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Abstract: As flexible resources, cascaded hydropower stations can regulate the fluctuations caused
by wind and photovoltaic power. Constructing pumped-storage units between two upstream and
downstream reservoirs is an effective method to further expand the capacity of flexible resources. This
method transforms cascaded hydropower stations into a cascaded pumped-hydro-energy storage
system. In this paper, a flexibility reformation planning model of cascaded hydropower stations
retrofitted with pumped-storage units under a hybrid system composed of thermal, wind, and
photovoltaic power is established with the aim of investigating the optimal capacity of pumped-
storage units. First, a generative adversarial network and a density peak clustering algorithm are
utilized to generate typical scenarios to deal with the seasonal fluctuation of renewable energy
generation, natural water inflow, and loads. Then, a full-scenario optimization method is proposed
to optimize the operation costs of multiple scenarios considering the variable-speed operation
characteristics of pumped storage and to obtain a scheme with better comprehensive economy.
Meanwhile, the proposed model is retransformed into a mixed-integer linear programming problem
to simplify the solution. Case studies in Sichuan province are used to demonstrate the effectiveness
of the proposed model.

Keywords: cascaded hydropower stations; renewable energy; optimal capacity configuration;
pumped storage; variable-speed units; mixed-integer linear programming

1. Introduction

With the continuous attention being paid to climate issues and the continuous con-
sumption of fossil energy, many countries are gradually shifting their focus to renewable
energy sources such as wind and photovoltaic (PV) power [1,2]. In particular, China has
promised to achieve a carbon peak by 2030 and carbon neutrality by 2060, and wind and
PV power generation are undoubtedly the preferred energy sources [3,4]. However, wind
and PV power are greatly affected by environmental factors, making it difficult to accu-
rately predict their power outputs. Therefore, the inherent uncertainties in wind and PV
power generation challenge the safe and stable operation of power grids [5,6]. In this case,
developing flexible resources has become effective and necessary [7,8].

Hydropower, with advantages such as controllable water reservoir volumes and ma-
ture technology, is an excellent regulating power source, and there exist temporal and
spatial correlation characteristics between hydropower, wind power, and PV power gener-
ation which can promote the integration and development of wind and PV power [9,10].
Many scholars have conducted research on the complementary integration of hydropower,
wind power, and PV power. Zhang et al. [11] captured the spatial and temporal correlations
between wind and solar plants via an improved vine copula theory and demonstrated
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the potential of a large-scale hydro–wind–solar hybrid system to meet export power trans-
mission demands. Incorporating stochastic wind, solar, and small-hydro power, Biswas
et al. [12] proposed a multi-objective economic-emission power dispatch problem for-
mulation and solution and applied a decomposition-based multi-objective evolutionary
algorithm and summation-based multi-objective differential evolution algorithm to comply
with system constraints. Wei et al. [13] presented a stochastic optimization model consid-
ering the strong regulation capacity of cascade hydropower stations and the uncertainty
of wind and PV power, which were solved with linearization methods and a proposed
two-stage approach. From the above papers, it can be seen that hydropower plays a role in
handling the problem of increasing renewable energy penetration, and it can be seen that
a hybrid energy system (HES) is an effective method for promoting the consumption of
renewable energy [14,15].

The above papers demonstrate the role of hydropower in mitigating the volatility of
wind and PV power. In addition to hydropower, energy storage plays a role in dealing
with the uncertainties of wind and PV power [16,17]. Sun et al. [18] proposed generalized
demand-side resources by combining demand response with energy storage, presenting a
configuration model to minimize operational costs in distribution networks. Li et al. [19]
proposed an optimal scheduling method for minimizing operating costs in an isolated
microgrid by addressing the uncertainty in spinning reserves from energy storage using
chance-constrained programming.

Among the various type of energy storage, pumped-storage (PS) stations are increas-
ingly gaining attention. As of the end of 2022, the global energy storage capacity reached
237.2 GW, with PS capacity accounting for 216.65 GW or 79.3%. In China, the energy
storage capacity was 59.8 GW, with a PS capacity of 45.79 GW, accounting for 76.6% of the
total. Huang et al. [20] exploited an approach to jointly scheduling generation and reserves
for wind–solar–PS power systems and adopted a stochastic and finely adjustable robust
optimization method considering discrete and continuous uncertainties. Jiang et al. [21]
proposed a robust optimization approach to accommodate wind-output uncertainty and
provide a robust unit commitment schedule for thermal generators; the total cost was
reduced significantly by considering PS units. Kumar et al. [22] researched the optimal
scheduling of a variable-speed pumped-storage (VSPS), solar and wind energy system and
demonstrated that the net profit was increased by utilizing variable-speed technology.

In addition, scholars have conducted research into the optimal capacity configuration
of PS stations. Nasir et al. [23] investigated the true potential of PS hydropower and
its optimum operation, along with existing conventional hydropower, and optimized
the capacity of PS hydropower. Diab et al. [24] presented an optimization method for
sizing a hybrid system including PV and wind turbines with a hydroelectric PS system and
investigated the implementation of different optimization techniques to achieve the optimal
sizing of grid-connected hybrid renewable energy systems. Zhang et al. [25] introduced
a rule-based method for determining PS regulation capacity, iteratively revising the PV
curve to match the optimal PS regulation capacity, and explored the role of variable-speed
and constant-frequency PS units in the joint power supply of cascaded hydropower and
PV plants. Ren et al. [26] proposed a solution to grid instability and wastage in wind and
PV systems by suggesting a combined PS/wind/PV/hydrogen production system, and
this integration offered insights into optimizing energy storage capacities, contributing to
stable and sustainable clean energy use.

