successive iterations, as
shown in Equations (23) and (24). If the perturbed position of the individual improves on
the current best position, it will be incorporated in the next iteration.

X(t + 1) = X∗rabbit(t)[1 + (1− t2

T2 )Cauchy(0, 1) +
t2

T2 Gauss(0, 1)] (23)

Xrabbit(t + 1) =
{

X(t + 1) F(X(t + 1)) < F(Xrabbit(t))
Xrabbit(t) F(Xrabbit(t)) < F(X(t + 1))

(24)

where X∗rabbit represents the position information of an individual whose fitness value re-
mains unchanged for two consecutive iterations; X(t + 1) denotes the individual’s position
after Gaussian–Cauchy perturbation; Cauchy(0, 1) represents the standard Cauchy distri-
bution; Gauss(0, 1) represents the standard Gaussian distribution; Xrabbit(t + 1) represents
the updated position of the best individual; F represents the fitness value of the problem.

In Equation (23), the standard Cauchy distribution, with its wide numerical distribu-
tion range, can induce significant disturbances to individual positions. Thus, in the early
stages, it is assigned a higher weight to escape local optima. Conversely, the standard
Gaussian distribution possesses a more concentrated numerical distribution, resulting in
smaller perturbation values. Therefore, in the later stages of iteration, it is assigned a higher
weight to facilitate the population to explore the vicinity of the current best individual and
discover the optimal solution.

Figure 4 shows the flow chart of the IHHO algorithm. By integrating the above three
enhancement strategies, the limitations of inadequate global search and susceptibility to
local optima in the original HHO algorithm are mitigated, resulting in a more precise
identification of the global optimal solution.

3.4. IHHO-SVM Wind Power Outlier Detection Model

In the detection of wind power outliers with SVM, the parameters C and g play a
crucial role in determining the final detection results. A larger value of C tends to favor
overfitting, while a smaller value tends to favor generalization ability. A larger value of
g focuses more on the local data structure, which may lead to overfitting. Conversely, a
smaller value makes the model pay more attention to the global data structure, which can
result in underfitting.

The IHHO-SVM wind power outlier detection model uses the parameters C and g
of SVM as position information of individuals in the population. The fitness value is
calculated to determine whether it is the optimal model. In the outlier detection task, the
precision, recall, and F1 score can reflect the performances from different views; so in order
to evaluate the overall performance, the fitness function is constructed as follows:

F = 3− (P + R + F1) (25)

where P represents precision, R represents recall, and F1 represents F1 score. When
precision, recall, and F1 score are close to 1, it indicates that the model can accurately identify
anomalies while maintaining low false-positive and false-negative rates. To facilitate the
observation and comparison of experimental results, a constant of 3 is introduced in
the formula.
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The wind power outlier detection model based on IHHO-SVM is depicted in Figure 5.
It consists of two main components. Firstly, the wind turbine data are preprocessed as part
of the process. Secondly, the parameters of the SVM model are optimized utilizing IHHO.
Finally, the outlier value of wind power is detected.

In the wind power outlier detection algorithm based on the IHHO-SVM, several
steps are performed. Firstly, the wind power data are divided and normalized, and the
parameters of IHHO are set, including the maximum number of iterations and the number
of populations. Then, the population is initialized using the Hammersley sequence, taking
into account the value range of SVM hyper-parameters C and g. Subsequently, the IHHO
algorithm is used to optimize the SVM parameters, and the fitness value is obtained by
5-fold cross-validation of the model in the training samples. The process assesses whether
the maximum number of iterations is reached and determines the optimal SVM model
with the minimum fitness. Finally, the test samples are fed into the optimal SVM model to
obtain the results of anomaly detection.
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4. Experiment and Result Analysis
4.1. Experimental Environment and Dataset

Experimental environment: The computer operating system is Windows 10, equipped
with an Intel Core i7-11800H CPU and 16GB RAM. Algorithm development is performed
using a Python 3.8 interpreter in the PyCharm environment.

The study utilizes data from the SCADA system to evaluate the performance of the
proposed IHHO-SVM model. The dataset consists of variables such as wind speed, wind
direction, and power generation. These data are sampled every 10 min from the SCADA
system of a wind turbine in Turkey. In order to better understand the distribution of data
used in the experiment, the index of wind speed in the dataset is given, as shown in Table 1.

Table 1. Wind speed distribution index of experimental data.

