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Abstract: In order to address the convergence issue in fuzzy power flow calculations, this paper
proposes an analytical approach based on the Levenberg–Marquardt method, aiming to improve
the convergence of the fuzzy Newton power flow method. Firstly, a detailed analysis is conducted
on the convergence theorem and convergence behavior of the fuzzy Newton method, revealing
its poor convergence when the initial values are not properly selected. The Levenberg–Marquardt
method is then selected as a means to enhance the convergence of the fuzzy Newton power flow
calculations, specifically to tackle the problem of initial value deviation. Since the Jacobian matrix
has a significant impact on the convergence region of the power flow, this paper reconstructs the
Jacobian matrix based on the Levenberg–Marquardt method, effectively enlarging the convergence
region. Through validation experiments on the IEEE 118 standard nodes and simulation comparative
analysis, the results confirm the method’s effectiveness in resolving the problem of initial value
deviation and notably enlarging the convergence region, thereby improving the convergence of
power flow calculations.

Keywords: Levenberg–Marquardt; power flow calculation; convergence; fuzzy-Newton method

1. Introduction

There are numerous variables of uncertainty in power systems [1,2], which are typically
handled as planning and forecasting problems. Power systems involve more complex
analyses, such as load flow [3–5], and using deterministic methods for analysis cannot
provide accurate results. Borkowska [6] introduced the concept of probabilistic flow,
which is applied to the DC model. The injection power of uncertain nodes is modeled
using probability functions. Subsequently, the probability functions are applied to the AC
model, initiating numerical analysis [7]. When analyzing probabilistic flow, boundary flow
analysis [8] is conducted to evaluate the maximum and minimum values that flow state
variables can assume.

However, there are still many uncertain variables in power systems that can be con-
sidered as non-probabilistic in certain operating conditions. The magnitude of loads is
constantly changing at any given moment due to economic growth, changes in social con-
ditions, and human behavior. Therefore, in some cases, using past experience to evaluate
future events is an incomplete approach. On the contrary, uncertainty in actual power
systems is often associated with imprecise qualitative information and is also linked to
certain common expressions, such as “rated power of the motor is between 15 and 25 MW”
or “negative power is approximately 5 MW”, which are typically derived from the expe-
rience of system operators. Uncertainty analysis of existing models is necessary when
non-probabilistic uncertainties arise in the power system [9]. Fuzzy sets are commonly
used for analysis as they can represent and analyze variables with fuzzy and imprecise
mathematical precision. Miranda and Mato proposed fuzzy power flow calculation [10–13]
to study fuzzy variables in power system flows, aiming to compute the uncertainties in
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power flows by utilizing fuzzy membership functions for node injection powers and ad-
dressing potential distribution issues. The possibility analysis model introduced in power
flow calculations has been widely accepted. In [14], the fuzzy interval algorithm [15–19] is
used to solve power flow calculation problems. Although it is a fuzzy model in specific
cases, it represents an alternative way to handle uncertain boundaries. It paves the way for
new probabilistic power flow solutions, where this method requires imprecise and fuzzy
information as input variables instead of probability density functions.

Fuzzy power flow has been widely applied in the operation and planning of power
systems since its proposal, including power transmission systems [20,21], distribution
networks, and distributed generation systems [22–25]. This has led to new requirements
for fuzzy power flow algorithms. Consequently, over time, traditional fuzzy power flow
algorithms have undergone changes. In [26], improvements to the power flow calculation
method were made based on numerical values such as branch losses, voltage, and current
between nodes. Although there are many traditional applications, their use in large-scale
systems is limited. This paper aims to improve the traditional fuzzy power flow algorithm
to make it suitable for large-scale power transmission systems. Research on power flow
calculation has a long history, and there is already a certain foundation in studying the
convergence of power flow calculation, especially the convergence issue of the Newton
method for power flow calculation, which has been favored by researchers. In order to
address the sensitivity of the Newton method to the selection of initial values, in [27], the
authors propose using the PO decoupling method for 1–2 iterations and using the updated
solution as the initial value to start the Newton iteration, which has achieved good results.
The power flow module in the PSD-BPA (2.9) software of the Electric Power Research
Institute still retains this option. In [28], the authors replace the node admittance with the
injected power as the elements of the Jacobian matrix and improve the convergence of
power flow when calculating nodes with large loads by enlarging the smallest eigenvalue
of the Jacobian matrix. Another group of algorithms takes a different approach. In [29],
the elimination tree theory for power flow calculation is proposed. This method does
not involve inverting the admittance matrix, thus avoiding convergence issues. However,
current power system networks are generally complex with a large number of nodes, which
increases the computational burden and slows down computer performance when applying
this method to complex power networks, making it difficult to improve convergence. In [30],
a power flow calculation method based on adjoint theory is proposed, which uses numerical
integration to solve the power flow equations and constructs a least squares formulation.
This method has achieved certain results in challenging-to-converge small systems.