According to the outline of the 14th Five-Year Plan proposed by the Chinese govern-
ment, retrofitting cascaded hydropower stations (CHSs) with PS units—i.e., adding PS units
between two upstream and downstream reservoirs—is an effective method to improve
the flexibility of hydropower generation for renewable energy accommodation [27,28].
Hence, PS units can store and generate power by taking advantage of the reservoirs in
hydropower plants (HPPs), and more and more research has shown the benefits of using
existing reservoirs of HPPs as the reservoirs of PS units [29,30]. Some papers have already
conducted research on PS retrofitting in cascaded hydropower generation. Wang et al. [31]
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explored the complementary operation of the hybrid PS–wind–PV system at different time
scales and evaluated the economic benefits and energy efficiency of the system. Ribeiro
et al. [32] presented a model for a CHS which contained reversible turbines in several HPPs
and considered the optimal problem under the framework of discrete-time optimal control.
Toufani et al. [33] evaluated the benefits of CHSs retrofitted with reversible turbines, a
system referred to as a pumped-hydro-energy storage (PHES) system, and the profits
generated were analyzed. Hunt et al. [34] combined a large-scale pumped-storage site
with a series of hydropower dams in cascade so the storage capacity could be obtained
during the wet period. To enhance hydropower flexibility, Zhang et al. [35] evaluated the
feasibility of adding a pumping station between two adjacent upstream and downstream
reservoirs, and a large hydro–wind–solar clean energy base was considered. Similarly, by
constructing pump stations between two adjacent upstream and downstream reservoirs, Ju
et al. [36] transformed conventional CHSs into a pumped-hydro-energy storage system to
integrate clean energy resources.

The above papers have primarily conducted research on the scheduling problem
of CHSs retrofitted with PS, which is referred to as a cascaded pumped-hydro-energy
storage system (CPHES), and there are few papers studying the PS capacity configuration
problem of CPHES systems thus far. In this paper, the capacity optimization of PS units
retrofitted in CHSs is investigated. A full-scenario optimization method is utilized to
optimize the comprehensive operation costs of multiple scenarios of renewable energy
generation, natural water inflow, and loads. The technology of VSPS is involved in the
proposed model. In addition, the hydraulic constraints of PS operation are considered, and
an efficient linearization method is proposed to decrease computational burdens.

The main contributions of this paper are as follows:

• A practical capacity configuration model of CHSs retrofitted with pumped-storage
units is proposed, and linearization technologies are developed to address nonlinear
constraints, improving computational efficiency.

• To deal with the seasonal fluctuation of renewable energy generation, natural water inflow,
and loads, the scenario generation method based on generative adversarial network (GAN)
and density peak clustering (DPC) algorithms with limited historical data are proposed,
and a full-scenario optimization method is proposed to optimize the operation costs of
multiple scenarios and obtain a scheme with better comprehensive economy.

• VSPS is considered in the CPHES system. Results demonstrate that PS units’ retrofitting
can reduce the curtailment of wind and PV power, relieve the peak-shaving pressure
of thermal units, and reduce the frequent startup and shutdown of hydropower units.
Furthermore, the advantage of VSPS units over fixed-speed pumped-storage (FSPS)
units is verified.

The remaining sections are organized as follows: Section 2 establishes the system
configuration of the hybrid energy system (HES) with CPHES; Section 3 presents the
scenario generation algorithm and the capacity configuration optimization model; case
studies are carried out in Section 4, and conclusions are provided in Section 5.

2. System Description

In a hybrid energy system, multiple resources such as hydropower, thermal power, wind
power, and PV power are utilized. Thermal, wind, and PV power inject energy into the
power grid. With the increasing penetration of wind and PV power generation, the possible
curtailment of wind and PV power will occur due to their natural uncertainties and mismatch
with load variation. In this case, excess curtailed power can be absorbed by PS units, stored in
the reservoir, and then released to supply the peak load of the power grid.

A schematic of the hybrid energy system with CPHES is shown in Figure 1. It can
be observed that HPP is integrated with PS units through a retrofitting process. Through
constructing PS stations between cascade reservoirs, water can be pumped back to store
energy, thereby absorbing excess electricity and reusing water. In this case, the existing
reservoirs are well utilized. Therefore, the regulating ability of CHSs is enhanced with fewer
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investment costs compared to rebuilding a new individual PS station. It should also be
pointed out that the PS-retrofitted CHSs are not required to be located in the first and second
reservoirs, as shown in Figure 1. The location of the PS should be determined depending on
various factors like reservoir capacity and distance of upstream and downstream reservoirs.
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Figure 1. Schematic of the hybrid energy system with CPHES.

The focus of this paper is to research the capacity of PS units and the role of PS units
in the day-ahead scheduling of the power grid.

3. Modelling of the Proposed Hybrid System
3.1. Scenario Generation Method

The generation of scenarios regarding renewable energy generation, natural water
inflow, and loads form the foundation for the configuration of PS units. This paper proposes
a typical scenario generation method based on GAN and DPC algorithms, as illustrated in
Figure 2.
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The specific steps are as follows:

(1) Input historical data and alternately train GAN networks;
(2) Generate a high number of data to establish a dataset of scenarios for wind and solar

power output, natural water inflow, and loads;
(3) Reduce scenarios based on the DPC algorithm to generate typical scenarios for the

full-scenario operation optimization.
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3.1.1. Generation of Scenario Database Based on GAN Algorithm

Renewable energy generation, natural water inflow, and loads have complicated corre-
lations which are difficult to describe using traditional statistical methods. The advantage of
GAN is that it can deeply explore the internal distribution patterns of input data, enabling
the generated data to better describe the correlation characteristics of renewable energy
generation, natural water inflow, and loads. The generation model is shown in Figure 3.
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GAN is a data-driven machine learning model whose core lies in the game theory
between generator G and discriminator D. The main task of the generator is to convert a set
of unordered noise into a dataset as similar as possible to the input data, while the main task
of the discriminator is to distinguish between the generated data and the real data as much
as possible through learning from the input data. The loss function LG of the generator and
the loss function LD of the discriminator are shown in (1) and (2), respectively:

LG = −Ez[D(G(z, θG), θD)] (1)

LD = Ez[D(G(z, θG), θD)]− Ex[D(x, θD)] (2)

where z denotes the randomly generated noise; θG and θD denote the network parameters of
generators and discriminators, respectively; Ez[·] denotes the expected value for generated
data distribution; G(·, θD) denotes the output value of the generator when the input value
is noise z; D(·, θD) denotes the output value of the discriminator; x denotes real data for
model training; and Ex[·] denotes the expected value of real data distribution.