Dataset Sample Size Minimum (m/s) Maximum (m/s) Mean (m/s) Variance Standard Deviation

1 10,000 0 25.20 8.85 24.96 4.99
2 2000 0 17.00 5.95 13.44 3.66
3 2000 0.35 18.43 8.51 11.61 3.41
4 2000 0 14.12 6.78 7.70 2.77
5 2000 0 16.55 6.01 14.25 3.77
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By analyzing the distribution of wind power data collected by the SCADA system, the
actual power data not only strongly correlated with wind speed but also related to random
nonlinear factors, such as measuring instrument accuracy (such as temperature, humidity,
and air pressure), communication reliability, and control problems. If the actual power
deviates from the theoretical value is large enough, we can take it as an outlier. However,
the absolute deviation changes large with the wind speed. Thus, we design a threshold as
shown in Equation (26).

y =


1, if Pa < 0 and v < vin

1, if
∣∣∣ Pt−Pa

v

∣∣∣> k and vin ≤ v < vn

1, if Pt−Pa
vn

> k
2 and vn ≤ v

0, otherwise

(26)

where y is the label, 1 is the outlier value, 0 is the normal value, v is the actual wind speed,
vin is the cut-in wind speed, vn is the rated wind speed, Pt is the theoretical power value,
Pa is the actual power value, and k is the boundary coefficient. Considering the actual
working conditions of the fan and the influence of nonlinear factors, the value of k in this
experiment is 60. When v < vin, the actual power may be affected by the inertia of the
fan blade to output a small amount of power, but the output power cannot be a negative
value, so the actual power is less than 0 when the wind speed is less than vin, which is
labeled as an outlier. When vin ≤ v < vn, the actual power is related to the wind speed and
other nonlinear factors; therefore, when the deviation between the actual power and the
theoretical value is greater than a certain threshold relative to the wind speed, it is labeled
as an outlier. When vn < v, the theoretical power is the maximum generation power, which
will not change with the change in the current wind speed. In contrast, the actual power
will be affected by system loss and other factors, which will only be less than the theoretical
power and have small fluctuations; therefore, we set a small threshold to judge whether it
is an outlier. In the end, about 4% of outliers are labeled in their annual data.

To enhance the model’s training and enable a comprehensive evaluation, a data
augmentation strategy is designed to increase the proportion of outliers in the dataset,
simulating actual power outliers. A certain amount of data are randomly selected from
the actual power labeled as normal, and the data are changed as outliers according to
Equation (27):

Pa∗ = Pa(1 + h%)
s.t. h ∼ Gauss(0, 40)

|h|> 25
(27)

where Pa∗ is to simulate the outlier of the actual power, h follows the Gaussian distribution
with the mean of 0 and the variance of 40, and |h|> 25 makes the simulated outlier as real
as possible.

To mitigate the influence of different data scales, the data are normalized using the
min–max normalization method as shown in Equation (28).

x′ =
x− xmin

xmax − xmin
(28)

where x′ is the normalized data, x is the original data, xmin is the minimum value in the
original data, and xmax is the maximum value in the original data.

4.2. Evaluation Index

In the problem of outlier detection, commonly used evaluation metrics are precision,
recall, and F1 score. Their expressions are as follows:

P =
TP

TP + FP
(29)
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R =
TP

TP + FN
(30)

F1 =
2× P× R

P + R
(31)

where TP is the number of correct positive class classifications in the result, while FP and
FN are the total number of sample misclassifications in the results.

4.3. Experiments and Discussion
4.3.1. Experiment 1

To validate the advantages of IHHO-SVM in the detection of outliers in wind power,
this experiment was annotated and enhanced using 10,000 data points from dataset 1 as the
training set, in which the proportion of outliers was about 15%. Separate IHHO-SVM and
HHO-SVM wind power outlier detection models were established. The performance of the
optimization algorithm was assessed by monitoring variations in average fitness values
through 5-fold cross-validation. The relevant initial parameters of the algorithm were set as
follows: a population size of 30, maximum iteration of 30, variable dimension of 2, penalty
factor C search range of

[
1, 104], and kernel function parameter g search range of

[
10−3, 1

]
.