The Levenberg–Marquardt (LM) method is an iterative algorithm for solving non-
linear least squares problems. It combines the features of the most rapid descent method
with the Gauss–Newton method and aims to find the parameter that minimizes the sum of
squares of the residuals between the predicted and observed values of the model. In [31],
they first applied the LM method to power flow calculations, and through numerical
simulations, it was demonstrated that the LM method expanded the range of initial value
selection for power flow convergence. In the Levenberg–Marquardt method, it is first
necessary to define an objective function and transform the fitting problem into a prob-
lem of minimizing the objective function. The algorithm then progressively updates the
parameters by iterating to minimize the objective function. During each iteration, the
gradient of the objective function under the current parameters, i.e., the partial derivative
of the loss function with respect to each parameter, is first calculated. Then, based on the
current gradient and previous iteration information, a new parameter update direction is
calculated. Then, based on this update direction, a new parameter value is computed and
used to update the model. The main feature of the Levenberg–Marquardt method is that
in each iteration, the Hessian matrix of the objective function is multiplied by a positive
definite matrix to obtain a more accurate parameter update direction. The parameters
of this positive definite matrix are adjusted in each iteration to control the step size and
direction of the model update.
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The above references analyze the improvement of convergence for traditional Newton
power flow calculation methods in conventional power grids. This paper will be based on
the Levenberg–Marquardt method, focusing on the energy interconnection system, to study
methods to improve the convergence of fuzzy Newton method power flow algorithms.

In this paper, by analyzing the convergence theorem and convergence tendency of
the fuzzy Newton tidal current algorithm and combining it with existing methods to
improve the convergence of the tidal current calculation, we propose an analytical method
to improve the convergence of the fuzzy Newton tidal current calculation based on the
Levenberg–Marquardt method, which reduces the number of iterations and the running
time of the tidal current calculation and expands the convergence region. This method
reduces the number of iterations and the running time of the tidal current calculation and
enlarges the convergence region. In conclusion, the analytical method to improve the
convergence of the fuzzy Newton method based on the Levenberg–Marquardt algorithm
proposed in this paper has important theoretical significance and practical value. It provides
a new and effective tidal current calculation method in the field of power system analysis,
which helps to improve the stability and operation efficiency of the power system.

The rest of the paper is organized as follows: In Section 2, the fuzzy set theory is
applied to construct a fuzzy tidal current model for the generating units of the power
system. Subsequently, in Section 3, the convergence problem of fuzzy current calculation
is investigated, and it is shown that the Jacobian matrix is an important factor affecting
the convergence of the current. And we analyze the convergence of the fuzzy tidal current
calculation method and propose corresponding methods to improve the convergence. In
Section 4, we use the Levenberg–Marquardt method applied to the fuzzy tidal current
calculation. Given the content of the previous analysis, it is known that the influence of
the Jacobian matrix on the convergence of the tidal current calculation is huge. In order to
improve the convergence of the tidal currents, we reconstruct the Jacobian matrix based on
this method. Finally, the simulation results show that our method reduces the number of
calculation iterations and expands the convergence region, which verifies that our proposed
method is effective.

2. Fuzzy Modeling of the Uncertainty in the Output and Availability of Power
Generation Device

In this paper, the fuzzy modeling of the power generation unit is achieved using the
trapezoidal fuzzy number. The estimates of the power generation unit appear between
L1 ∼ L4, but most likely between L2 ∼ L3, and the uncertainty of the power generation
unit is described through the affiliation function by using the following trapezoidal fuzzy

number
∼
L = (L1, L2, L3, L4).