The objective function V(G, D) of the generator and discriminator is shown in (3):

min
G

max
D

V(G, D) = −E[D(G(z, θG), θD)] + Ex[D(x, θD)] (3)

3.1.2. Scenario Reduction Based on the DPC Algorithm

The DPC algorithm is a density-based clustering algorithm that offers a simpler com-
putation process and does not involve an iterative procedure, in contrast to traditional
algorithms like K-means. The DPC algorithm demonstrates better performance in com-
puting non-spherical clusters and is less susceptible to noise interference. It is particularly
suitable for data with high randomness, such as wind power and PV output. The core
idea of this algorithm is to identify cluster centers with higher density compared to the
surrounding points and that are a significant distance from other cluster centers.

The local density of any point i in the dataset is defined as:

ρi = ∑
j

χ
(
dij − dc

)
(4)

χ(x) =

{
1 x < 0
0 x ≥ 0

(5)
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where χ(·) denotes the defined logical judgment function; dij denotes the distance between
point i and point j; and dc denotes the given truncation distance.

The minimum distance δi between point i and other higher density objects is defined as:

δi = min
j:ρj>ρi

(
dij

)
(6)

If point i has the maximum local density, then δi is defined as:

δi = max
j

(
dij

)
(7)

The specific steps are as follows:
First, calculating ρi of each data point;
Then, calculating δi of each data point;
Finally, drawing a decision graph with ρi as the x-axis and δi as the y-axis. The point

in the upper right corner of the decision graph should be used as the center point of the
cluster. This point should have high density and be far from other high-density points.

3.2. Objective Function

The cost of the HES includes the investment cost of installing PS units and the operation
cost of each entity. The objective function aims to minimize the above costs; therefore, the
objective function is as follows:

minF = min
{

FB + FC + FH + Fps + FG
}

(8)

where FB denotes the annualized investment cost of installing PS units; FC, FH, Fps, and FG,
respectively, denote the annualized operation cost of wind and power, hydropower, PS,
and thermal units.

3.2.1. Investment Cost

FB =
ηps(1 + ηps)

Yps

(1 + ηps)
Yps − 1

CpsPps (9)

where ηps denotes the annual interest rate; Yps denotes the life of the PS unit; Cps denotes
the investment cost per unit capacity; and Pps denotes the sum of the configured capacity
of PS units.

3.2.2. The Penalty Cost of Wind and PV Power Curtailment

FC =
12

∑
m=1

Dm

T

∑
t=1

[cw(PW,f
m,t − PW

m,t)∆t + cpv(PPV,f
m,t − PPV

m,t)∆t] (10)

where Dm denotes the number of days in the month m; T denotes the operating hours
per typical day; cw and cpv are, respectively, the penalty cost coefficients of wind and PV
curtailment; PW,f

m,t and PPV,f
m,t denote the day-ahead forecasted values of wind and PV power

generation at time t of the typical day in month m, respectively; PW
m,t and PPV

m,t denote the
day-ahead scheduling values of wind and PV power generation at time t of the typical day
in month m, respectively; and ∆t denotes the duration per time interval.

During the day-ahead dispatching process, it is desired that the predicted wind and
PV power output are equal to the scheduled dispatching output, so there is a penalty cost
associated with the difference between them.
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3.2.3. The Operation Cost of Hydropower Units

FH =
12

∑
m=1

Dm

T

∑
t=1

NH

∑
i=1

[
Ji

∑
j=1

uH
i,j,m,t

(
1 − uH

i,j,m,t−1

)
cH,u

i,j + chQqi
i,m,t∆t] (11)

where NH is the number of CHSs; Ji is the number of hydropower units in HPP i; uH
i,j,m,t is

the binary variable that marks the operating status of hydropower unit j in HPP i at time t
of the typical day in month m; cH,u

i,j denotes the startup cost of hydropower unit j in HPP

i; ch denotes the penalty cost coefficient of water spillage; and Qqi
i,m,t denotes the water

discharge rate of HPP i at time t of the typical day in month m.
The operation cost of hydropower units generally consists of startup costs and water

spillage cost. There will be no water spillage for HPPs during the non-flood seasons.
Therefore, in the dispatching process, if water spillage occurs, a penalty cost is imposed
upon it.

3.2.4. The Operation Cost of PS Units

Fps =
12

∑
m=1

Dm

T

∑
t=1

Nps

∑
p=1

[upsG
p,m,t(1 − upsG

p,m,t−1)c
psG,u
p + upsP

p,m,t(1 − upsP
p,m,t−1)c

psP,u
p ] (12)

where upsG
p,m,t and upsP

p,m,t are, respectively, the binary variables that mark the operating status
of PS unit p in the generating and pumping condition at time t of the typical day in month
m; cpsG,u

p and cpsP,u
p denote the startup costs of PS unit p in the generating and pumping

condition, respectively.

3.2.5. The Operation Cost of Thermal Units

Based on different regulatory capabilities and cost characteristics, the operation process
of thermal units can be divided into three stages: regular peak regulation (RPR), deep peak
regulation without oil (DPR), and deep peak regulation with oil (DPRO). As shown in
Figure 4, the maximum power output and the minimum power output of the thermal unit
during the RPR, DPR, and DPRO stages, respectively, are denoted by Pmax, Pa, Pb, and Pc.
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During the RPR period, the operation cost of thermal units only includes the coal cost,
which is calculated by the coal consumption characteristic function fcoal(·) as follows:

fcoal(P) = (aP2 + bP + c)Scoal (13)

where a, b, and c, respectively, denote the coefficients of quadratic term, primary term,
and constant term of the consumption characteristic function. Their values are related to
the type of unit, boiler model, and coal quality; Scoal denotes the unit coal price in season,
and P denotes the unit active power output.

During the DPR and DPRO stages, the thermal unit is prone to severe deformation
and fracture, which shortens the lifespan of the unit. The calculation of rotor life is a very
complex problem, and there is no recognized calculation formula in the existing research
that can effectively solve it. This paper calculates the life loss of low-cycle fatigue according
to the low-cycle fatigue characteristic of the rotor material.
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The Manson coffin formula reflects the relationship between the total strain amplitude and
the number of cycles of rotor cracking; its functional relationship is expressed as follows:

∆εt =
σf
E
(2Nt)

d + qf(2Nt)
e (14)

where σf denotes the fatigue strength coefficient of the material; qf denotes the fatigue
ductility coefficient of the material; d denotes the fatigue strength index of the material; e
denotes the fatigue ductility index of the material; Nt denotes the cycle number of the rotor
cracking at time t, which is related to unit output P; ∆εt denotes the total strain amplitude
of the rotor at time t; and E denotes the elastic modulus.