As shown in Figure 6, in the context of wind power outlier detection, the IHHO-
SVM has a smaller initial fitness value, demonstrating that the proposed Hammersley
sequence initialization method can provide higher-quality initial solutions for the model.
Throughout the iteration process, the fitness value of IHHO-SVM undergoes multiple
changes until it reaches the minimum, signifying that the proposed nonlinear factor con-
trol mode and adaptive perturbation strategy help the algorithm in evading local optima
and enhance its likelihood of exploring various regions to achieve the global optimum.
Therefore, in comparison to the HHO algorithm, the IHHO algorithm demonstrates im-
proved global optimization capability and convergence accuracy during the SVM parameter
optimization process.
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4.3.2. Experiment 2

To validate the detection accuracy and generalization performance of IHHO-SVM
in the detection of wind power outliers, three groups of labeled wind power datasets in
different months were selected as test sets, namely, datasets 2, 3, and 4. Each dataset contains
2000 samples, and then data enhancement generates outliers of different proportions to
evaluate the stability of the model. Penalty factor C and the parameter of the kernel
function g in the algorithm were obtained from the training model in Experiment 1. The
parameter optimization results for the IHHO-SVM model are C = 9801 and g = 1, while for
the HHO-SVM model, the parameter optimization results are C = 3649 and g = 0.98.
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Table 2 presents the comprehensive F1 scores of the IHHO-SVM, HHO-SVM, and
SVM models on three test sets. The average F1 score of SVM is the highest at 90.39% and
the lowest at 84.95%, with the worst standard deviation. This indicates that the parameter
settings in the SVM model significantly affect the detection results of outlier data with
different proportions. The HHO-SVM model performs better than the SVM model in
terms of the average F1 values and standard deviations for all three sets, suggesting that
the optimization of the HHO-based SVM hyper-parameters overcomes the limitations of
manually selecting parameters. Furthermore, the average F1 scores of the IHHO-SVM
model are higher than those of the HHO-SVM model, reaching a maximum of 97.16%. This
indicates that the HHO-SVM model has fallen into local extremum points when optimiz-
ing parameters, while the IHHO-SVM model improves the ability to jump out of local
extremum points during parameter optimization by nonlinear factor control mode and
adaptive Gaussian–Cauchy mutation perturbation strategy, resulting in the best optimiza-
tion effect and improving the accuracy of outlier detection. Furthermore, the standard
deviation of the IHHO-SVM model is the smallest at 0.18 and consistently the best in all
three test sets, indicating its low sensitivity to imbalanced distributions of outlier values.
In summary, the IHHO-SVM model demonstrates the best detection accuracy, as well as
strong stability and generalization performance.

Table 2. Performance of the models on three test sets with different proportions of outliers.

Dataset Model

F1 Score(%)

Outlier Ratio
Mean Value Standard Deviation

5% 10% 15% 20% 25%

2
SVM 82.61 87.05 84.95 84.92 85.23 84.95 1.58

HHO-SVM 92.00 92.93 94.20 93.64 93.76 93.31 0.86
IHHO-SVM 94.23 95.27 94.99 94.37 94.66 94.70 0.18

3
SVM 90.09 87.32 88.40 89.40 89.61 88.96 1.11

HHO-SVM 96.61 96.44 95.70 95.50 94.95 95.84 0.69
IHHO-SVM 97.15 96.77 96.34 96.04 95.48 96.36 0.64

4
SVM 91.33 91.08 90.23 89.32 89.99 90.39 0.82

HHO-SVM 96.29 95.12 96.51 95.42 95.74 95.82 0.58
IHHO-SVM 97.05 96.07 97.16 96.61 96.28 96.63 0.47

4.3.3. Experiment 3

In order to further validate the performance of the IHHO-SVM model in wind power
outlier detection, comparative test was conducted by selecting commonly employed ma-
chine learning models for outlier detection, including isolation forest (IF) [17], local outlier
factor (LOF) [18], SVM, as well as combined models of SVM with widely applied optimiza-
tion algorithms, such as GWO-SVM [27], PSO-SVM [24], and HHO-SVM, in comparison
with the proposed IHHO-SVM model. The test uses the labeled dataset 5, which contains
2000 samples with an outlier content of about 4%, and the results are given in Table 3.

Table 3. Comparison of outlier detection performance with different models.

Model Precision (%) Recall (%) F1 Score(%)