µ∼
L
(x) =



0 x < L1
x−L1
L2−L1

L1 ≤ x < L2

1 L2 ≤ x < L3
x−L1
L2−L1

L3 ≤ x < L4

0 x ≥ L4

(1)

The fuzzy number center value is µ∼
L
(x) = 1 The mean of the intercept is L2+L3

2 .

The fuzzy availability of the kth generator at the ith node is denoted by
∼
AGik , the active

fuzzy output and fuzzy load are denoted by
∼
PGik ,

∼
PLi , and the reactive fuzzy output and
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fuzzy load are denoted by an
∼
QGik

∼
QLi

, respectively. In this case, the fuzzy active and fuzzy
reactive powers injected by the node i can be represented by the following equation:

∼
Pi = ∑n

k=1

∼
PGik .

∼
AGik −

∼
PLi∼

Qi = ∑n
k=1

∼
QGik

.
∼
AGik −

∼
QLi

(2)

In Equation (2), n is the number of power-generating devices on node i. By perform-

ing fuzzy number operations on
∼
Pi,

∼
Qi, it can be determined that they are trapezoidal

fuzzy numbers.
Distributed generation device wind turbine generators are driven by the wind, and the

wind blades drive the horizontal or longitudinal axis to rotate. This converts mechanical
torque into mechanical energy, and the generator uses the transmission device to obtain
mechanical power. The stator induces an electric current via the rotation of the rotor, and
the power generated is subsequently transferred to the grid on the stator side.

The wind speed, which conforms to the Weibull distribution, is given by the follow-
ing equation:

ϕ(v) =
k
c

(v
c
)k−1exp[−(v

c
)k] (3)

where k = 2 denotes the shape parameter, c = 7 m/s denotes the scale parameter, and v is
the random variable of the Weibull distribution.

In fuzzy tidal current calculation, the wind speed needs to be fuzzified to derive the
fuzzy power emitted by the wind turbine. In order to obtain the fuzzy distribution function
of wind power, a probability distribution function is used, which is transformed into a
fuzzy distributed function by fuzzifying the wind speed. That is to say, the left and right
sides of the maximum value xm are fuzzified, as are the left side of any value x′ ∈ [−∞, xm]
and the right side of any value x′′ ∈ [xm,+∞]:

P
(
x′
)
= P(x′′ ) =

∫ x′

−∞
p(y)dy +

∫ +∞

x′′
p(y)dy (4)

where P(x′) is the fuzzy affiliation function.
Nodes with loads in energy interconnection systems usually have transformers con-

nected to them. Generally, the size of the load is related to the capacity of the connected
transformer, since the size of the load of the node will not be lower than 20% or higher
than 120% of the capacity of the transformer, but normally varies from 60% to 80% of the
capacity of the transformer. So, the magnitude of the node load is described by a set of fuzzy
interval numbers corresponding to the determination intervals

[
β1

xi, βr
xi
]

and
[
α1

xi, αr
xi
]
.{

β1
xi, βr

xi, α1
xi, αr

xi
}

, where β1
xi = 0.6xNi, βr

xi = 0.8xNi, α1
xi = 0.2xNi, αr

xi = 1.2xNi,
where the rated values of active power P and reactive power Q (denoted by x) at node i of
ab are denoted by xNi.

The affiliation function is shown below:

µxi



xi−α1
xi

β1
xi−α1

xi
α1

xi ≤ xi ≤ β
1

xi
xi−αr

xi
βr

xi−αr
xi

βr
xi ≤ xi ≤ αr

xi

1 β1
xi ≤ xi ≤ β

r
xi

0 else

(5)

where x stands for P or Q.
For the electric vehicle charging pile load in the energy interconnection system, as-

suming that it can run continuously from entering the operation state to exiting, the
number of fuzzy intervals that determines the boundary [0, QGmax] or with uncertainty
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{0, 0, QGmax, QGmax} can describe the operation process, where QGmax denotes the maxi-
mum capacity of the charger.

For the industrial loads of an electric arc furnace and aluminum electrolysis in the
energy interconnection system, its fuzzy interval model {0, 0, QGmax, QGmax} can be ob-
tained using the same method, where QGmax denotes the maximal capacity of an electric
arc furnace and aluminum electrolysis. When the variables of the energy interconnection
system are in the fuzzy interval

[
β1

xi, βr
xi
]
, α1

xi = β1
xi, αr

xi = βr
xi, and the subordination

value of the variables is 1, the fuzzy trend calculation is changed to the deterministic
trend calculation; when β1

xi = βr
xi, the fuzzy trend calculation is changed to the trian-

gular fuzzy number; when β1
xi = βr

xi, it becomes the triangular fuzzy number. When
α1

xi = β1
xi = αr

xi = βr
xi, it becomes the traditional Newtonian tidal current calculation.