The total strain amplitude ∆εt of the rotor can be obtained based on the stress and
centrifugal tangential stress of the unit rotor, and substituting it into (14) can determine the
number of cycles of rotor cracking Nt. Then, the unit loss cost ωloss(P) combined with the
unit purchase cost can be roughly calculated as follows:

ωloss(P) =
1

Nt
Sunit (15)

where Sunit denotes the unit purchase cost.
During the DPRO stage, the boiler may experience unstable combustion, so the unit

needs to be fed with oil to support combustion, ensuring safe operation of the unit. The oil
input cost is expressed as follows:

ωoil = Scos tZoil (16)

where Scos t denotes the unit fuel price in season, and Zoil denotes the unit oil input.
Therefore, the operation costs of thermal power units in different peak-shaving stages

feature different characteristics. The peak-shaving cost curve is shown in Figure 5, and
the detailed peak-shaving cost of thermal power units can be expressed as a segmented
function as follows:

C(P) =


fcoal(P) Pa < P ≤ Pmax

fcoal(P) + ωloss(P) Pb < P ≤ Pa

fcoal(P) + ωloss(P) + ωoil Pc < P ≤ Pb

(17)
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The total cost of peak shaving for thermal power units is shown as follows:

FG1 =
12

∑
m=1

Dm

T

∑
t=1

NG

∑
g=1

C(PG
g,m,t) (18)
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where PG
g,m,t denotes the power output of thermal unit g at time t of the typical day in

month m.
Then, the startup and shutdown costs of thermal units are defined as follows:

FG2 =
12

∑
m=1

Dm

T

∑
t=1

NG

∑
g=1

[uG
g,m,t

(
1 − uG

g,m,t−1

)
CG,u

g + uG
g,m,t−1

(
1 − uG

g,m,t

)
CG,d

g ] (19)

where uG
g,m,t is the binary variable indicating the operating status of thermal unit g at time t

of the typical day in month m, and CG,u
g and CG,d

g denote the startup and shutdown costs of
thermal unit g, respectively.

In summary, the operation cost of thermal power units is shown as follows:

FG = FG1 + FG2 (20)

3.3. Constraints
3.3.1. Capacity Constraints of PS Units

Pps
p,min ≤ Pps

p ≤ Pps
p,max (21)

where Pps
p,min and Pps

p,max denote the minimum and maximum values of the configured
capacity of PS unit p, respectively.

3.3.2. Balance Constraint of Power Output and Load

Matching the generation with the load is necessary in the power grid. The load balance
constraints are shown in (22):

NH

∑
i=1

Ji

∑
j=1

PH
i,j,m,t +

Nps

∑
p=1

PpsG
p,m,t +

NG

∑
g=1

PG
g,m,t + PW

m,t + PPV
m,t = PD

m,t +
Nps

∑
p=1

PpsP
p,m,t (22)

where PpsG
p,m,t and PpsP

p,m,t, respectively, denote the power output of PS p in the generating and
pumping condition at time t of the typical day in month m; and PD

m,t denotes the day-ahead
forecasted load at time t of the typical day in month m.

3.3.3. Constraints of Hydropower Units

Unit commitment constraints are shown in (23) and (24):

zH,u
i,j,m,t − zH,d

i,j,m,t = uH
i,j,m,t − uH

i,j,m,t−1 (23)

zH,u
i,j,m,t + zH,d

i,j,m,t ≤ 1 (24)

where zH,u
i,j,m,t and zH,d

i,j,m,t are binary variables indicating the startup and shutdown operation
of hydropower unit j in HPP i at time t of the typical day in month m, respectively.

To reduce the computational complexity and computation time of the model, the
average hydraulic head is considered in the generation model of hydropower units. Hy-
dropower output constraints are as shown in (25) and (26):

PH
i,j,m,t = ρgηH

i,jHiqH
i,j,m,t (25)

uH
i,j,m,tP

H,min
i,j ≤ PH

i,j,m,t ≤ uH
i,j,m,tP

H,max
i,j (26)

where ρ denotes the water density; g denotes gravitational acceleration; ηH
i,j denotes the

power generation efficiency of hydropower unit j in HPP i; Hi denotes the average hydraulic
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head of HPP i; and PH,min
i,j and PH,max

i,j denote the minimum and maximum power output
of hydropower unit j in HPP i, respectively.

Taking into account the reliable operation and extended lifespan of hydropower units,
as well as to ensure the stability and reliability of the power grid, it is necessary to consider
the minimum startup and shutdown time of hydropower units as (27):{

(TH,on
i,j,min − TH,on

i,j,m,t−1)(u
H
i,j,m,t − uH

i,j,m,t−1) ≥ 0

(TH,off
i,j,min − TH,off

i,j,m,t−1)(u
H
i,j,m,t−1 − uH

i,j,m,t) ≥ 0
(27)

where TH,on
i,j,min and TH,off

i,j,min denote the minimum running time and down time of hydropower

unit j in HPP i, respectively, and TH,on
i,j,m,t−1 and TH,off

i,j,m,t−1 denote the continuous running time
and down time of hydropower unit j in HPP i until time t − 1 of the typical day in month
m, respectively.

3.3.4. Constraints of PS Units

PS units have two operating states, pumping and generating, and their commitment
constraints are shown in (28)–(35):

upsG
p,m,t + upsP

p,m,t ≤ 1 (28)

zpsG,u
p,m,t − zpsG,d

p,m,t = upsG
p,m,t − upsG

p,m,t−1 (29)

zpsG,u
p,m,t + zpsG,d

p,m,t ≤ 1 (30)

zpsP,u
p,m,t − zpsP,d

p,m,t = upsP
p,m,t − upsP

p,m,t−1 (31)

zpsP,u
p,m,t + zpsP,d

p,m,t ≤ 1 (32)

max

{
T

∑
t=1

zpsG,u
p,m,t ,

T

∑
t=1

zpsG,d
p,m,t

}
≤ NpsG

p (33)

max

{
T

∑
t=1

zpsP,u
p,m,t ,

T

∑
t=1

zpsP,d
p,m,t

}
≤ NpsP

p (34)

