Monte Carlo Simulation of Percolation Phenomena for Direct Current in Large Square Matrices
Abstract
:1. Introduction
- the determination of the two-dimensional spatial distributions of node coordinates interrupting the last percolation channel for square base matrices with dimensions from L = 50 to 600 for 5 × 104 samples;
- the determination of a formula describing the influence of matrix dimensions on the standard deviation values, based on the approximation of experimental results;
- the determination of the relationships describing the spatial distribution of nodes interrupting the last percolation channel depending on the dimensions of the matrix;
- the determination of the formula describing the maximum rate of reduction in the concentration of nodes interrupting the last percolation channel towards the edge of the matrix;
- the determination of the correlation between the intensity of the edge phenomenon for the distribution of nodes interrupting the last percolation channel and the value of the standard deviation of the percolation threshold depending on the dimensions of the matrix.
2. Research Method
3. Research and Analysis of Basic Percolation Parameters Depending on the Dimensions of the Matrix
3.1. Determination of the Parameters of the Probability Distribution of Percolation Thresholds Depending on the Dimensions of the Matrix
3.2. The Edge Phenomenon of Node Coordinates Interrupting the Last Percolation Channel
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Osetsky, Y.; Barashev, A.V.; Zhang, Y. Sluggish, Chemical Bias and Percolation Phenomena in Atomic Transport by Vacancy and Interstitial Diffusion in Ni Fe Alloys. Curr. Opin. Solid State Mater. Sci. 2021, 25, 100961. [Google Scholar] [CrossRef]
- Jiang, J.; Yu, X.; Lin, Y.; Guan, Y. PercolationDF: A Percolation-Based Medical Diagnosis Framework. Math. Biosci. Eng. 2022, 19, 5832–5849. [Google Scholar] [CrossRef]
- Sahimi, M. Percolation in Biological Systems. In Applied Mathematical Sciences (Switzerland); Springer: Berlin/Heidelberg, Germany, 2023; Volume 213, pp. 443–488. [Google Scholar]
- Devpura, A.; Phelan, P.E.; Prasher, R.S. Percolation Theory Applied to the Analysis of Thermal Interface Materials in Flip-Chip Technology. In Proceedings of the Seventh Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems—ITHERM 2000 (Cat. No.00CH37069), Las Vegas, NV, USA, 23–26 May 2000; Volume 1, pp. 21–28. [Google Scholar]
- Evseev, V.A.; Konopleva, R.F.; Skal, A.S. Percolation in Semiconductors with Disordered Regions: Electrical Conductivity and Hall Coefficient. Radiat. Eff. 1982, 66, 167–172. [Google Scholar] [CrossRef]
- Bychkov, E.; Tveryanovich, Y.; Vlasov, Y. Ion Conductivity and Sensors; Argonne National Lab: Argonne, IL, USA, 2004; pp. 103–168. [Google Scholar]
- Rubie, D.C.; Nimmo, F.; Melosh, H.J. Formation of Earth’s Core. In Treatise on Geophysics; Elsevier: Amsterdam, The Netherlands, 2007; pp. 51–90. [Google Scholar]
- Peng, H.; Sun, X.; Weng, W.; Fang, X. Electronic Polymer Composite. In Polymer Materials for Energy and Electronic Applications; Academic Press: Cambridge, MA, USA, 2017; pp. 107–149. [Google Scholar] [CrossRef]
- Sulaberidze, V.S.; Skorniakova, E.A. Phenomenon of the Percolation in Composite Materials Based on a Polymer Binder with a Dispersed Filler Phase. IOP Conf. Ser. Mater. Sci. Eng. 2020, 919, 022009. [Google Scholar] [CrossRef]
- Essam, J.W. Percolation Theory. Rep. Progress Phys. 1980, 43, 833–912. [Google Scholar] [CrossRef]
- Hammersley, J.M. A Generalization of McDiarmid’s Theorem for Mixed Bernoulli Percolation. Math. Proc. Camb. Philos. Soc. 1980, 88, 167–170. [Google Scholar] [CrossRef]
- Broadbent, S.R.; Hammersley, J.M. Percolation Processes. Math. Proc. Camb. Philos. Soc. 1957, 53, 629–641. [Google Scholar] [CrossRef]