IF 83.03 51.89 63.86
LOF 85.11 54.16 66.20
SVM 91.56 89.48 90.51

GWO-SVM 95.31 95.21 95.22
PSO-SVM 95.24 94.08 94.66

HHO-SVM 95.70 95.51 95.60
IHHO-SVM 95.76 96.94 96.35
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As shown in Table 3, compared to IF and LOF, SVM achieved the highest evaluation
metric values, making it more suitable for outlier detection tasks. However, SVM recall pre-
cision and F1 score were only 89.48%, 91.56%, and 90.51%, respectively. This phenomenon
could be attributed to the artificial selection of hyper-parameters. Nevertheless, based
on the SVM model of the general optimization algorithm, the overall F1 score is up to
95.60%, which reduces the randomness of hyperparameter selection and improves the
overall detection accuracy. In addition, the IHHO-SVM model proposed in this paper is
compared with the SVM model based on general optimization algorithms. It is found that
the precision of the IHHO-SVM model is 95.76%, the recall is 96.94%, and the F1 score is
96.35%. Compared with the GWO-SVM, PSO-SVM, and HHO-SVM, the accuracy rate of
the IHHO-SVM model is the best. It shows that the general optimization algorithm is easy
to fall into local optimal when SVM parameters are optimized. In the IHHO-SVM proposed
in this paper, Hammersley sequence initialization is used to reduce the possibility of falling
into local extreme value in the initial optimization, nonlinear factor control mode, and
adaptive Gaussian–Cauchy mutation perturbation strategy, which make the model easily
jump out of local extreme values and find better parameters in the parameter optimization
process. Therefore, IHHO-SVM shows high accuracy in wind power outlier detection.

In order to evaluate the performance of IHHO-SVM in a long span, the detection
performance of five algorithms in one-year wind power data was visualized, as shown in
Figure 7. It is evident that these five detection algorithms can broadly detect outliers in raw
SCADA data. In terms of detection performance, the IHHO-SVM proposed in this paper
performs the best in wind power data. In comparison, LOF and IF algorithms generate more
false alarms for data points near the edge of normal data. Additionally, the LOF algorithm
exhibits lower sensitivity to stacked outliers and partial discrete outliers at the bottom
of wind power data, resulting in more cases of missed detection, while the IF algorithm
performs poorly in detecting discrete outliers near the middle and bottom of normal data.
Although SVM accurately identified the main portion of normal wind power data, some
outlier data points in the upper middle of the curve were missed due to the artificial
determination of the hyperparameters. Compared with the IHHO-SVM algorithm, the
HHO-SVM algorithm has some missing detection near the middle edge and upper part of
wind power data. Therefore, comparing the results of IF, LOF, and SVM, it can be seen that
SVM has the best effect on processing data with nonlinear characteristics. According to the
results of the SVM outlier detection model based on the optimization algorithm, in IHHO,
Hammersley sequence initialization, nonlinear factor control mode, and adaptive Gaussian–
Cauchy mutation perturbation strategy improve the optimization of hyper-parameters in
the SVM model to avoid falling into a local optimal solution. Therefore, it achieves high
precision, good stability, and high generalization performance in wind power anomaly
detection task and provides strong support for wind power condition monitoring and wind
power prediction.
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5. Conclusions

Aiming to address the issue of wind power outlier detection, this paper establishes an
SVM-based wind power outlier detection model using the IHHO algorithm. The model is
built on the HHO algorithm as its foundation. Initially, the hyper-parameters are initialized
using the Hammersley sequence, ensuring a superior initial solution during the iterative
process. Subsequently, the algorithm’s global exploration ability and optimization accuracy
are enhanced by introducing a nonlinear factor control mode and an adaptive Cauchy–
Gaussian perturbation strategy. Finally, these techniques are applied to optimize the
parameters C and g of the SVM, resulting in an optimized model for the outlier detection
model. The experimental results show that IHHO-SVM maintains higher detection scores
than other outlier detection models in multiple sets of test results.
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5. Conclusions

Aiming to address the issue of wind power outlier detection, this paper establishes an
SVM-based wind power outlier detection model using the IHHO algorithm. The model is
built on the HHO algorithm as its foundation. Initially, the hyper-parameters are initialized
using the Hammersley sequence, ensuring a superior initial solution during the iterative
process. Subsequently, the algorithm’s global exploration ability and optimization accuracy
are enhanced by introducing a nonlinear factor control mode and an adaptive Cauchy–
Gaussian perturbation strategy. Finally, these techniques are applied to optimize the
parameters C and g of the SVM, resulting in an optimized model for the outlier detection
model. The experimental results show that IHHO-SVM maintains higher detection scores
than other outlier detection models in multiple sets of test results.

In conclusion, the IHHO-SVM model demonstrates high accuracy in the task of wind
power outlier detection, while also exhibiting commendable generalization performance
and stability. As such, it holds significant relevance in the realms of wind power curve
modeling and power prediction tasks. However, it should be noted that this method
primarily performs offline training using historical data and can identify outlier points
based on fundamental characteristics. Nevertheless, when a wind turbine is operating
in real-time, it may not be possible to accurately identify these outliers when extreme
operating conditions are present and accompanied by outliers that produce new features.
So, the investigation of online training with real-time data and continuous model updates
is an important issue, which will aid in addressing the real-time outlier detection of wind
turbines under exceptional conditions and can provide more technical support for ultra-
short-term wind power prediction.
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