∑
p′ ̸=p

upsG
p,m,t ≤ (Nps − 1)(1 − upsP

p−m,t) (35)

where zpsG,u
p,m,t and zpsG,d

p,m,t are binary variables indicating the startup and shutdown action
of PS unit p in generating conditions at time t of the typical day in month m, respec-
tively; zpsP,u

p,m,t and zpsP,d
p,m,t are binary variables indicating the startup and shutdown action

of PS unit p in the pumping condition at time t of the typical day in month m, respec-
tively; NpsG

p and NpsP
p denotes the intraday maximum start–shut numbers of PS unit p in

the generating and pumping condition, respectively.
A conventional FSPS plant comprises a pump turbine alongside upper and lower

reservoirs. During periods of valley demands, the PS unit functions as a pump, consuming
power to store water in the upper reservoir. Conversely, during periods of peak demands,
it operates as a generator, supplying electricity by utilizing the stored water in the upper
reservoir. Compared with the conventional FSPS unit, an outstanding characteristic of
the VSPS unit lies in its ability to extensively adjust the speed of the pump turbine. This
expands operational range to various input powers during the pumping mode while
enhancing the overall efficiency of the system in the generating mode. Thus, regarding the
modeling of FSPS and VSPS units, the FSPS unit is limited to a single fixed power point
corresponding to a specific water head. As a result, the VSPS exhibits a broader power
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tuning range. Considering dispatching requirements, these features present significant
advantages for optimizing the operation of a hybrid power system.

Similar to the power output constraints in hydropower units, the average hydraulic
head is also used for VSPS and FSPS units in order to simplify the model. The power output
constraints of VSPSs are shown in (36)–(39):

PpsG
p,m,t = ρgη

psG,V
p hpqpsG

p,m,t (36)

PpsP
p,m,t =

ρghpqpsP
p,m,t

η
psP,V
p

(37)

upsG
p,m,tα

psG,VPps
p ≤ PpsG

p,m,t ≤ upsG
p,m,tP

ps
p (38)

upsP
p,m,tα

psP,VPps
p ≤ PpsP

p,m,t ≤ upsP
p,m,tP

ps
p (39)

In comparison, power output constraints for FSPS units are shown in (40)–(43):

PpsG
p,m,t = ρgη

psG,F
p hpqpsG

p,m,t (40)

PpsP
p,m,t =

ρghpqpsP
p,m,t

η
psP,F
p

(41)

PpsP
p,m,t = Pps

p upsG
p,m,t (42)

upsG
p,m,tα

psG,FPps
p ≤ PpsG

p,m,t ≤ upsG
p,m,tP

ps
p (43)

where hp denotes the average hydraulic head of PS units; η
psG,V
p and η

psP,V
p , respectively,

denote the power generation and pumping efficiency of VSPS unit p; αpsG,V and αpsP,V,
respectively, denote the minimum power output coefficients of VSPS units in the generat-
ing and pumping condition; η

psG,F
p and η

psP,F
p , respectively, denote the power generation

and pumping efficiency of FSPS unit p; and αpsG,F denotes the minimum power output
coefficient of FSPS units in the generating condition.

3.3.5. Water Balance Constraints

In this paper, CHSs are retrofitted by PS. Water balance constraints with PS units’
retrofitting are shown in (44)–(49):

Vi,m,t = Vi,m,t−1 + (Ii,m,t + QOUT
i−1,m,t + Qps

m,t −
Ji

∑
j=1

qH
i,j,m,t − si,m,t)∆t (44)

Qps
m,t =



0 , without PS
Nps

∑
p=1

(qpsP
p,m,t − qpsG

p,m,t) , for PS’s upper reservior

Nps

∑
p=1

(qpsG
p,m,t − qpsP

p,m,t) , for PS’s lower reservior

(45)

QOUT
i,m,t =

Ji

∑
j=1

qi,j,m,t + si,m,t (46)

0 ≤ si,m,t ≤ si,max (47)

uH
i,j,m,tq

H,min
i,j ≤ qH

i,j,m,t ≤ uH
i,j,m,tq

H,max
i,j (48)
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{
upsG

p,m,tq
psG,min
p ≤ qpsG

p,m,t ≤ upsG
p,m,tq

psG,max
p

upsP
p,m,tq

psP,min
p ≤ qpsP

p,m,t ≤ upsP
p,m,tq

psP,max
p

(49)

where Vi,m,t denotes the real-time reservoir storage capacity of HPP i at time t of the typical
day in month m; Ii,m,t denotes the natural inflow rate of HPP i at time t of the typical
day in month m; Qps

m,t denotes total water flow of PS at time t of the typical day in month

m; qpsG
p,m,t and qpsP

p,m,t denote the power flow and pumping flow rates of PS p at time t of
the typical day in month m, respectively; QOUT

i,m,t and si,m,t denote the outflow and water
spillage of HPP i at time t of the typical day in month m, respectively; qH

i,j,m,t denotes
the hydro-turbine discharge water flow of hydropower unit j in HPP i at time t of the
typical day in month m; si,max denotes the maximum water discharge water flow of HPP

i; qpsG,min
p and qpsG,max

p , respectively, denote the minimum and maximum power flow of

PS p; and qpsP,min
p and qpsP,min

p , respectively, denote the minimum and maximum pumping
flow of PS p.

The water storage volume of reservoirs presents restrictions for achieving flood con-
trol: dead storage capacity, beneficial reservoir capacity, total reservoir capacity, etc. In
addition, the initial and final values of the reservoir storage volume are usually fixed at the
dispatching periods as (50): {

VH
i,min ≤ VH

i,m,t ≤ VH
i,max

Vi,0 = Vi,T
(50)

where VH
i,min and VH

i,max denote the minimum and maximum reservoir storage volumes of
HPP i, respectively.