3. Convergence Analysis of the Fuzzy Newton Method

Since the convergence of Newton’s method is mainly related to the Jacobian matrix, to
analyze the convergence of the fuzzy Newton’s method, the Jacobian matrix has to satisfy
the following conditions.

Assumption 1. The Jacobian matrix Jk satisfies the Lipschitz condition after the kth Newton’s
method of selecting generations:

‖ Jm − Jn ‖≤ γ ‖ Vm −Vn ‖, ∀Vm, Vn ∈ S(V0, δ) (6)

where γ is a real number.

Lemma 1. Let A, C ∈ L(Rn). A is a non-singular matrix; ‖ A−1 ‖≤ α, ‖ A− C ‖≤ β and
αβ < 1, then

‖ C−1 ‖≤ α

1− αβ
(7)

Theorem 1. The initial value of voltage V0 and the Jacobian matrix Jk in the fuzzy trend calculation
∼
F(V) = 0 satisfy the following conditions:

‖ J0
−1 ‖≤ β (8)

‖ J0
−1
∼
F(V) ‖≤ η (9)

where β, η are real numbers. In the neighborhood S(V0, δ) of the voltage magnitude V0, if the fuzzy
tidal current calculation convergence operator ρ satisfies the following conditions:

ρ = βηγ ≤ 1
2

(10)

δ ≥
1−

√
1− 2ρ

ρ
η (11)

The solution sequence Vk of the fuzzy Newton method for power flow calculation
converges at V∗, indicating the existence of a solution V∗ within the range of S(V0, δ).

Proof of Theorem 1. From the quadratic merit function, we get:

j(x) =
1
2

γx2 − 1
β

x +
η

β
= 0 (12)
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The two analytical solutions can be obtained as
∼
x
∗
=

1−
√

1−2βγη

βγ ,
∼
x
∗∗

=
1+
√

1−2βγη

βγ ,
which is carried into the Equation (10) and the Equation (11) to get:

∼
x
∗
=

1−
√

1− 2ρ

ρ
η,
∼
x
∗∗

=
1 +

√
1− 2ρ

ρ
η (13)

The iterative sequence xk+1 = xk −
j(xk)
j′(xk)

, k = 0, 1, 2, · · · , x0 = 0 is denoted by tk,
which confirms that xk → x∗ . Next, we analyze ‖ ∆Vk − ∆V∗ ‖≤ x∗ − xk.

Let ηk = xk+1 − xk = − j(xk)
j′(xk)

, βk = − 1
j′(xk)

, ρk = βkγkη, when k = 0, η0 = η, β0 = β.
Derivation of Equation (11), we get:

j′(x) = γx− 1/β (14)

we substitute the j′(xk+1) and j′(xk) into Equations (13) and (14), and we get:

j′(xk+1)− j′(xk) = γ(xk+1 − xk) = γηk (15)

Then, we construct a function of the following form:

j(xk+1)− [j(xk) + j′(xk)(xk+1 − xk)]

= 1
2 γx2

k+1 − 1
β xk+1 − 1

2 γx2
k +

1
β xk −

(
γxk − 1

β

)
(xk+1 − xk)

= 1
2 γx2

k+1 − 1
2 γx2

k

(
γxk − 1

β

)
(xk+1 − xk)

= 1
2 γηk(xk+1 − xk)−

(
γxk − 1

β

)
ηk

= 1
2 γ(xk+1 − xk)

2 = 1
2 γηk

2

(16)

From Equation (15), we have:

j′(xk+1) = γηk + j′(xk) = γηk −
1
βk

=
γηkβk − 1

βk
=

ρk − 1
βk

(17)

Substituting the variables βk = − 1
j′(xk)

, ρk = βkγkη into Equations (16) and (17) yields:

βk+1 = − 1
j′(xk+1)

(18)

ηk+1 = − j(xk+1)

j′(xk+1)
=

1
2

γβkηk
2

1− ρk
=

1
2

ρk
1− ρk

ηk (19)