- Carreau, P.J.; Vergnes, B. Rheological Characterization of Fiber Suspensions and Nanocomposites. In Rheology of Non-Spherical Particle Suspensions; Elsevier: Amsterdam, The Netherlands, 2015; pp. 19–58. [Google Scholar]
- Lebrecht, W.; Centres, P.M.; Ramirez-Pastor, A.J. Empirical Formula for Site and Bond Percolation Thresholds on Archimedean and 2-Uniform Lattices. Phys. A Stat. Mech. Its Appl. 2021, 569, 125802. [Google Scholar] [CrossRef]
- Shlyakhtich, M.; Prudnikov, P. Monte Carlo Simulation of the Critical Behavior near the Percolation Threshold with Invaded Cluster Algorithm. J. Phys. Conf. Ser. 2021, 1740, 012009. [Google Scholar] [CrossRef]
- Dean, P. A New Monte Carlo Method for Percolation Problems on a Lattice. Math. Proc. Camb. Philos. Soc. 1963, 59, 397–410. [Google Scholar] [CrossRef]
- Dean, P.; Bird, N.F. Monte Carlo Estimates of Critical Percolation Probabilities. Math. Proc. Camb. Philos. Soc. 1967, 63, 477–479. [Google Scholar] [CrossRef]
- Derrida, B.; Stauffer, D. Corrections to Scaling and Phenomenological Renormalization for 2-Dimensional Percolation and Lattice Animal Problems. J. Phys. 1985, 46, 1623–1630. [Google Scholar] [CrossRef]
- De Oliveira, P.M.C.; Nóbrega, R.A.; Stauffer, D. Corrections to Finite Size Scaling in Percolation. Braz. J. Phys. 2003, 33, 616–618. [Google Scholar] [CrossRef]
- Jacobsen, J.L. Critical Points of Potts and O(N) Models from Eigenvalue Identities in Periodic Temperley–Lieb Algebras. J. Phys. A Math. Theor. 2015, 48, 454003. [Google Scholar] [CrossRef]
- Mertens, S. Exact Site-Percolation Probability on the Square Lattice. J. Phys. A Math. Theor. 2022, 55, 334002. [Google Scholar] [CrossRef]
- Newman, M.E.J.; Ziff, R.M. Efficient Monte Carlo Algorithm and High-Precision Results for Percolation. Phys. Rev. Lett. 2000, 85, 4104–4107. [Google Scholar] [CrossRef]
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric Field Effect in Atomically Thin Carbon Films. Science 2004, 306, 666–669. [Google Scholar] [CrossRef] [PubMed]
- Berger, C.; Song, Z.; Li, T.; Li, X.; Ogbazghi, A.Y.; Feng, R.; Dai, Z.; Marchenkov, A.N.; Conrad, E.H.; First, P.N.; et al. Ultrathin Epitaxial Graphite: 2D Electron Gas Properties and a Route toward Graphene-Based Nanoelectronics. J. Phys. Chem. B 2004, 108, 19912–19916. [Google Scholar] [CrossRef]
- Naguib, M.; Kurtoglu, M.; Presser, V.; Lu, J.; Niu, J.; Heon, M.; Hultman, L.; Gogotsi, Y.; Barsoum, M.W. Two-Dimensional Nanocrystals Produced by Exfoliation of Ti3AlC2. Adv. Mater. 2011, 23, 4248–4253. [Google Scholar] [CrossRef]
- Naguib, M.; Mashtalir, O.; Carle, J.; Presser, V.; Lu, J.; Hultman, L.; Gogotsi, Y.; Barsoum, M.W. Two-Dimensional Transition Metal Carbides. ACS Nano 2012, 6, 1322–1331. [Google Scholar] [CrossRef]
- Mashtalir, O.; Naguib, M.; Mochalin, V.N.; Dall’Agnese, Y.; Heon, M.; Barsoum, M.W.; Gogotsi, Y. Intercalation and Delamination of Layered Carbides and Carbonitrides. Nat. Commun. 2013, 4, 1716. [Google Scholar] [CrossRef]
- Ling, Z.; Ren, C.E.; Zhao, M.-Q.; Yang, J.; Giammarco, J.M.; Qiu, J.; Barsoum, M.W.; Gogotsi, Y. Flexible and Conductive MXene Films and Nanocomposites with High Capacitance. Proc. Natl. Acad. Sci. USA 2014, 111, 16676–16681. [Google Scholar] [CrossRef]
- Li, X.; Zhu, H. Two-Dimensional MoS2: Properties, Preparation, and Applications. J. Mater. 2015, 1, 33–44. [Google Scholar] [CrossRef]
- Bhimanapati, G.R.; Glavin, N.R.; Robinson, J.A. 2D Boron Nitride. In Semiconductors and Semimetals; Academic Press Inc.: Cambridge, MA, USA, 2016; Volume 95, pp. 101–147. [Google Scholar]
- Shahzad, F.; Alhabeb, M.; Hatter, C.B.; Anasori, B.; Man Hong, S.; Koo, C.M.; Gogotsi, Y. Electromagnetic Interference Shielding with 2D Transition Metal Carbides (MXenes). Science 2016, 353, 1137–1140. [Google Scholar] [CrossRef] [PubMed]