3.3.6. Constraints of Thermal Units

zG,u
g,m,t − zG,d

g,m,t = uG
g,m,t − uG

g,m,t−1 (51)

zG,u
g,m,t + zG,d

g,m,t ≤ 1 (52)

uG
g,m,tP

G
g,min ≤ PG

g,m,t ≤ uG
g,m,tP

G
g,max (53)

(
TG,on

g,min − TG,on
g,m,t−1

)(
uG

g,m,t − uG
g,m,t−1

)
≥ 0(

TG,off
g,min − TG,off

g,m,t−1

)(
uG

g,m,t−1 − uG
g,m,t

)
≥ 0

(54)

where zG,u
g,m,t and zG,d

g,m,t are binary variables indicating the startup and shutdown operation
of thermal unit g at time t of the typical day in month m, respectively; uG

g,m,t is the binary
variable indicating the operating status of thermal unit g at time t of the typical day in
month m; PG

g,min and PG
g,max denote the minimum and maximum power output values

of thermal unit g, respectively; TG,on
g,min and TG,off

g,min denote the minimum running time and

down time of thermal unit g, respectively; and TG,on
g,m,t−1 and TG,off

g,m,t−1 denote the continuous
running time and down time of thermal unit g until time t − 1 of the typical day in month
m, respectively.

3.3.7. Constraints of Wind and PV Power Output

Under normal circumstances, the day-ahead scheduling values of wind and PV power
generation should be less than or equal to the day-ahead forecasted values of wind and PV
power generation, as shown in (55) and (56):

0 ≤ PW
m,t ≤ PW,f

m,t (55)

0 ≤ PPV
m,t ≤ PPV,f

m,t (56)
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3.3.8. Reserve Constraints

Due to the inherent uncertainty of renewable energy sources, it is necessary to have
reserve capacity in the grid to enhance the flexibility and robustness of the grid and ensure
a reliable power supply. The reserve capacity for both hydropower units and thermal
power units is considered in (57) and (58):

NH
∑

i=1

Ji
∑

j=1
(uH

i,j,m,tP
H,max
i,j − PH

i,j,m,t) ≥ σPD
m,t

NH
∑

i=1

Ji
∑

j=1
(PH

i,j,m,t − uH
i,j,m,tP

H,min
i,j ) ≥ σPD

m,t

(57)


NG
∑

g=1
(uG

g,m,tP
G
g,max − PG

g,m,t) ≥ δPD
m,t

NG
∑

g=1
(PG

g,m,t − uG
g,m,tP

G
g,min) ≥ δPD

m,t

(58)

where σ and δ, respectively, denote the reserve coefficient of hydropower and thermal units.

3.4. Solving Algorithm

Since various nonlinear operational constraints are involved in the proposed model,
the capacity optimization problem is a nonlinear optimization problem. Many methods, in-
cluding Lagrangian relaxation (LR), dynamic programming (DP), and intelligent heuristics
algorithms, have been applied to solve the hydropower scheduling-based problem. Many
difficulties and challenges are encountered with the above methods [37]. For example, the
problem of two or more reservoirs is enormously challenging for the DP-based method
due to the curse of dimensionality. The nonlinear and nonconvex hydropower production
functions make it very difficult for the LR framework to obtain the true dual function, mean-
ing that the basis for algorithm convergence cannot be guaranteed as a result. Intelligent
heuristic algorithms converge easily to a local optimal or even an infeasible solution [38,39].

In recent years, mixed-integer linear programming (MILP)-based approaches have
been adopted by more and more researchers to solve the hydropower scheduling-based
problem because of the availability of better-performing and more user-friendly commercial
software with efficient solvers such as CPLEX 12.10.0 and Gurobi 11.0 [40–42]. Through
incorporating the nonlinearities using piecewise linear approximation, the MILP approach
was generally able to obtain reasonable results in an acceptable computational time [43].

3.4.1. The Linearization of the Coal Consumption Cost

Due to the quadratic term in the cost function of thermal power units, the relationship
between coal consumption cost and thermal power output is nonlinear, so it is necessary to
linearize it to simplify the model. The SOS-2 constraints can be used to handle the quadratic
term here, and the detailed process of linearization can be seen in [44,45].

First, the thermal power output range can be divided into K intervals in equal steps:{
PG

g,min = PG,0
g < . . . < PG,k

g < . . . < PG,K+1
g = PG

g,max

Ccoal,k
g = fcoal(PG,k

g )
(59)

Then, by introducing continuous variables wk
g,m,t (k = 1, 2, . . ., K + 1), coal consumption

cost and thermal power output can be denoted as follows, respectively:
PG

g,m,t =
K+1
∑

k=1
wk

g,m,tP
G,k
g

Ccoal
g,m,t =

K+1
∑

k=1
wk

g,m,t fcoal

(
PG,k

g

) (60)
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To mark the interval in which PG
g,m,t is located, the binary variables zk

g,m,t (k = 1, 2, . . ., K) are
introduced. When zk

g,m,t = 1, PG
g,m,t is at the k-th interval; otherwise, when zk

g,m,t = 0, PG
g,m,t is

not at the k-th interval. The above variables satisfy the following constraints:

w1
g,m,t ≤ z1

g,m,t (61)

wK+1
g,m,t ≤ zK

g,m,t (62)

wk
g,m,t ≤ zK−1

g,m,t + zk
g,m,t (63)

wk
g,m,t ≥ 0 (64)

K+1

∑
k=1

wk
g,m,t = 1 (65)

K

∑
k=1

zk
g,m,t = 1 (66)

Through the above constraints, the nonlinear relationship between coal consumption
cost and thermal power output has been transformed into a linear relationship, which
simplifies the solving process of the model.

3.4.2. The Linearization of Power Constraints of PS Units

In the upper and lower power limit constraints of PS units, there are nonlinear terms
formed by multiplying binary variables and linear variables (upsG

p,m,tP
ps
p , upsP

p,m,tP
ps
p ), which

need to linearize.
First, power consumption constraint is linearized. The continuous variable wpsG

p,m,t is

introduced to denote upsG
p,m,tP

ps
p , i.e., wpsG

p,m,t = upsG
p,m,tP

ps
p , the constraints on wpsG

p,m,t are as follows:
wpsG

p,m,t ≤ Pps
p

wpsG
p,m,t ≥ Pps

p − Pps
p,max(1 − upsG

p,m,t)

upsG
p,m,tP

ps
p,min ≤ wpsG

p,m,t ≤ upsG
p,m,tP

ps
p,max

(67)

Based on the above constraints, it can be seen that, when upsG
p,m,t = 0, wpsG

p,m,t = 0;

when upsG
p,m,t = 1, wpsG

p,m,t = Pps
p . The linearization can be completed by substituting wpsG

p,m,t back
to the original constraint:

α
psG
p wpsG

p,mt ≤ PpsG
p,m,t ≤ wpsG

p,mt (68)

Similarly, the above method can also be used to linearize the power consumption
constraint of PS units: 

wpsP
p,m,t ≤ Pps

p

wpsP
p,m,t ≥ Pps

p − Pps
p,max(1 − upsP

p,m,t)

upsP
p,m,tP

ps
p,min ≤ wpsP

p,m,t ≤ upsP
p,m,tP

ps
p,max

(69)

The linearization can be completed by substituting wpsP
p,m,t back into the original con-

straint:
α

psP
p wpsP

p,m,t ≤ PpsP
p,m,t ≤ wpsP

p,m,t (70)

To sum up, the model for optimal capacity configuration considering scheduling optimization
is transformed into an MILP problem which can be solved by the Yalmip/Gurobi solver.
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3.5. Optimization Model

The main information encompassed in the presented capacity optimization model in
this paper is depicted in Figure 6. The input data include parameters of CHSs, parameters of
thermal power units, and cost coefficients. The decision variables of the proposed model are
divided into capacity configuration-related decision variables, which are the capacity of PS
units, and operation-related variables such as the power outputs of thermal, hydropower,
and PS units. As previously mentioned, the objective function comprises investment
costs and operating costs, while the constraints include the operational constraints of each
unit, electricity balance constraints, water balance constraints, and reserve constraints.
Subsequently, the nonlinear parts mentioned were linearized and transformed into an
MILP model for resolution.
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Constraints of Hydropower 
Units

Constraints of PS Units

Water Balance Constraints

Constraints of Thermal Units

Constraints of Wind and PV 
Power Output

Reserve Constraints

The Penalty Cost of Wind 
and PV Power curtailment

The Operation Cost of 
Hydropower Units

The Operation Cost of 
Pumped Storage Units

The Operation Cost of 
Thermal Units

Linearization

Mixed Integer Linear Programming 
(MILP) model

Optimization 
variables

Capacity of PS 
units

Operational state 
variables

Capacity 
variable

Operational 
variables

On-off variables

Unit power 
output variables

...

Input data

CHSs

Thermal units

Cost coefficients

...

 

Figure 6. Schematic of system model. Figure 6. Schematic of system model.

4. Case Study
4.1. Case Parameters

In this paper, a hybrid energy system in the Sichuan province of China is applied
to demonstrate the effectiveness and feasibility of this model. The system consists of
hydropower units (448 MW of total installed capacity), thermal power units (440 MW of
total installed capacity), wind farms (600 MW of total installed capacity), and PV stations
(600 MW of total installed capacity).

The parameters of HPPs are shown in Table 1. The penalty cost coefficients of PV
power and wind power curtailment are both set as USD 78.30/MWh, and the penalty cost
coefficient of water spillage is USD 0.40/m3. The startup costs of hydropower and PS units
are both set as USD 2.80/MW.
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Table 1. Parameters of HPPs.

Symbol HPP-1 HPP-2 HPP-3

Installed capacity (MW) 60 × 4 30 × 4 15 × 4
Minimum power output (MW) 14.7 × 4 6.4 × 4 5.6 × 4

Beneficial reservoir capacity (108 m3) 9.35 0.15 0.16
Maximum hydro-turbine discharge rate (m3/s) 51.53 18.63 0.16

In CHSs, the reservoir of HPP-1 is the main reservoir with the largest storage capacity
in all cascade reservoirs. By controlling the water release of HPP-1, the operation of
downstream reservoirs can be regulated. If PS units are constructed between the reservoirs
of HPP-1 and HPP-2, controlling the entire downstream HPPs will be more convenient and
effective. By constructing PS units using the existing reservoirs, the regulating capacity of
reservoirs can be maximized to optimize the operation of the power system. In this case, a
cascaded hydropower station is retrofitted with PS units between the reservoir of HPP-1
and the reservoir of HPP-2.

4.2. Analysis of Renewable Energy Generation, Natural Water Inflow, and Loads

Using combined GAN and DPC algorithms, 12 typical scenarios of renewable energy
generation, power loads, and water inflow are generated as shown in Figures 7 and 8. In
Figure 7a, it can be observed that the month with the highest load is August while the
month with the lowest load is October, with a difference of approximately 200 MW. This
indicates significant variations in load from month to month. Additionally, power load
exhibits two peaks: a mid-day peak and an evening peak. The difference between the
peak and valley loads is also significant, with the maximum value exceeding 300 MW. It is
evident that the fluctuation in load poses challenges for capacity allocation of storage units
and power system scheduling.
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The forecasted wind power output curve for 12 typical days is shown in Figure 7b.
Wind power output is characterized by significant volatility. The wind power output is
larger at night and smaller during the daytime. However, during the late-night period,
the load is at its lowest point of the day while wind power output tends to exceed the
demand, resulting in curtailment of wind power. From the figure, it can also be seen that
the month with the highest wind power output is March, but the load during this time is
not the highest throughout the year.

Figure 7c shows the forecasted PV power output curve for 12 typical scenarios. As
shown in the figure, PV power output is concentrated during the daytime. The maximum
output occurs at noon, which provides a significant output for the peak load and exhibits a
positive peak-shaving effect. Similar to wind power, it is evident that PV power generation
also requires flexible resources to regulate its output. Otherwise, it may lead to unstable
grid operation and curtailment of PV power.

Figure 8 shows the natural inflow rate of HPP-1; it can be seen from the figure that in
the months during the summer and autumn seasons, natural flow rates are relatively high,
and HPPs can generate a large amount of electricity, which is precisely matched with the
high regional grid load at this stage. In other months, natural inflow rates are relatively
small, resulting in a decrease in the power output of HPPs.

Based on the analysis above, it is evident that regions with large-scale wind power
and PV power generation require flexible resources. This paper transforms CHSs into a
CPHES, which can enhance the system’s regulation capacity. The specific advantages of
this approach will be analyzed below.

4.3. Optimal Capacity Configuration and Result Analysis of Scheduling

After being solved by the solver, the capacity configuration result of the PS units is
58.55 × 3 (MW), and the sum of annual investment and operation cost is USD 34,088,289.11,
while the annual operation cost of the system without PS is USD 43,524,357.96. In contrast,
operational costs with PS units have decreased by 21.68%. It can be seen that although the
investment cost is relatively high, after the regulation of PS units, the system operation cost
decreases, greatly improving the economy of the system’s operation.