ρk+1 = γβk+1ηk+1 =
γβk

1− ρk
· ρkηk
2(1− ρk)

=
ρk

2

2(1− ρk)
2 (20)

Noting that 0 ≤ ρ ≤ 1
2 , 1 ≤ 1−

√
1−2ρ

ρ ≤ 2, there are:

‖ ∆V1 − ∆V0 ‖=‖ [j0]−1 ‖≤ η0 = η = x1 − x0 (21)

From (6), (16), (21) and V(1) ∈ S
(

V(0), δ
)

we find that:

‖
∼
F
(

V(1)
)
‖=‖

∼
F
(

V(1)
)
−
∼
F
(

V(0)
)
−
∼
F
′
(v)(V(1) −V(0)) ‖≤ 1

2
γ ‖ V(1) −V(0) ‖2≤ 1

2
γη0

2 (22)

v ∈
(

V(0), V(1)
)

‖ j1 − j0 ‖≤ γ ‖ V1 −V0 ‖≤ γη0 (23)
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Due to ‖ j1−1 ‖≤ β and ‖ j1 − j0 ‖≤ γ ‖ V1 − V0 ‖≤ γη0. Based on Lemma 1, it
follows that j1−1 exists and that

‖ j1−1 ‖≤ β0

1− ρ0
= β1 (24)

Since the magnitude of the voltage amplitude is changing as the iteration proceeds, it
is important to note what V(1) represents, as shown by Equations (10), (11), and (21).∥∥∥V(2) −V(1)

∥∥∥ ≤ x2 − x1 = η1

≤
(

1−
√

1−2ρ

ρ − 1
)

η + η =
1−
√

1−2ρ

ρ η
(25)

∥∥∥V(2) −V(0)
∥∥∥ ≤ ∥∥∥V(2) −V(1)

∥∥∥+ ∥∥∥V(1) −V(0)
∥∥∥ ≤(

1−
√

1−2ρ

ρ − 1
)

η + η =
1−
√

1−2ρ

ρ η ≤ δ
(26)

The amplitude of the voltage is expressed as V(2) ∈ S(V0, δ).
Similarly to Equations (25) and (26), it follows identically that Vk ∈ S(V0, δ), k = 0, 1, 2

. . . and we get: 

∥∥∥∥∼F(Vk)

∥∥∥∥ ≤ 1
2 γη2

k−1∥∥∥J−1
k

∥∥∥ ≤ βk∥∥∥∥J−1
k

∼
F(Vk)

∥∥∥∥ ≤ ηk

‖∆Vk+1 − ∆Vk‖ ≤ tk+1 − tk

(27)

For any positive integers m, n, k, m = n + k, we have:∥∥∥V(m) −V(n)
∥∥∥ ≤ ∥∥∥V(n+k) −V(n+k−1)

∥∥∥+ · · ·+ ∥∥∥V(k+1) −V(k)
∥∥∥

≤ |xn+k − xn+k−1|+ · · ·+ |xn+1 − xn|
≤ |xm − xn|

(28)

It follows from the convergence of tk that {V(k)} is a Cauchy convergent sequence, and
thus {V(k)} has a limit, which is set to be V∗, so that k→ ∞ in the above equation leads to∥∥∥V∗ −V(k)

∥∥∥ ≤ |x∗ − xk| (29)

Observing the convergence of ηk → 0 and
∼
F(V∗) through Equation (27), it can be seen

that
∼
F(V∗) = 0, the solution of the fuzzy tidal current computation

∼
F(V) = 0 is V∗, which

can end the whole proof of inference process. �

Using this theorem, the difficulty of choosing the initial value is reduced, and fewer
computational steps are required to calculate the trend operator ρ before the trend calcu-
lation to determine whether the initial value can find a convergent solution for the trend
calculation. If ρ is less than 1/2, the next trend computation can continue; otherwise, it is
necessary to repeatedly train other initial values.