- Akhtar, M.; Anderson, G.; Zhao, R.; Alruqi, A.; Mroczkowska, J.E.; Sumanasekera, G.; Jasinski, J.B. Recent Advances in Synthesis, Properties, and Applications of Phosphorene. NPJ 2D Mater. Appl. 2017, 1, 5. [Google Scholar] [CrossRef]
- Zhen, Z.; Zhu, H. Structure and Properties of Graphene. In Graphene; Elsevier: Amsterdam, The Netherlands, 2018; pp. 1–12. [Google Scholar]
- Xu, Z. Fundamental Properties of Graphene. In Graphene; Elsevier: Amsterdam, The Netherlands, 2018; pp. 73–102. [Google Scholar]
- Gogotsi, Y.; Anasori, B. The Rise of MXenes. ACS Nano 2019, 13, 8491–8494. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Gholamirad, F.; Yu, M.; Park, C.M.; Jang, A.; Jang, M.; Taheri-Qazvini, N.; Yoon, Y. Enhanced Adsorption Performance for Selected Pharmaceutical Compounds by Sonicated Ti3C2TX MXene. Chem. Eng. J. 2021, 406, 126789. [Google Scholar] [CrossRef]
- Kołtunowicz, T.N.; Gałaszkiewicz, P.; Kierczyński, K.; Rogalski, P.; Okal, P.; Pogrebnjak, A.D.; Buranich, V.; Pogorielov, M.; Diedkova, K.; Zahorodna, V.; et al. Investigation of AC Electrical Properties of MXene-PCL Nanocomposites for Application in Small and Medium Power Generation. Energies 2021, 14, 7123. [Google Scholar] [CrossRef]
- Diedkova, K.; Pogrebnjak, A.D.; Kyrylenko, S.; Smyrnova, K.; Buranich, V.V.; Horodek, P.; Zukowski, P.; Koltunowicz, T.N.; Galaszkiewicz, P.; Makashina, K.; et al. Polycaprolactone-MXene Nanofibrous Scaffolds for Tissue Engineering. ACS Appl. Mater. Interfaces 2023, 15, 14033–14047. [Google Scholar] [CrossRef]
- Zukowski, P.; Okal, P.; Kierczynski, K.; Rogalski, P.; Borucki, S.; Kunicki, M.; Koltunowicz, T.N. Investigations into the Influence of Matrix Dimensions and Number of Iterations on the Percolation Phenomenon for Direct Current. Energies 2023, 16, 7128. [Google Scholar] [CrossRef]
- Zukowski, P.; Okal, P.; Kierczynski, K.; Rogalski, P.; Bondariev, V. Analysis of uneven distribution of nodes creating a percolation channel in matrices with translational symmetry for direct current. Energies 2023, 16, 7647. [Google Scholar] [CrossRef]
Matrix Dimensions L | Percolation Threshold Value, a.u. | Standard Deviation, a.u. | Coefficient of Determination R2, a.u. |
---|---|---|---|
50 | 0.592187 | 0.0262253 | 0.99392 |
75 | 0.592663 | 0.0197870 | 0.99476 |
100 | 0.592443 | 0.0159748 | 0.99631 |
125 | 0.592767 | 0.0137418 | 0.99679 |
150 | 0.592616 | 0.0119424 | 0.99826 |
175 | 0.592718 | 0.0106823 | 0.99733 |
200 | 0.592726 | 0.0097261 | 0.99805 |
250 | 0.592751 | 0.0082911 | 0.99775 |
300 | 0.592732 | 0.0071884 | 0.99811 |
350 | 0.592717 | 0.0063989 | 0.99894 |
400 | 0.592713 | 0.0058001 | 0.99786 |
500 | 0.592726 | 0.0049406 | 0.99813 |
600 | 0.592738 | 0.0044160 | 0.99771 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zukowski, P.; Okal, P.; Kierczynski, K.; Rogalski, P.; Bondariev, V.; Pogrebnjak, A.D. Monte Carlo Simulation of Percolation Phenomena for Direct Current in Large Square Matrices. Energies 2023, 16, 8024. https://doi.org/10.3390/en16248024
Zukowski P, Okal P, Kierczynski K, Rogalski P, Bondariev V, Pogrebnjak AD. Monte Carlo Simulation of Percolation Phenomena for Direct Current in Large Square Matrices. Energies. 2023; 16(24):8024. https://doi.org/10.3390/en16248024
Chicago/Turabian StyleZukowski, Pawel, Pawel Okal, Konrad Kierczynski, Przemyslaw Rogalski, Vitalii Bondariev, and Alexander D. Pogrebnjak. 2023. "Monte Carlo Simulation of Percolation Phenomena for Direct Current in Large Square Matrices" Energies 16, no. 24: 8024. https://doi.org/10.3390/en16248024
APA StyleZukowski, P., Okal, P., Kierczynski, K., Rogalski, P., Bondariev, V., & Pogrebnjak, A. D. (2023). Monte Carlo Simulation of Percolation Phenomena for Direct Current in Large Square Matrices. Energies, 16(24), 8024. https://doi.org/10.3390/en16248024