To illustrate the effectiveness of the model described in this paper, the following
section will analyze the specific advantages of a CPHES. The model includes 12 typical
days to obtain better comprehensive economy. Here, three typical days are selected for
analysis. The optimal scheduling results of HESs with and without retrofitted PS units are
shown in Figure 9.
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From Figure 9a,b, it can be seen that through the regulation of PS units, the curtailment
rate of wind and PV power is greatly reduced. When the system is not retrofitted with PS
units, the curtailments of wind and PV power are 4852 MWh and 1663 MWh, respectively.
By contrast, the hybrid system retrofitted with PS units reduces the curtailment of wind
and PV power to 630 MW and 387 MWh, respectively. The total curtailment of wind and
PV power has decreased by 84.39%.

In addition, PS units can reduce the peak-shaving pressure of thermal power units.
Due to the requirement of the spinning reserve, there is at least one thermal unit in operation.
When the output of renewable energy is high, thermal units need to reduce output or even
enter the state of deep peak shaving. However, if retrofitted with PS units, cascaded
hydropower stations can operate in the pumping condition. Then, thermal units can avoid
or reduce the duration of being in the state of deep peak shaving, which can, accordingly,
reduce the cost of system operation and lengthen the service life of thermal units. As
shown in Figure 9a, in the case without retrofitted PS units, there is one thermal unit in
the deep peak-shaving state during the 11:00–14:00 period. However, for retrofitted PS
units, there are no thermal units operating in the deep peak-shaving state in this typical
day. As shown in Figure 9b, in the case without PS units, a thermal unit is in the deep
peak-shaving state during the periods of 03:00–06:00 and 09:00–16:00, while in the system
with PS units, the thermal unit operates in the deep peak-shaving state during the 11:00 to
15:00 period. Overall, in the case without retrofitted PS units, the deep peak-shaving cost
of thermal units is USD 6,094,914.86, In contrast, the deep peak-shaving cost is reduced to
USD 4,638,992.60 when retrofitted with PS units, demonstrating a 23.89% reduction.

PS units increase the generating capacity of hydropower stations, thus reducing the
power output of thermal units during peak-load periods. From Figure 9c, it can be seen that
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when not retrofitted with PS units, the hydropower unit has reached its maximum output
in the evening peak-load period. Then, the power load is satisfied by increasing the power
output of thermal units, which, in turn, increases the operation cost of the thermal units.

Finally, retrofitting with PS units can also reduce the frequent startup and shutdown
of hydropower units. In the case of systems without PS units, when wind and PV power
output is high, hydropower units reduce wind and PV power curtailment by reducing
their own power output and shutting down their units, which inevitably increases the
startup and shutdown cost of hydropower units. In contrast, when systems are retrofitted
with PS units, when wind and PV power output is high, PS units operate in pumping
conditions, ensuring that hydropower units remain in operation, which not only reduces
the frequent startup and shutdown cost of hydropower units but also reduces wind and PV
power curtailment. Although the startup and shutdown costs of PS units is USD 39,428.68,
the startup and shutdown cost of hydropower units is decreased from USD 319,791.73 to
USD 191,271.02, and the total cost is decreased by 27.86%.

4.4. Effects of VSPS Units

VSPS units can quickly respond to grid demands, adjust the output power, and achieve
the most efficient energy conversion. The following analysis will focus on the effects of
VSPS units in CPHESs and demonstrate the advantages of the VSPS over FSPS units.

By involving FSPS units in the model, the capacity configuration results of FSPS units
can be obtained after solving the model.

From Table 2, it can be seen that when retrofitted with FSPS units, the annualized total
cost will reach USD 39,053,653.35, which is greater than the cost of the case retrofitted with
VSPS units. Additionally, due to an increase in the configured capacity, the investment
cost also increases. Compared to VSPS units, the operation costs of both hydropower and
thermal power units in hybrid systems retrofitted with FSPS units increase. However,
the operation costs of PS units and curtailed energy decrease. This is because FSPS units
have less frequent startups and shutdowns and larger configured capacity, resulting in a
significant increase in total cost due to the reduction in these factors. Therefore, considering
the factors mentioned above, VSPS units have an advantage over FSPS units.

Table 2. Costs comparison.

Costs Variable-Speed PS Units Fixed-Speed PS Units

Annualized total cost (USD) 34,088,289.11 39,053,653.35
Configured capacity (MW) 58.55 × 3 61.25 × 3

Investment cost (USD) 6,025,020.01 6,303,425.05
The operation cost of hydropower units (USD) 191,271.02 274,826.26

The operation cost of thermal units (USD) 25,442,736.61 25,573,435.92
The operation cost of PS units (USD) 39,428.68 37,750.86

Energy curtailment (MWh) 1017 954

5. Conclusions

In this paper, an optimal capacity configuration model of PS units retrofitted be-
tween two upstream and downstream reservoirs is established. A full-scenario scheduling
framework is proposed for the hybrid energy system consisting of CPHES systems, taking
seasonal fluctuation of renewable energy generation, loads, and water inflow into consider-
ation. Linearization technologies are employed to reduce computational burdens. Case
studies from the Sichuan province of China are explored, and the effects of PS retrofitting
are demonstrated by comparing the annualized total cost and scheduling of hybrid systems
with and without retrofitted PS units. The specific conclusions are as follows:

(1) The fluctuation of renewable energy generation is considered in the proposed capacity
configuration optimization problem. Combined GAN and DPC algorithms are utilized
to generate typical scenarios to balance the computational burdens and accuracy.

(2) Retrofitting a cascaded hydropower station with PS units can increase the regulation
capacity of hydropower stations. In turn, the curtailment of wind and PV power
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can be reduced, the peak-shaving pressure of thermal units can be relieved, and the
frequency of startups and shutdowns of hydropower units can also be reduced.

(3) VSPS units possess greater advantages than FSPS units in terms of retrofitting CHSs
into a CPHES system to improve the feasibility of CHSs.

Future work will study the influence of multiple uncertainties on the optimal capacity
and scheduling of CPHESs.
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