4. Levenberg–Marquardt Method Applied to Fuzzy Tidal Current Calculation
4.1. Convergence Improvement Proof

In this paper, the Levenberg–Marquardt method is used to improve the convergence
of the fuzzy Newton method of tidal current computation, which belongs to one of the
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non-linear least squares computational methods. A first-order Taylor expansion of the basic

fuzzy tidal current equation
∼
F(x) = 0 is performed at the iteration point x(k):

∼
F
(

x(k+1)
)
=
∼
F
(

x(k)
)
+ J
(

x(k)
)

∆
∼
x
(k)

(30)

where ∆
∼
x
(k)

denotes the iterative correction and ∆
∼
x
(k)

= x(k+1) − x(k), x(k) ∈ ∆
∼
x
(k)

, the
least squares of the trending equations are notated:

min
∼
F
(

x(k+1)
)
= ||

∼
F
(

x(k+1)
)
||22 (31)

We substitute the Equation (30) into Equation (31). Taking a step size of 1/2 for con-
straints, the computational model for the Levenberg–Marquardt method can be obtained as:

min
∼
F(x(k+1)) =

1
2
||
∼
F(x(k)) + J(x(k))∆

∼
x
(k)
||22 (32)

||∆∼x
(k)
||2 ≤ δ (33)

where δ is a dynamic variable that can be changed according to the demand; to reduce the

sum of squares of iterative errors, the magnitude of ∆
∼
x
(k)

has to be determined first. Using
the Levenberg–Marquardt method to limit the magnitude of iterative corrections by adding

a damping factor µ as an additional constraint ∆
∼
x
(k)

can be expressed as:

∆
∼
x
(k)

= −
(

J
(
∼
x
(k)

)T J
(
∼
x
(k)
)
+ µI)−1 J

(
∼
x
(k)

)T F
(
∼
x
(k)
)

(34)

The introduction of the damping factor µ effectively alleviates the divergence problem
in the convergence process, and at the same time gives the Levenberg–Marquardt method
the following features:

(1) When λ ≥ 0, the number of second-paradigm conditions of the matrix JT J + λI
decreases monotonically as the damping factor µ increases.

Proof. Assuming that the JT J matrix is an n× n order matrix with eigenvalues λ1 ≤ λ2 ≤
λ3 · · · ≤ λn then for any x, xT(JT J)x = (Jx)T(Jx) = ||Jx||22 ≥ 0, so the matrix JT J is a
semi-positive definite matrix, and thus all of its eigenvalues can satisfy 0 ≤ λ1 ≤ λ2 ≤
λ3 · · · ≤ λn. Therefore, λi + µ 6= 0. This is because the singular values of a positive definite
matrix and the absolute values of its eigenvalues are equal. Since the condition number of
the matrix A = JT J + µI is satisfied:

cond(A) =
λn + µ

λ1 + µ
(35)

[cond(A)]′µ = (
λn + µ

λ1 + µ
)′ =

λ1 − λn

(λ1 + µ)2 ≤ 0 (36)

Thus, the second-fan condition number of matrix A decreases monotonically as µ
increases. �

(2) The iterative correction ∆
∼
x
(k)

for the Levenberg–Marquardt method decreases mono-
tonically with the increase in damping factor µ.
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Proof . Due to (||∆∼x
(k)

(µ)||2)′µ = (∆
∼
x
(k)

)T(∆
∼
x
(k)

(µ))′µ. The result obtained by taking the
derivation of Equation (27) with respect to µ can be obtained:(∣∣∣∣∣∣∣∣∆∼x(k)

(µ)

∣∣∣∣|2)′µ = −
(

∆
∼
x
(k)

(µ))T
(

J
(

x(k))T J
(

x(k)
)
+ µI

)(
∆
∼
x
(k)

(µ)

)
(37)

where J
(

x(k))T J
(

x(k)
)
+ µI is a positive–definite matrix, then (||∆∼x

(k)
(µ)||2)′µ < 0, and

∆
∼
x
(k)

decreases monotonically as the damping factor µ increases. �

4.2. Convergence Improvement—Reconstructing the Jacobian Matrix

Based on the Levenberg–Marquardt method of improving the fuzzy Newton method
of tidal current calculation, the iterative corrections are expressed in the form of (34), which
is rewritten in the form of an equation as follows:

−
(

J
(
∼
x
(k)

)T J
(
∼
x
(k)
)
+ µI

)
∆
∼
x
(k)

= J
(
∼
x
(k)

)T F
(
∼
x
(k)
)

(38)

From the above equation, the matrix J(
∼
x
(k)

)T J(
∼
x
(k)

) + µI is rearranged to obtain the
same sparse matrix as the conductor matrix, and the sparsification process is carried out
according to the following steps:

y = J
(
∼
x
(k)
)

∆
∼
x
(k)

/βk (39)

where y is the intermediate variable, βk =
√

µk.
Substituting Equation (39) into Equation (38) yields:

βk∆
∼
x
(k)

+ J
(
∼
x
(k)

)Ty = −J
(
∼
x
(k)

)T F
(
∼
x
(k)
)

/βk (40)

Joining Equations (39) and (40) yields the matrix equation shown below: βk I J
(
∼
x
(k)

)T

J
(
∼
x
(k)
)

−βk I


[

∆
∼
x
(k)

y

]
=

F
(
∼
x
(k)
)

0

 (41)

where F
(
∼
x
(k)
)
= −

(
J
(
∼
x
(k)

)T F
(
∼
x
(k)
)

/βk , and the coefficient matrix of the matrix equa-

tion is denoted by A.
The coefficient matrix A of Equation (12) is sparsely reordered, and the sparse coeffi-

cient matrix A is as follows:

A′ =



[
β1 I J11

T

J11 −β1 I

] [
0 J21

T

J12 0

]
· · ·
[

0 JT
n−1,1

J1,n−1 0

]
[

0 J12
T

J21 0

] [
β2 I J22

T

J22 −β2 I

]
· · ·
[

0 JT
n−1,2

J2,n−1 0

]
...

...
...[

0 JT
1,n−1

Jn−1,1 0

][
0 JT

2,n−1
Jn−1,2 0

]
· · ·
[

βn−1 I JT
n−1,n−1

Jn−1,n−1 −βn−1 I

]


(42)

where the chunking matrix has the same structure as the conductivity matrix. Figure 1
shows the coefficient matrix sparse rearrangement undirected graph. The corresponding
undirected graph of the system’s conductivity matrix is M1, M2 has the same structure as
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M1, and the associated nodes of M2 and M1 are connected to obtain the topology graph
denoted as M3, which is described by M3, which also describes the coefficient matrix A.
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M2 has the same structure as M1, and the nodes of M3 can be regarded as the general-
ized nodes of the associated nodes M1 and M2. Therefore, the structure of M3 is the same
as that of M1, so the node ordering of M1 applies to M3 as well.

5. Simulation Studies

In this paper, an algorithm for improving the convergence of the fuzzy Newton method
of tidal current computation based on the Levenberg–Marquardt method is validated by
means of the IEEE 118 standard node system. Figure 2 illustrates the IEEE 118 node
structure. The generating unit nodes in this system are 1, 6, 10, 25, 26, 38, 69, 72, 89, 91, 105,
107, 112, 116, etc., and load unit nodes are 16, 45, 47, 58, 70, 85, etc. Where P type nodes are
72, 91; Q type nodes are 25, 116; V type nodes are 38; PQ type nodes are 1, 16, 47, 58; PV
type nodes are 10, 26, 89, 105; QV type nodes are 70, 85; Vθ type nodes are 69; and PQV
type nodes are 6, 45, 107, 112.

This paper analyzes the convergence of the tidal current calculation based on the
initial values of voltage and phase angle of the nodes and the convergence factor K given
in the following formula. When K = 1, it means that the convergence has been achieved
and there is no need for additional iterations, and when K = 0, it is equivalent to the
initialization of all the unknown voltages to 1. In addition, it should be noted that the
fuzzy tidal current calculation cannot be converged normally outside the range of a certain
convergence factor K.

|Vinitial | =
∣∣∣Vconverged

∣∣∣K (43)

θinitial = K× θconverged (44)

There are many methods in the literature for determining the damping factor µ. The
Levenberg–Marquardt method for determining the damping factor has a wide range of
usability, and it is generally accepted that when the initial value is poorly chosen, it is
necessary to choose a larger damping factor µ. In this paper, the damping factor chosen for
the simulation varies with the number of iterative corrections, which can be obtained as:

µ = 10mlog(∆x)+b (45)

where m = 1, b = −3.
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This paper analyzes the convergence of the tidal current calculation based on the in-
itial values of voltage and phase angle of the nodes and the convergence factor K given in 
the following formula. When K = 1, it means that the convergence has been achieved and 
there is no need for additional iterations, and when K = 0, it is equivalent to the initializa-
tion of all the unknown voltages to 1. In addition, it should be noted that the fuzzy tidal 
current calculation cannot be converged normally outside the range of a certain conver-
gence factor K. |𝑉௧| = ห𝑉௩ௗห  (43)𝜃௧ = 𝐾 × 𝜃௩ௗ  (44)

There are many methods in the literature for determining the damping factor µ. The 
Levenberg–Marquardt method for determining the damping factor has a wide range of 
usability, and it is generally accepted that when the initial value is poorly chosen, it is 
necessary to choose a larger damping factor µ. In this paper, the damping factor chosen 
for the simulation varies with the number of iterative corrections, which can be obtained 
as: 𝜇 = 10 (௱௫)ା  (45)

where 𝑚 = 1, 𝑏 = −3. 
Figures 3 and 4 depict three different algorithms, namely, the fuzzy Newton method 

(FNR), the fuzzy Newton method based on the Levenberg–Marquardt method to improve 
convergence of tidal currents (FNRM), and the fuzzy Newton method based on the Le-
venberg–Marquardt method to improve convergence of tidal currents after Jacobian ma-
trix reconstruction (FNRMR), with the change in the number of iterations and change in 
running time graphs, respectively. Algorithms, the number of iterations, and the running 
time are plotted as the convergence factor changes. 

Figure 2. IEEE 118 standard node system.

Figures 3 and 4 depict three different algorithms, namely, the fuzzy Newton method
(FNR), the fuzzy Newton method based on the Levenberg–Marquardt method to im-
prove convergence of tidal currents (FNRM), and the fuzzy Newton method based on the
Levenberg–Marquardt method to improve convergence of tidal currents after Jacobian
matrix reconstruction (FNRMR), with the change in the number of iterations and change in
running time graphs, respectively. Algorithms, the number of iterations, and the running
time are plotted as the convergence factor changes.
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From the comparative analysis of the above figures, it can be seen that the FNRM
and FNRMR methods contain the convergence situation when all unknown voltages are
initialized to 1 when K = 0. Moreover, the FNRM and FNRMR methods do not need longer
iteration times and running times compared with the traditional FNR method, but the
convergence region is three times that of the traditional FNR method, and the FNRMR
method is able to converge very well even in the case of poorly selected initial values.
In addition, the FNRMR method reconstructs the Jacobian matrix through the sparse
matrix. Although the process of the sparse matrix increases the running time, the FNRMR
significantly reduces the number of iterations, which leads to the conclusion that the fuzzy
Newton tidal current algorithm based on the Levenberg–Marquardt algorithm can solve the
problem of the deviation of the initial value very well, and expand the convergence region,
which improves the tidal current. For the simulation results obtained above, we summarize
our advantages from the following two aspects: (1) Number of iterations: Since the fuzzy
Newton method with adjusted Jacobian matrix is characterized by dynamically adjusted
convergence factors, it can usually approximate the optimal solution faster, and therefore
fewer iterations will be required. Meanwhile, the fuzzy Newton method may require
more iterations to converge. (2) Running Time: Since the fuzzy Newton method, after
adjusting the Jacobian matrix, requires additional computations to update the convergence
factors, it may require more running time. However, if the method is able to converge faster,
the total running time may be shorter than the fuzzy Newton method. The Levenberg–
Marquardt fuzzy Newton tidal current algorithm can solve the problem of initial value
deviation well and expand the convergence region to improve the convergence of the tidal
current calculation.

6. Conclusions

By analyzing the convergence theorem and convergence tendency of the fuzzy Newton
tidal current algorithm and combining them with the existing main methods to improve the
convergence of tidal current calculation, an analytical method to improve the convergence
of fuzzy Newton tidal current calculation based on the Levenberg–Marquardt method is
proposed and verified on the IEEE standard 118 points. The convergence of fuzzy Newton
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tidal current calculation, fuzzy Newton tidal current calculation based on Levenberg–
Marquardt method, and fuzzy Newton tidal current calculation based on Jacobian matrix
reconstruction after the Levenberg–Marquardt method are analyzed by comparison with
the simulation. The number of iterations and running time of the fuzzy Newton method,
the fuzzy Newton method based on the Levenberg–Marquardt method, and the fuzzy
Newton method based on the Levenberg–Marquardt method after the Jacobian matrix
reconstruction are compared and analyzed by simulation, and the improved method
reduces the number of iterations and enlarges the area of convergence, which verifies that
the method can improve the convergence of the fuzzy Newton method.
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